

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

Real-Time Digital
Signal Processing

Implementations and Applications

Second Edition

Sen M Kuo
Northern Illinois University, USA

Bob H Lee
Ingenient Technologies Inc., USA

Wenshun Tian
UTStarcom Inc., USA

iii

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

Real-Time Digital
Signal Processing

Second Edition

i

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

ii

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

Real-Time Digital
Signal Processing

Implementations and Applications

Second Edition

Sen M Kuo
Northern Illinois University, USA

Bob H Lee
Ingenient Technologies Inc., USA

Wenshun Tian
UTStarcom Inc., USA

iii

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

Copyright C© 2006 John Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under
the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the
Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or
faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Kuo, Sen M. (Sen-Maw)
Real-time digital signal processing : implementations, applications and experiments with the

TMS320C55X / Sen M Kuo, Bob H Lee, Wenshun Tian. – 2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-470-01495-4 (cloth)
1. Signal processing–Digital techniques. 2. Texas Instruments TMS320 series microprocessors.
I. Lee, Bob H. II. Tian, Wenshun. III. Title.

TK5102 .9 .K86 2006
621.382′2-dc22 2005036660

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-01495-0
ISBN-10 0-470-01495-4

Typeset in 9/11pt Times by TechBooks, New Delhi, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

iv

http://www.wileyeurope.com

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

Contents

Preface xv

1 Introduction to Real-Time Digital Signal Processing 1
1.1 Basic Elements of Real-Time DSP Systems 2

1.2 Analog Interface 3

1.2.1 Sampling 3

1.2.2 Quantization and Encoding 7

1.2.3 Smoothing Filters 8

1.2.4 Data Converters 9

1.3 DSP Hardware 10

1.3.1 DSP Hardware Options 10

1.3.2 DSP Processors 13

1.3.3 Fixed- and Floating-Point Processors 15

1.3.4 Real-Time Constraints 16

1.4 DSP System Design 17

1.4.1 Algorithm Development 18

1.4.2 Selection of DSP Processors 19

1.4.3 Software Development 20

1.4.4 High-Level Software Development Tools 21

1.5 Introduction to DSP Development Tools 22

1.5.1 C Compiler 22

1.5.2 Assembler 23

1.5.3 Linker 24

1.5.4 Other Development Tools 25

1.6 Experiments and Program Examples 25

1.6.1 Experiments of Using CCS and DSK 26

1.6.2 Debugging Program Using CCS and DSK 29

1.6.3 File I/O Using Probe Point 32

1.6.4 File I/O Using C File System Functions 35

1.6.5 Code Efficiency Analysis Using Profiler 37

1.6.6 Real-Time Experiments Using DSK 39

1.6.7 Sampling Theory 42

1.6.8 Quantization in ADCs 44

References 45

Exercises 45

v

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

vi CONTENTS

2 Introduction to TMS320C55x Digital Signal Processor 49
2.1 Introduction 49

2.2 TMS320C55x Architecture 50

2.2.1 Architecture Overview 50

2.2.2 Buses 53

2.2.3 On-Chip Memories 53

2.2.4 Memory-Mapped Registers 55

2.2.5 Interrupts and Interrupt Vector 55

2.3 TMS320C55x Peripherals 58

2.3.1 External Memory Interface 60

2.3.2 Direct Memory Access 60

2.3.3 Enhanced Host-Port Interface 61

2.3.4 Multi-Channel Buffered Serial Ports 62

2.3.5 Clock Generator and Timers 65

2.3.6 General Purpose Input/Output Port 65

2.4 TMS320C55x Addressing Modes 65

2.4.1 Direct Addressing Modes 66

2.4.2 Indirect Addressing Modes 68

2.4.3 Absolute Addressing Modes 70

2.4.4 Memory-Mapped Register Addressing Mode 70

2.4.5 Register Bits Addressing Mode 71

2.4.6 Circular Addressing Mode 72

2.5 Pipeline and Parallelism 73

2.5.1 TMS320C55x Pipeline 73

2.5.2 Parallel Execution 74

2.6 TMS320C55x Instruction Set 76

2.6.1 Arithmetic Instructions 76

2.6.2 Logic and Bit Manipulation Instructions 77

2.6.3 Move Instruction 78

2.6.4 Program Flow Control Instructions 78

2.7 TMS320C55x Assembly Language Programming 82

2.7.1 Assembly Directives 82

2.7.2 Assembly Statement Syntax 84

2.8 C Language Programming for TMS320C55x 86

2.8.1 Data Types 86

2.8.2 Assembly Code Generation by C Compiler 87

2.8.3 Compiler Keywords and Pragma Directives 89

2.9 Mixed C-and-Assembly Language Programming 90

2.10 Experiments and Program Examples 93

2.10.1 Interfacing C with Assembly Code 93

2.10.2 Addressing Modes Using Assembly Programming 94

2.10.3 Phase-Locked Loop and Timers 97

2.10.4 EMIF Configuration for Using SDRAM 103

2.10.5 Programming Flash Memory Devices 105

2.10.6 Using McBSP 106

2.10.7 AIC23 Configurations 109

2.10.8 Direct Memory Access 111

References 115

Exercises 115

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

CONTENTS vii

3 DSP Fundamentals and Implementation
Considerations 121

3.1 Digital Signals and Systems 121

3.1.1 Elementary Digital Signals 121

3.1.2 Block Diagram Representation of Digital Systems 123

3.2 System Concepts 126

3.2.1 Linear Time-Invariant Systems 126

3.2.2 The z-Transform 130

3.2.3 Transfer Functions 132

3.2.4 Poles and Zeros 135

3.2.5 Frequency Responses 138

3.2.6 Discrete Fourier Transform 141

3.3 Introduction to Random Variables 142

3.3.1 Review of Random Variables 142

3.3.2 Operations of Random Variables 144

3.4 Fixed-Point Representations and Quantization Effects 147

3.4.1 Fixed-Point Formats 147

3.4.2 Quantization Errors 151

3.4.3 Signal Quantization 151

3.4.4 Coefficient Quantization 153

3.4.5 Roundoff Noise 153

3.4.6 Fixed-Point Toolbox 154

3.5 Overflow and Solutions 157

3.5.1 Saturation Arithmetic 157

3.5.2 Overflow Handling 158

3.5.3 Scaling of Signals 158

3.5.4 Guard Bits 159

3.6 Experiments and Program Examples 159

3.6.1 Quantization of Sinusoidal Signals 160

3.6.2 Quantization of Audio Signals 161

3.6.3 Quantization of Coefficients 162

3.6.4 Overflow and Saturation Arithmetic 164

3.6.5 Function Approximations 167

3.6.6 Real-Time Digital Signal Generation Using DSK 175

References 180

Exercises 180

4 Design and Implementation of FIR Filters 185
4.1 Introduction to FIR Filters 185

4.1.1 Filter Characteristics 185

4.1.2 Filter Types 187

4.1.3 Filter Specifications 189

4.1.4 Linear-Phase FIR Filters 191

4.1.5 Realization of FIR Filters 194

4.2 Design of FIR Filters 196

4.2.1 Fourier Series Method 197

4.2.2 Gibbs Phenomenon 198

4.2.3 Window Functions 201

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

viii CONTENTS

4.2.4 Design of FIR Filters Using MATLAB 206

4.2.5 Design of FIR Filters Using FDATool 207

4.3 Implementation Considerations 213

4.3.1 Quantization Effects in FIR Filters 213

4.3.2 MATLAB Implementations 216

4.3.3 Floating-Point C Implementations 218

4.3.4 Fixed-Point C Implementations 219

4.4 Applications: Interpolation and Decimation Filters 220

4.4.1 Interpolation 220

4.4.2 Decimation 221

4.4.3 Sampling-Rate Conversion 221

4.4.4 MATLAB Implementations 224

4.5 Experiments and Program Examples 225

4.5.1 Implementation of FIR Filters Using Fixed-Point C 226

4.5.2 Implementation of FIR Filter Using C55x Assembly

Language 226

4.5.3 Optimization for Symmetric FIR Filters 228

4.5.4 Optimization Using Dual MAC Architecture 230

4.5.5 Implementation of Decimation 232

4.5.6 Implementation of Interpolation 233

4.5.7 Sample Rate Conversion 234

4.5.8 Real-Time Sample Rate Conversion Using

DSP/BIOS and DSK 235

References 245

Exercises 245

5 Design and Implementation of IIR Filters 249
5.1 Introduction 249

5.1.1 Analog Systems 249

5.1.2 Mapping Properties 251

5.1.3 Characteristics of Analog Filters 252

5.1.4 Frequency Transforms 254

5.2 Design of IIR Filters 255

5.2.1 Bilinear Transform 256

5.2.2 Filter Design Using Bilinear Transform 257

5.3 Realization of IIR Filters 258

5.3.1 Direct Forms 258

5.3.2 Cascade Forms 260

5.3.3 Parallel Forms 262

5.3.4 Realization of IIR Filters Using MATLAB 263

5.4 Design of IIR Filters Using MATLAB 264

5.4.1 Filter Design Using MATLAB 264

5.4.2 Frequency Transforms Using MATLAB 267

5.4.3 Design and Realization Using FDATool 268

5.5 Implementation Considerations 271

5.5.1 Stability 271

5.5.2 Finite-Precision Effects and Solutions 273

5.5.3 MATLAB Implementations 275

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

CONTENTS ix

5.6 Practical Applications 279

5.6.1 Recursive Resonators 279

5.6.2 Recursive Quadrature Oscillators 282

5.6.3 Parametric Equalizers 284

5.7 Experiments and Program Examples 285

5.7.1 Floating-Point Direct-Form I IIR Filter 285

5.7.2 Fixed-Point Direct-Form I IIR Filter 286

5.7.3 Fixed-Point Direct-Form II Cascade IIR Filter 287

5.7.4 Implementation Using DSP Intrinsics 289

5.7.5 Implementation Using Assembly Language 290

5.7.6 Real-Time Experiments Using DSP/BIOS 293

5.7.7 Implementation of Parametric Equalizer 296

5.7.8 Real-Time Two-Band Equalizer Using DSP/BIOS 297

References 299

Exercises 299

6 Frequency Analysis and Fast Fourier Transform 303
6.1 Fourier Series and Transform 303

6.1.1 Fourier Series 303

6.1.2 Fourier Transform 304

6.2 Discrete Fourier Transform 305

6.2.1 Discrete-Time Fourier Transform 305

6.2.2 Discrete Fourier Transform 307

6.2.3 Important Properties 310

6.3 Fast Fourier Transforms 313

6.3.1 Decimation-in-Time 314

6.3.2 Decimation-in-Frequency 316

6.3.3 Inverse Fast Fourier Transform 317

6.4 Implementation Considerations 317

6.4.1 Computational Issues 317

6.4.2 Finite-Precision Effects 318

6.4.3 MATLAB Implementations 318

6.4.4 Fixed-Point Implementation Using MATLAB 320

6.5 Practical Applications 322

6.5.1 Spectral Analysis 322

6.5.2 Spectral Leakage and Resolution 323

6.5.3 Power Spectrum Density 325

6.5.4 Fast Convolution 328

6.6 Experiments and Program Examples 332

6.6.1 Floating-Point C Implementation of DFT 332

6.6.2 C55x Assembly Implementation of DFT 332

6.6.3 Floating-Point C Implementation of FFT 336

6.6.4 C55x Intrinsics Implementation of FFT 338

6.6.5 Assembly Implementation of FFT and Inverse FFT 339

6.6.6 Implementation of Fast Convolution 343

6.6.7 Real-Time FFT Using DSP/BIOS 345

6.6.8 Real-Time Fast Convolution 347

References 347

Exercises 348

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

x CONTENTS

7 Adaptive Filtering 351
7.1 Introduction to Random Processes 351

7.2 Adaptive Filters 354

7.2.1 Introduction to Adaptive Filtering 354

7.2.2 Performance Function 355

7.2.3 Method of Steepest Descent 358

7.2.4 The LMS Algorithm 360

7.2.5 Modified LMS Algorithms 361

7.3 Performance Analysis 362

7.3.1 Stability Constraint 362

7.3.2 Convergence Speed 363

7.3.3 Excess Mean-Square Error 363

7.3.4 Normalized LMS Algorithm 364

7.4 Implementation Considerations 364

7.4.1 Computational Issues 365

7.4.2 Finite-Precision Effects 365

7.4.3 MATLAB Implementations 366

7.5 Practical Applications 368

7.5.1 Adaptive System Identification 368

7.5.2 Adaptive Linear Prediction 369

7.5.3 Adaptive Noise Cancelation 372

7.5.4 Adaptive Notch Filters 374

7.5.5 Adaptive Channel Equalization 375

7.6 Experiments and Program Examples 377

7.6.1 Floating-Point C Implementation 377

7.6.2 Fixed-Point C Implementation of Leaky LMS Algorithm 379

7.6.3 ETSI Implementation of NLMS Algorithm 380

7.6.4 Assembly Language Implementation of Delayed LMS Algorithm 383

7.6.5 Adaptive System Identification 387

7.6.6 Adaptive Prediction and Noise Cancelation 388

7.6.7 Adaptive Channel Equalizer 392

7.6.8 Real-Time Adaptive Line Enhancer Using DSK 394

References 396

Exercises 397

8 Digital Signal Generators 401
8.1 Sinewave Generators 401

8.1.1 Lookup-Table Method 401

8.1.2 Linear Chirp Signal 404

8.2 Noise Generators 405

8.2.1 Linear Congruential Sequence Generator 405

8.2.2 Pseudo-Random Binary Sequence Generator 407

8.3 Practical Applications 409

8.3.1 Siren Generators 409

8.3.2 White Gaussian Noise 409

8.3.3 Dual-Tone Multifrequency Tone Generator 410

8.3.4 Comfort Noise in Voice Communication Systems 411

8.4 Experiments and Program Examples 412

8.4.1 Sinewave Generator Using C5510 DSK 412

8.4.2 White Noise Generator Using C5510 DSK 413

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

CONTENTS xi

8.4.3 Wail Siren Generator Using C5510 DSK 414

8.4.4 DTMF Generator Using C5510 DSK 415

8.4.5 DTMF Generator Using MATLAB Graphical User Interface 416

References 418

Exercises 418

9 Dual-Tone Multifrequency Detection 421
9.1 Introduction 421

9.2 DTMF Tone Detection 422

9.2.1 DTMF Decode Specifications 422

9.2.2 Goertzel Algorithm 423

9.2.3 Other DTMF Detection Methods 426

9.2.4 Implementation Considerations 428

9.3 Internet Application Issues and Solutions 431

9.4 Experiments and Program Examples 432

9.4.1 Implementation of Goertzel Algorithm Using Fixed-Point C 432

9.4.2 Implementation of Goertzel Algorithm Using C55x

Assembly Language 434

9.4.3 DTMF Detection Using C5510 DSK 435

9.4.4 DTMF Detection Using All-Pole Modeling 439

References 441

Exercises 442

10 Adaptive Echo Cancelation 443
10.1 Introduction to Line Echoes 443

10.2 Adaptive Echo Canceler 444

10.2.1 Principles of Adaptive Echo Cancelation 445

10.2.2 Performance Evaluation 446

10.3 Practical Considerations 447

10.3.1 Prewhitening of Signals 447

10.3.2 Delay Detection 448

10.4 Double-Talk Effects and Solutions 450

10.5 Nonlinear Processor 453

10.5.1 Center Clipper 453

10.5.2 Comfort Noise 453

10.6 Acoustic Echo Cancelation 454

10.6.1 Acoustic Echoes 454

10.6.2 Acoustic Echo Canceler 456

10.6.3 Subband Implementations 457

10.6.4 Delay-Free Structures 459

10.6.5 Implementation Considerations 459

10.6.6 Testing Standards 460

10.7 Experiments and Program Examples 461

10.7.1 MATLAB Implementation of AEC 461

10.7.2 Acoustic Echo Cancelation Using Floating-Point C 464

10.7.3 Acoustic Echo Canceler Using C55x Intrinsics 468

10.7.4 Experiment of Delay Estimation 469

References 472

Exercises 472

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

xii CONTENTS

11 Speech-Coding Techniques 475
11.1 Introduction to Speech-Coding 475

11.2 Overview of CELP Vocoders 476

11.2.1 Synthesis Filter 477

11.2.2 Long-Term Prediction Filter 481

11.2.3 Perceptual Based Minimization Procedure 481

11.2.4 Excitation Signal 482

11.2.5 Algebraic CELP 483

11.3 Overview of Some Popular CODECs 484

11.3.1 Overview of G.723.1 484

11.3.2 Overview of G.729 488

11.3.3 Overview of GSM AMR 490

11.4 Voice over Internet Protocol Applications 492

11.4.1 Overview of VoIP 492

11.4.2 Real-Time Transport Protocol and Payload Type 493

11.4.3 Example of Packing G.729 496

11.4.4 RTP Data Analysis Using Ethereal Trace 496

11.4.5 Factors Affecting the Overall Voice Quality 497

11.5 Experiments and Program Examples 497

11.5.1 Calculating LPC Coefficients Using Floating-Point C 497

11.5.2 Calculating LPC Coefficients Using C55x Intrinsics 499

11.5.3 MATLAB Implementation of Formant Perceptual Weighting Filter 504

11.5.4 Implementation of Perceptual Weighting Filter Using C55x Intrinsics 506

References 507

Exercises 508

12 Speech Enhancement Techniques 509
12.1 Introduction to Noise Reduction Techniques 509

12.2 Spectral Subtraction Techniques 510

12.2.1 Short-Time Spectrum Estimation 511

12.2.2 Magnitude Subtraction 511

12.3 Voice Activity Detection 513

12.4 Implementation Considerations 515

12.4.1 Spectral Averaging 515

12.4.2 Half-Wave Rectification 515

12.4.3 Residual Noise Reduction 516

12.5 Combination of Acoustic Echo Cancelation with NR 516

12.6 Voice Enhancement and Automatic Level Control 518

12.6.1 Voice Enhancement Devices 518

12.6.2 Automatic Level Control 519

12.7 Experiments and Program Examples 519

12.7.1 Voice Activity Detection 519

12.7.2 MATLAB Implementation of NR Algorithm 522

12.7.3 Floating-Point C Implementation of NR 522

12.7.4 Mixed C55x Assembly and Intrinsics Implementations of VAD 522

12.7.5 Combining AEC with NR 526

References 529

Exercises 529

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

CONTENTS xiii

13 Audio Signal Processing 531
13.1 Introduction 531

13.2 Basic Principles of Audio Coding 531

13.2.1 Auditory-Masking Effects for Perceptual Coding 533

13.2.2 Frequency-Domain Coding 536

13.2.3 Lossless Audio Coding 538

13.3 Multichannel Audio Coding 539

13.3.1 MP3 540

13.3.2 Dolby AC-3 541

13.3.3 MPEG-2 AAC 542

13.4 Connectivity Processing 544

13.5 Experiments and Program Examples 544

13.5.1 Floating-Point Implementation of MDCT 544

13.5.2 Implementation of MDCT Using C55x Intrinsics 547

13.5.3 Experiments of Preecho Effects 549

13.5.4 Floating-Point C Implementation of MP3 Decoding 549

References 553

Exercises 553

14 Channel Coding Techniques 555
14.1 Introduction 555

14.2 Block Codes 556

14.2.1 Reed–Solomon Codes 558

14.2.2 Applications of Reed–Solomon Codes 562

14.2.3 Cyclic Redundant Codes 563

14.3 Convolutional Codes 564

14.3.1 Convolutional Encoding 564

14.3.2 Viterbi Decoding 564

14.3.3 Applications of Viterbi Decoding 566

14.4 Experiments and Program Examples 569

14.4.1 Reed–Solomon Coding Using MATALB 569

14.4.2 Reed–Solomon Coding Using Simulink 570

14.4.3 Verification of RS(255, 239) Generation Polynomial 571

14.4.4 Convolutional Codes 572

14.4.5 Implementation of Convolutional Codes Using C 573

14.4.6 Implementation of CRC-32 575

References 576

Exercises 577

15 Introduction to Digital Image Processing 579
15.1 Digital Images and Systems 579

15.1.1 Digital Images 579

15.1.2 Digital Image Systems 580

15.2 RGB Color Spaces and Color Filter Array Interpolation 581

15.3 Color Spaces 584

15.3.1 YCbCr and YUV Color Spaces 584

15.3.2 CYMK Color Space 585

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

xiv CONTENTS

15.3.3 YIQ Color Space 585

15.3.4 HSV Color Space 585

15.4 YCbCr Subsampled Color Spaces 586

15.5 Color Balance and Correction 586

15.5.1 Color Balance 587

15.5.2 Color Adjustment 588

15.5.3 Gamma Correction 589

15.6 Image Histogram 590

15.7 Image Filtering 591

15.8 Image Filtering Using Fast Convolution 596

15.9 Practical Applications 597

15.9.1 JPEG Standard 597

15.9.2 2-D Discrete Cosine Transform 599

15.10 Experiments and Program Examples 601

15.10.1 YCbCr to RGB Conversion 601

15.10.2 Using CCS Link with DSK and Simulator 604

15.10.3 White Balance 607

15.10.4 Gamma Correction and Contrast Adjustment 610

15.10.5 Histogram and Histogram Equalization 611

15.10.6 2-D Image Filtering 613

15.10.7 Implementation of DCT and IDCT 617

15.10.8 TMS320C55x Image Accelerator for DCT and IDCT 621

15.10.9 TMS320C55x Hardware Accelerator Image/Video Processing Library 623

References 625

Exercises 625

Appendix A Some Useful Formulas and Definitions 627
A.1 Trigonometric Identities 627

A.2 Geometric Series 628

A.3 Complex Variables 628

A.4 Units of Power 630

References 631

Appendix B Software Organization and List of Experiments 633

Index 639

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

Preface

In recent years, digital signal processing (DSP) has expanded beyond filtering, frequency analysis, and

signal generation. More and more markets are opening up to DSP applications, where in the past,

real-time signal processing was not feasible or was too expensive. Real-time signal processing using

general-purpose DSP processors provides an effective way to design and implement DSP algorithms for

real-world applications. However, this is very challenging work in today’s engineering fields. With DSP

penetrating into many practical applications, the demand for high-performance digital signal processors

has expanded rapidly in recent years. Many industrial companies are currently engaged in real-time DSP

research and development. Therefore, it becomes increasingly important for today’s students, practicing

engineers, and development researchers to master not only the theory of DSP, but also the skill of real-time

DSP system design and implementation techniques.

This book provides fundamental real-time DSP principles and uses a hands-on approach to introduce

DSP algorithms, system design, real-time implementation considerations, and many practical applica-

tions. This book contains many useful examples like hands-on experiment software and DSP programs

using MATLAB, Simulink, C, and DSP assembly languages. Also included are various exercises for

further exploring the extensions of the examples and experiments. The book uses the Texas Instruments’

Code Composer Studio (CCS) with the Spectrum Digital TMS320VC5510 DSP starter kit (DSK) devel-

opment tool for real-time experiments and applications.

This book emphasizes real-time DSP applications and is intended as a text for senior/graduate-level

college students. The prerequisites of this book are signals and systems concepts, microprocessor ar-

chitecture and programming, and basic C programming knowledge. These topics are covered at the

sophomore and junior levels of electrical and computer engineering, computer science, and other related

engineering curricula. This book can also serve as a desktop reference for DSP engineers, algorithm

developers, and embedded system programmers to learn DSP concepts and to develop real-time DSP

applications on the job. We use a practical approach that avoids numerous theoretical derivations. A list of

DSP textbooks with mathematical proofs is given at the end of each chapter. Also helpful are the manuals

and application notes for the TMS320C55x DSP processors from Texas Instruments at www.ti.com,

and for the MATLAB and Simulink from Math Works at www.mathworks.com.

This is the second edition of the book titled ‘Real-Time Digital Signal Processing: Implementations,

Applications and Experiments with the TMS320C55x’ by Kuo and Lee, John Wiley & Sons, Ltd. in

2001. The major changes included in the revision are:

1. To utilize the effective software development process that begins from algorithm design and verifica-

tion using MATLAB and floating-point C, to finite-wordlength analysis, fixed-point C implementation

and code optimization using intrinsics, assembly routines, and mixed C-and-assembly programming

xv

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

xvi PREFACE

on fixed-point DSP processors. This step-by-step software development and optimization process

is applied to the finite-impulse response (FIR) filtering, infinite-impulse response (IIR) filtering,

adaptive filtering, fast Fourier transform, and many real-life applications in Chapters 8–15.

2. To add several widely used DSP applications such as speech coding, channel coding, audio coding,

image processing, signal generation and detection, echo cancelation, and noise reduction by expand-

ing Chapter 9 of the first edition to eight new chapters with the necessary background to perform the

experiments using the optimized software development process.

3. To design and analyze DSP algorithms using the most effective MATLAB graphic user interface

(GUI) tools such as Signal Processing Tool (SPTool), Filter Design and Analysis Tool (FDATool),

etc. These tools are powerful for filter designing, analysis, quantization, testing, and implementation.

4. To add step-by-step experiments to create CCS DSP/BIOS applications, configure the

TMS320VC5510 DSK for real-time audio applications, and utilize MATLAB’s Link for CCS feature

to improve DSP development, debug, analyze, and test efficiencies.

5. To update experiments to include new sets of hands-on exercises and applications. Also, to update all

programs using the most recent version of software and the TMS320C5510 DSK board for real-time

experiments.

There are many existing DSP algorithms and applications available in MATLAB and floating-point

C programs. This book provides a systematic software development process for converting these pro-

grams to fixed-point C and optimizing them for implementation on commercially available fixed-point

DSP processors. To effectively illustrate real-time DSP concepts and applications, MATLAB is used

for analysis and filter design, C program is used for implementing DSP algorithms, and CCS is in-

tegrated into TMS320C55x experiments and applications. To efficiently utilize the advanced DSP ar-

chitecture for fast software development and maintenance, the mixing of C and assembly programs is

emphasized.

This book is organized into two parts: DSP implementation and DSP application. Part I, DSP implemen-

tation (Chapters 1–7) discusses real-time DSP principles, architectures, algorithms, and implementation

considerations. Chapter 1 reviews the fundamentals of real-time DSP functional blocks, DSP hardware

options, fixed- and floating-point DSP devices, real-time constraints, algorithm development, selection of

DSP chips, and software development. Chapter 2 introduces the architecture and assembly programming

of the TMS320C55x DSP processor. Chapter 3 presents fundamental DSP concepts and practical con-

siderations for the implementation of digital filters and algorithms on DSP hardware. Chapter 4 focuses

on the design, implementation, and application of FIR filters. Digital IIR filters are covered in Chapter 5,

and adaptive filters are presented in Chapter 7. The development, implementation, and application of

FFT algorithms are introduced in Chapter 6.

Part II, DSP application (Chapters 8–15) introduces several popular real-world applications in signal

processing that have played important roles in the realization of the systems. These selected DSP applica-

tions include signal (sinewave, noise, and multitone) generation in Chapter 8, dual-tone multifrequency

detection in Chapter 9, adaptive echo cancelation in Chapter 10, speech-coding algorithms in Chapter 11,

speech enhancement techniques in Chapter 12, audio coding methods in Chapter 13, error correction

coding techniques in Chapter 14, and image processing fundamentals in Chapter 15.

As with any book attempting to capture the state of the art at a given time, there will certainly be

updates that are necessitated by the rapidly evolving developments in this dynamic field. We are certain

that this book will serve as a guide for what has already come and as an inspiration for what will

follow.

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

SOFTWARE AVAILABILITY xvii

Software Availability

This text utilizes various MATLAB, floating-point and fixed-point C, DSP assembly and mixed C and

assembly programs for the examples, experiments, and applications. These programs along with many

other programs and real-world data files are available in the companion CD. The directory structure and

the subdirectory names are explained in Appendix B. The software will assist in gaining insight into the

understanding and implementation of DSP algorithms, and it is required for doing experiments in the last

section of each chapter. Some of these experiments involve minor modifications of the example code.

By examining, studying, and modifying the example code, the software can also be used as a prototype

for other practical applications. Every attempt has been made to ensure the correctness of the code. We

would appreciate readers bringing to our attention (kuo@ceet.niu.edu) any coding errors so that we

can correct, update, and post them on the website http://www.ceet.niu.edu/faculty/kuo.

Acknowledgments

We are grateful to Cathy Wicks and Gene Frantz of Texas Instruments, and to Naomi Fernandes and

Courtney Esposito of The MathWorks for providing us with the support needed to write this book. We

would like to thank several individuals at Wiley for their support on this project: Simone Taylor, Executive

Commissioning Editor; Emily Bone, Assistant Editor; and Lucy Bryan, Executive Project Editor. We also

thank the staff at Wiley for the final preparation of this book. Finally, we thank our families for the endless

love, encouragement, patience, and understanding they have shown throughout this period.

Sen M. Kuo, Bob H. Lee and Wenshun Tian

JWBK080-FM JWBK080-Kuo March 9, 2006 19:24 Char Count= 0

xviii

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

1
Introduction to Real-Time
Digital Signal Processing

Signals can be divided into three categories: continuous-time (analog) signals, discrete-time signals, and

digital signals. The signals that we encounter daily are mostly analog signals. These signals are defined

continuously in time, have an infinite range of amplitude values, and can be processed using analog

electronics containing both active and passive circuit elements. Discrete-time signals are defined only at

a particular set of time instances. Therefore, they can be represented as a sequence of numbers that have a

continuous range of values. Digital signals have discrete values in both time and amplitude; thus, they can

be processed by computers or microprocessors. In this book, we will present the design, implementation,

and applications of digital systems for processing digital signals using digital hardware. However, the

analysis usually uses discrete-time signals and systems for mathematical convenience. Therefore, we use

the terms ‘discrete-time’ and ‘digital’ interchangeably.

Digital signal processing (DSP) is concerned with the digital representation of signals and the use of

digital systems to analyze, modify, store, or extract information from these signals. Much research

has been conducted to develop DSP algorithms and systems for real-world applications. In recent

years, the rapid advancement in digital technologies has supported the implementation of sophisti-

cated DSP algorithms for real-time applications. DSP is now used not only in areas where analog

methods were used previously, but also in areas where applying analog techniques is very difficult or

impossible.

There are many advantages in using digital techniques for signal processing rather than traditional

analog devices, such as amplifiers, modulators, and filters. Some of the advantages of a DSP system over

analog circuitry are summarized as follows:

1. Flexibility: Functions of a DSP system can be easily modified and upgraded with software that

implements the specific applications. One can design a DSP system that can be programmed to

perform a wide variety of tasks by executing different software modules. A digital electronic device

can be easily upgraded in the field through the onboard memory devices (e.g., flash memory) to meet

new requirements or improve its features.

2. Reproducibility: The performance of a DSP system can be repeated precisely from one unit to another.

In addition, by using DSP techniques, digital signals such as audio and video streams can be stored,

transferred, or reproduced many times without degrading the quality. By contract, analog circuits

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

1

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

2 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

will not have the same characteristics even if they are built following identical specifications due to

analog component tolerances.

3. Reliability: The memory and logic of DSP hardware does not deteriorate with age. Therefore, the

field performance of DSP systems will not drift with changing environmental conditions or aged

electronic components as their analog counterparts do.

4. Complexity: DSP allows sophisticated applications such as speech recognition and image compres-

sion to be implemented with lightweight and low-power portable devices. Furthermore, there are

some important signal processing algorithms such as error correcting codes, data transmission and

storage, and data compression, which can only be performed using DSP systems.

With the rapid evolution in semiconductor technologies, DSP systems have a lower overall cost com-

pared to analog systems for most applications. DSP algorithms can be developed, analyzed, and simulated

using high-level language and software tools such as C/C++ and MATLAB (matrix laboratory). The

performance of the algorithms can be verified using a low-cost, general-purpose computer. Therefore, a

DSP system is relatively easy to design, develop, analyze, simulate, test, and maintain.

There are some limitations associated with DSP. For instance, the bandwidth of a DSP system is

limited by the sampling rate and hardware peripherals. Also, DSP algorithms are implemented using

a fixed number of bits with a limited precision and dynamic range (the ratio between the largest and

smallest numbers that can be represented), which results in quantization and arithmetic errors. Thus, the

system performance might be different from the theoretical expectation.

1.1 Basic Elements of Real-Time DSP Systems

There are two types of DSP applications: non-real-time and real-time. Non-real-time signal processing

involves manipulating signals that have already been collected in digital forms. This may or may not

represent a current action, and the requirement for the processing result is not a function of real time.

Real-time signal processing places stringent demands on DSP hardware and software designs to complete

predefined tasks within a certain time frame. This chapter reviews the fundamental functional blocks of

real-time DSP systems.

The basic functional blocks of DSP systems are illustrated in Figure 1.1, where a real-world analog

signal is converted to a digital signal, processed by DSP hardware, and converted back into an analog

Other digital
systems

Antialiasing
filter

ADC
x(n)

DSP
hardware

Other digital
systems

DAC
Reconstruction

filter y(n)

x(t)x′(t)

Amplifier

Amplifier

y(t) y′(t)

Input channels

Output channels

Figure 1.1 Basic functional block diagram of a real-time DSP system

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

ANALOG INTERFACE 3

signal. Each of the functional blocks in Figure 1.1 will be introduced in the subsequent sections. For

some applications, the input signal may already be in digital form and/or the output data may not need

to be converted to an analog signal. For example, the processed digital information may be stored in

computer memory for later use, or it may be displayed graphically. In other applications, the DSP system

may be required to generate signals digitally, such as speech synthesis used for computerized services or

pseudo-random number generators for CDMA (code division multiple access) wireless communication

systems.

1.2 Analog Interface

In this book, a time-domain signal is denoted with a lowercase letter. For example, x(t) in Figure 1.1 is

used to name an analog signal of x which is a function of time t . The time variable t and the amplitude of

x(t) take on a continuum of values between −∞ and ∞. For this reason we say x(t) is a continuous-time

signal. The signals x(n) and y(n) in Figure 1.1 depict digital signals which are only meaningful at time

instant n. In this section, we first discuss how to convert analog signals into digital signals so that they

can be processed using DSP hardware. The process of converting an analog signal to a digital signal is

called the analog-to-digital conversion, usually performed by an analog-to-digital converter (ADC).

The purpose of signal conversion is to prepare real-world analog signals for processing by digital

hardware. As shown in Figure 1.1, the analog signal x ′(t) is picked up by an appropriate electronic sensor

that converts pressure, temperature, or sound into electrical signals. For example, a microphone can be

used to collect sound signals. The sensor signal x ′(t) is amplified by an amplifier with gain value g. The

amplified signal is

x(t) = gx ′(t). (1.1)

The gain value g is determined such that x(t) has a dynamic range that matches the ADC used by the

system. If the peak-to-peak voltage range of the ADC is ±5 V, then g may be set so that the amplitude

of signal x(t) to the ADC is within ±5 V. In practice, it is very difficult to set an appropriate fixed gain

because the level of x ′(t) may be unknown and changing with time, especially for signals with a larger

dynamic range such as human speech.

Once the input digital signal has been processed by the DSP hardware, the result y(n) is still in digital

form. In many DSP applications, we need to reconstruct the analog signal after the completion of digital

processing. We must convert the digital signal y(n) back to the analog signal y(t) before it is applied to an

appropriated analog device. This process is called the digital-to-analog conversion, typically performed by

a digital-to-analog converter (DAC). One example would be audio CD (compact disc) players, for which

the audio music signals are stored in digital form on CDs. A CD player reads the encoded digital audio

signals from the disk and reconstructs the corresponding analog waveform for playback via loudspeakers.

The system shown in Figure 1.1 is a real-time system if the signal to the ADC is continuously sampled

and the ADC presents a new sample to the DSP hardware at the same rate. In order to maintain real-time

operation, the DSP hardware must perform all required operations within the fixed time period, and

present an output sample to the DAC before the arrival of the next sample from the ADC.

1.2.1 Sampling

As shown in Figure 1.1, the ADC converts the analog signal x(t) into the digital signal x(n). Analog-

to-digital conversion, commonly referred as digitization, consists of the sampling (digitization in time)

and quantization (digitization in amplitude) processes as illustrated in Figure 1.2. The sampling process

depicts an analog signal as a sequence of values. The basic sampling function can be carried out with an

ideal ‘sample-and-hold’ circuit, which maintains the sampled signal level until the next sample is taken.

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

4 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

x(t)

Ideal sampler

x(nT)

Quantizer

x(n)

Analog-to-digital converter

Figure 1.2 Block diagram of an ADC

Quantization process approximates a waveform by assigning a number for each sample. Therefore, the

analog-to-digital conversion will perform the following steps:

1. The bandlimited signal x(t) is sampled at uniformly spaced instants of time nT, where n is a positive

integer and T is the sampling period in seconds. This sampling process converts an analog signal

into a discrete-time signal x(nT) with continuous amplitude value.

2. The amplitude of each discrete-time sample is quantized into one of the 2B levels, where B is the

number of bits that the ADC has to represent for each sample. The discrete amplitude levels are

represented (or encoded) into distinct binary words x(n) with a fixed wordlength B.

The reason for making this distinction is that these processes introduce different distortions. The sampling

process brings in aliasing or folding distortion, while the encoding process results in quantization noise.

As shown in Figure 1.2, the sampler and quantizer are integrated on the same chip. However, high-speed

ADCs typically require an external sample-and-hold device.

An ideal sampler can be considered as a switch that periodically opens and closes every T s (seconds).

The sampling period is defined as

T = 1

fs

, (1.2)

where fs is the sampling frequency (or sampling rate) in hertz (or cycles per second). The intermediate

signal x(nT) is a discrete-time signal with a continuous value (a number with infinite precision) at discrete

time nT, n = 0, 1, . . . , ∞, as illustrated in Figure 1.3. The analog signal x(t) is continuous in both time

and amplitude. The sampled discrete-time signal x(nT) is continuous in amplitude, but is defined only

at discrete sampling instants t = nT.

Time, t

x(nT)

0 T 2T 3T 4T

x(t)

Figure 1.3 Example of analog signal x(t) and discrete-time signal x(nT)

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

ANALOG INTERFACE 5

In order to represent an analog signal x(t) by a discrete-time signal x(nT) accurately, the sampling

frequency fs must be at least twice the maximum frequency component (fM) in the analog signal x(t).
That is,

fs ≥ 2 fM, (1.3)

where fM is also called the bandwidth of the signal x(t). This is Shannon’s sampling theorem, which states

that when the sampling frequency is greater than twice of the highest frequency component contained

in the analog signal, the original signal x(t) can be perfectly reconstructed from the corresponding

discrete-time signal x(nT).

The minimum sampling rate fs = 2 fM is called the Nyquist rate. The frequency fN = fs/2 is called

the Nyquist frequency or folding frequency. The frequency interval [− fs/2, fs/2] is called the Nyquist

interval. When an analog signal is sampled at fs, frequency components higher than fs/2 fold back

into the frequency range [0, fs/2]. The folded back frequency components overlap with the original

frequency components in the same range. Therefore, the original analog signal cannot be recovered from

the sampled data. This undesired effect is known as aliasing.

Example 1.1: Consider two sinewaves of frequencies f1 = 1 Hz and f2 = 5 Hz that are sampled

at fs = 4 Hz, rather than at 10 Hz according to the sampling theorem. The analog waveforms are

illustrated in Figure 1.4(a), while their digital samples and reconstructed waveforms are illustrated

x(t), f1 = 1Hz x(t), f2 = 5Hz

t, second

x(t)

x(n)

t

x(n) x(t)

(a) Original analog waveforms and digital samplses for f1 = 1 Hz and f2 = 5 Hz.

x(n), f1 = 1Hz x(n), f2 = 5Hz

n

x(t)

x(n)

x(n)

x(t)

n

(b) Digital samples for f1 = 1 Hz and f2 = 5 Hz and reconstructed waveforms.

Figure 1.4 Example of the aliasing phenomenon: (a) original analog waveforms and digital samples for f1 = 1 Hz

and f2 = 5 Hz; (b) digital samples of f1 = 1 Hz and f2 = 5 Hz and reconstructed waveforms

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

6 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

in Figure 1.4(b). As shown in the figures, we can reconstruct the original waveform from the digital

samples for the sinewave of frequency f1 = 1 Hz. However, for the original sinewave of frequency

f2 = 5 Hz, the reconstructed signal is identical to the sinewave of frequency 1 Hz. Therefore, f1

and f2 are said to be aliased to one another, i.e., they cannot be distinguished by their discrete-time

samples.

Note that the sampling theorem assumes that the signal is bandlimited. For most practical applications,

the analog signal x(t) may have significant energies outside the highest frequency of interest, or may

contain noise with a wider bandwidth. In some cases, the sampling rate is predetermined by a given

application. For example, most voice communication systems use an 8 kHz sampling rate. Unfortunately,

the frequency components in a speech signal can be much higher than 4 kHz. To guarantee that the

sampling theorem defined in Equation (1.3) can be fulfilled, we must block the frequency components

that are above the Nyquist frequency. This can be done by using an antialiasing filter, which is an analog

lowpass filter with the cutoff frequency

fc ≤ fs

2
. (1.4)

Ideally, an antialiasing filter should remove all frequency components above the Nyquist frequency.

In many practical systems, a bandpass filter is preferred to remove all frequency components above the

Nyquist frequency, as well as to prevent undesired DC offset, 60 Hz hum, or other low-frequency noises.

A bandpass filter with passband from 300 to 3200 Hz can often be found in telecommunication systems.

Since antialiasing filters used in real-world applications are not ideal filters, they cannot completely

remove all frequency components outside the Nyquist interval. In addition, since the phase response of

the analog filter may not be linear, the phase of the signal will not be shifted by amounts proportional to

their frequencies. In general, a lowpass (or bandpass) filter with steeper roll-off will introduce more phase

distortion. Higher sampling rates allow simple low-cost antialiasing filter with minimum phase distortion

to be used. This technique is known as oversampling, which is widely used in audio applications.

Example 1.2: The range of sampling rate required by DSP systems is large, from approximately

1 GHz in radar to 1 Hz in instrumentation. Given a sampling rate for a specific application, the

sampling period can be determined by (1.2). Some real-world applications use the following

sampling frequencies and periods:

1. In International Telecommunication Union (ITU) speech compression standards, the sampling

rate of ITU-T G.729 and G.723.1 is fs = 8 kHz, thus the sampling period T = 1/8000 s =
125 μs. Note that 1 μs = 10−6 s.

2. Wideband telecommunication systems, such as ITU-T G.722, use a sampling rate of fs =
16 kHz, thus T = 1/16 000 s = 62.5 μs.

3. In audio CDs, the sampling rate is fs = 44.1 kHz, thus T = 1/44 100 s = 22.676 μs.

4. High-fidelity audio systems, such as MPEG-2 (moving picture experts group) AAC (advanced

audio coding) standard, MP3 (MPEG layer 3) audio compression standard, and Dolby AC-3,

have a sampling rate of fs = 48 kHz, and thus T = 1/48 000 s = 20.833 μs. The sampling

rate for MPEG-2 AAC can be as high as 96 kHz.

The speech compression algorithms will be discussed in Chapter 11 and the audio coding techniques

will be introduced in Chapter 13.

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

ANALOG INTERFACE 7

1.2.2 Quantization and Encoding

In previous sections, we assumed that the sample values x(nT) are represented exactly with an infinite

number of bits (i.e., B → ∞). We now discuss a method of representing the sampled discrete-time signal

x(nT) as a binary number with finite number of bits. This is the quantization and encoding process. If

the wordlength of an ADC is B bits, there are 2B different values (levels) that can be used to represent

a sample. If x(n) lies between two quantization levels, it will be either rounded or truncated. Rounding

replaces x(n) by the value of the nearest quantization level, while truncation replaces x(n) by the value

of the level below it. Since rounding produces less biased representation of the analog values, it is widely

used by ADCs. Therefore, quantization is a process that represents an analog-valued sample x(nT) with

its nearest level that corresponds to the digital signal x(n).

We can use 2 bits to define four equally spaced levels (00, 01, 10, and 11) to classify the signal into

the four subranges as illustrated in Figure 1.5. In this figure, the symbol ‘o’ represents the discrete-time

signal x(nT), and the symbol ‘ �’ represents the digital signal x(n). The spacing between two consecutive

quantization levels is called the quantization width, step, or resolution. If the spacing between these levels

is the same, then we have a uniform quantizer. For the uniform quantization, the resolution is given by

dividing a full-scale range with the number of quantization levels, 2B .

In Figure 1.5, the difference between the quantized number and the original value is defined as the

quantization error, which appears as noise in the converter output. It is also called the quantization noise,

which is assumed to be random variables that are uniformly distributed. If a B-bit quantizer is used, the

signal-to-quantization-noise ratio (SQNR) is approximated by (will be derived in Chapter 3)

SQNR ≈ 6B dB. (1.5)

This is a theoretical maximum. In practice, the achievable SQNR will be less than this value due to

imperfections in the fabrication of converters. However, Equation (1.5) still provides a simple guideline

for determining the required bits for a given application. For each additional bit, a digital signal will have

about 6-dB gain in SQNR. The problems of quantization and their solutions will be further discussed in

Chapter 3.

Example 1.3: If the input signal varies between 0 and 5 V, we have the resolutions and SQNRs

for the following commonly used data converters:

1. An 8-bit ADC with 256 (28) levels can only provide 19.5 mV resolution and 48 dB SQNR.

2. A 12-bit ADC has 4096 (212) levels of 1.22 mV resolution, and provides 72 dB SQNR.

0 2TT 3T
00

01

10

11

Quantization level

Time

x(t)

Quantization errors

Figure 1.5 Digital samples using a 2-bit quantizer

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

8 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

3. A 16-bit ADC has 65 536 (216) levels, and thus provides 76.294 μV resolution with 96 dB

SQNR.

Obviously, with more quantization levels, one can represent analog signals more accurately.

The dynamic range of speech signals is very large. If the uniform quantization scheme shown in

Figure 1.5 can adequately represent loud sounds, most of the softer sounds may be pushed into the

same small value. This means that soft sounds may not be distinguishable. To solve this problem, a

quantizer whose quantization level varies according to the signal amplitude can be used. In practice,

the nonuniform quantizer uses uniform levels, but the input signal is compressed first using a logarithm

function. That is, the logarithm-scaled signal, rather than the original input signal itself, will be quantized.

The compressed signal can be reconstructed by expanding it. The process of compression and expansion

is called companding (compressing and expanding). For example, the ITU-T G.711 μ-law (used in

North America and parts of Northeast Asia) and A-law (used in Europe and most of the rest of the world)

companding schemes are used in most digital telecommunications. The A-law companding scheme gives

slightly better performance at high signal levels, while the μ-law is better at low levels.

As shown in Figure 1.1, the input signal to DSP hardware may be a digital signal from other DSP

systems. In this case, the sampling rate of digital signals from other digital systems must be known. The

signal processing techniques called interpolation and decimation can be used to increase or decrease the

existing digital signals’ sampling rates. Sampling rate changes may be required in many multirate DSP

systems such as interconnecting DSP systems that are operated at different rates.

1.2.3 Smoothing Filters

Most commercial DACs are zero-order-hold devices, meaning they convert the input binary number to the

corresponding voltage level and then hold that value for T s until the next sampling instant. Therefore,

the DAC produces a staircase-shape analog waveform y′(t) as shown by the solid line in Figure 1.6,

which is a rectangular waveform with amplitude equal to the input value and duration of T s. Obviously,

this staircase output contains some high-frequency components due to an abrupt change in signal levels.

The reconstruction or smoothing filter shown in Figure 1.1 smoothes the staircase-like analog signal

generated by the DAC. This lowpass filtering has the effect of rounding off the corners (high-frequency

components) of the staircase signal and making it smoother, which is shown as a dotted line in Figure

1.6. This analog lowpass filter may have the same specifications as the antialiasing filter with cutoff

frequency fc ≤ fs/2. High-quality DSP applications, such as professional digital audio, require the use

y′(t)

Time, t
0 T 2T 3T 4T 5T

Smoothed output signal

Figure 1.6 Staircase waveform generated by a DAC

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

ANALOG INTERFACE 9

of reconstruction filters with very stringent specifications. To reduce the cost of using high-quality analog

filter, the oversampling technique can be adopted to allow the use of low-cost filter with slower roll off.

1.2.4 Data Converters

There are two schemes of connecting ADC and DAC to DSP processors: serial and parallel. A parallel

converter receives or transmits all the B bits in one pass, while the serial converters receive or transmit

B bits in a serial bit stream. Parallel converters must be attached to the DSP processor’s external address

and data buses, which are also attached to many different types of devices. Serial converters can be

connected directly to the built-in serial ports of DSP processors. This is why many practical DSP systems

use serial ADCs and DACs.

Many applications use a single-chip device called an analog interface chip (AIC) or a coder/decoder

(CODEC), which integrates an antialiasing filter, an ADC, a DAC, and a reconstruction filter all on

a single piece of silicon. In this book, we will use Texas Instruments’ TLV320AIC23 (AIC23) chip

on the DSP starter kit (DSK) for real-time experiments. Typical applications using CODEC include

modems, speech systems, audio systems, and industrial controllers. Many standards that specify the

nature of the CODEC have evolved for the purposes of switching and transmission. Some CODECs use a

logarithmic quantizer, i.e., A-law or μ-law, which must be converted into a linear format for processing.

DSP processors implement the required format conversion (compression or expansion) in hardware, or

in software by using a lookup table or calculation.

The most popular commercially available ADCs are successive approximation, dual slope, flash, and

sigma–delta. The successive-approximation ADC produces a B-bit output in B clock cycles by comparing

the input waveform with the output of a DAC. This device uses a successive-approximation register to

split the voltage range in half to determine where the input signal lies. According to the comparator

result, 1 bit will be set or reset each time. This process proceeds from the most significant bit to the least

significant bit. The successive-approximation type of ADC is generally accurate and fast at a relatively

low cost. However, its ability to follow changes in the input signal is limited by its internal clock rate,

and so it may be slow to respond to sudden changes in the input signal.

The dual-slope ADC uses an integrator connected to the input voltage and a reference voltage. The

integrator starts at zero condition, and it is charged for a limited time. The integrator is then switched

to a known negative reference voltage and charged in the opposite direction until it reaches zero volts

again. Simultaneously, a digital counter starts to record the clock cycles. The number of counts required

for the integrator output voltage to return to zero is directly proportional to the input voltage. This

technique is very precise and can produce ADCs with high resolution. Since the integrator is used for

input and reference voltages, any small variations in temperature and aging of components have little

or no effect on these types of converters. However, they are very slow and generally cost more than

successive-approximation ADCs.

A voltage divider made by resistors is used to set reference voltages at the flash ADC inputs. The

major advantage of a flash ADC is its speed of conversion, which is simply the propagation delay of the

comparators. Unfortunately, a B-bit ADC requires (2B− 1) expensive comparators and laser-trimmed

resistors. Therefore, commercially available flash ADCs usually have lower bits.

Sigma–delta ADCs use oversampling and quantization noise shaping to trade the quantizer resolu-

tion with sampling rate. The block diagram of a sigma–delta ADC is illustrated in Figure 1.7, which

uses a 1-bit quantizer with a very high sampling rate. Thus, the requirements for an antialiasing

filter are significantly relaxed (i.e., the lower roll-off rate). A low-order antialiasing filter requires

simple low-cost analog circuitry and is much easier to build and maintain. In the process of quanti-

zation, the resulting noise power is spread evenly over the entire spectrum. The quantization noise be-

yond the required spectrum range can be filtered out using an appropriate digital lowpass filter. As a

result, the noise power within the frequency band of interest is lower. In order to match the sampling

frequency with the system and increase its resolution, a decimator is used. The advantages of sigma–delta

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

10 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

Analog
input +

−

Σ

Sigma
Delta

1-bit B-bit

1-bit
DAC

1-bit
ADC∫ Digital

decimator

Figure 1.7 A conceptual sigma–delta ADC block diagram

ADCs are high resolution and good noise characteristics at a competitive price because they use digital

filters.

Example 1.4: In this book, we use the TMS320VC5510 DSK for real-time experiments. The

C5510 DSK uses an AIC23 stereo CODEC for input and output of audio signals. The ADCs and

DACs within the AIC23 use the multi-bit sigma–delta technology with integrated oversampling

digital interpolation filters. It supports data wordlengths of 16, 20, 24, and 32 bits, with sampling

rates from 8 to 96 kHz including the CD standard 44.1 kHz. Integrated analog features consist

of stereo-line inputs and a stereo headphone amplifier with analog volume control. Its power

management allows selective shutdown of CODEC functions, thus extending battery life in portable

applications such as portable audio and video players and digital recorders.

1.3 DSP Hardware

DSP systems are required to perform intensive arithmetic operations such as multiplication and addition.

These tasks may be implemented on microprocessors, microcontrollers, digital signal processors, or

custom integrated circuits. The selection of appropriate hardware is determined by the applications, cost,

or a combination of both. This section introduces different digital hardware implementations for DSP

applications.

1.3.1 DSP Hardware Options

As shown in Figure 1.1, the processing of the digital signal x(n) is performed using the DSP hardware.

Although it is possible to implement DSP algorithms on any digital computer, the real applications

determine the optimum hardware platform. Five hardware platforms are widely used for DSP systems:

1. special-purpose (custom) chips such as application-specific integrated circuits (ASIC);

2. field-programmable gate arrays (FPGA);

3. general-purpose microprocessors or microcontrollers (μP/μC);

4. general-purpose digital signal processors (DSP processors); and

5. DSP processors with application-specific hardware (HW) accelerators.

The hardware characteristics of these options are summarized in Table 1.1.

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

DSP HARDWARE 11

Table 1.1 Summary of DSP hardware implementations

DSP processors with

ASIC FPGA μP/μC DSP processor HW accelerators

Flexibility None Limited High High Medium

Design time Long Medium Short Short Short

Power consumption Low Low–medium Medium–high Low–medium Low–medium

Performance High High Low–medium Medium–high High

Development cost High Medium Low Low Low

Production cost Low Low–medium Medium–high Low–medium Medium

ASIC devices are usually designed for specific tasks that require a lot of computations such as digital

subscriber loop (DSL) modems, or high-volume products that use mature algorithms such as fast Fourier

transform and Reed–Solomon codes. These devices are able to perform their limited functions much

faster than general-purpose processors because of their dedicated architecture. These application-specific

products enable the use of high-speed functions optimized in hardware, but they are deficient in the

programmability to modify the algorithms and functions. They are suitable for implementing well-

defined and well-tested DSP algorithms for high-volume products, or applications demanding extremely

high speeds that can be achieved only by ASICs. Recently, the availability of core modules for some

common DSP functions has simplified the ASIC design tasks, but the cost of prototyping an ASIC device,

a longer design cycle, and the lack of standard development tools support and reprogramming flexibility

sometimes outweigh their benefits.

FPGAs have been used in DSP applications for years as glue logics, bus bridges, and peripherals for re-

ducing system costs and affording a higher level of system integration. Recently, FPGAs have been gaining

considerable attention in high-performance DSP applications, and are emerging as coprocessors for stan-

dard DSP processors that need specific accelerators. In these cases, FPGAs work in conjunction with DSP

processors for integrating pre- and postprocessing functions. FPGAs provide tremendous computational

power by using highly parallel architectures for very high performance. These devices are hardware re-

configurable, thus allowing the system designer to optimize the hardware architectures for implementing

algorithms that require higher performance and lower production cost. In addition, the designer can imple-

ment high-performance complex DSP functions in a small fraction of the total device, and use the rest to

implement system logic or interface functions, resulting in both lower costs and higher system integration.

Example 1.5: There are four major FPGA families that are targeted for DSP systems: Cyclone

and Stratix from Altera, and Virtex and Spartan from Xilinx. The Xilinx Spartan-3 FPGA family

(introduced in 2003) uses 90-nm manufacturing technique to achieve low silicon die costs. To

support DSP functions in an area-efficient manner, Spartan-3 includes the following features:� embedded 18 × 18 multipliers;� distributed RAM for local storage of DSP coefficients;� 16-bit shift register for capturing high-speed data; and� large block RAM for buffers.

The current Spartan-3 family includes XC3S50, S200, S400, S1000, and S1500 devices. With

the aid of Xilinx System Generation for DSP, a tool used to port MATLAB Simulink model to

Xilinx hardware model, a system designer can model, simulate, and verify the DSP algorithms on

the target hardware under the Simulink environment.

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

12 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

Program
memory

Processor

Program address bus

Program data bus

Data address bus

Data
memory

Data data bus

(a) Harvard architecture

Memory Processor

Address bus

Data bus

(b) von Newmann architecture

Figure 1.8 Different memory architectures: (a) Harvard architecture; (b) von Newmann architecture

General-purpose μP/μC becomes faster and increasingly able to handle some DSP applications. Many

electronic products are currently designed using these processors. For example, automotive controllers

use microcontrollers for engine, brake, and suspension control. If a DSP application is added to an

existing product that already contains a μP/μC, it is desired to add the new functions in software without

requiring an additional DSP processor. For example, Intel has adopted a native signal processing initiative

that uses the host processor in computers to perform audio coding and decoding, sound synthesis, and

so on. Software development tools for μP/μC devices are generally more sophisticated and powerful

than those available for DSP processors, thus easing development for some applications that are less

demanding on the performance and power consumption of processors.

General architectures of μP/μC fall into two categories: Harvard architecture and von Neumann archi-

tecture. As illustrated in Figure 1.8(a), Harvard architecture has a separate memory space for the program

and the data, so that both memories can be accessed simultaneously. The von Neumann architecture as-

sumes that there is no intrinsic difference between the instructions and the data, as illustrated in Figure

1.8(b). Operations such as add, move, and subtract are easy to perform on μPs/μCs. However, complex

instructions such as multiplication and division are slow since they need a series of shift, addition, or

subtraction operations. These devices do not have the architecture or the on-chip facilities required for

efficient DSP operations. Their real-time DSP performance does not compare well with even the cheaper

general-purpose DSP processors, and they would not be a cost-effective or power-efficient solution for

many DSP applications.

Example 1.6: Microcontrollers such as Intel 8081 and Freescale 68HC11 are typically used in in-

dustrial process control applications, in which I/O capability (serial/parallel interfaces, timers, and

interrupts) and control are more important than speed of performing functions such as multiplica-

tion and addition. Microprocessors such as Pentium, PowerPC, and ARM are basically single-chip

processors that require additional circuitry to improve the computation capability. Microprocessor

instruction sets can be either complex instruction set computer (CISC) such as Pentium or reduced

instruction set computer (RISC) such as ARM. The CISC processor includes instructions for basic

processor operations, plus some highly sophisticated instructions for specific functions. The RISC

processor uses hardwired simpler instructions such as LOAD and STORE to execute in a single

clock cycle.

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

DSP HARDWARE 13

It is important to note that some microprocessors such as Pentium add multimedia exten-

sion (MMX) and streaming single-instruction, multiple-data (SIMD) extension to support DSP

operations. They can run in high speed (>3 GHz), provide single-cycle multiplication and arith-

metic operations, have good memory bandwidth, and have many supporting tools and software

available for easing development.

A DSP processor is basically a microprocessor optimized for processing repetitive numerically inten-

sive operations at high rates. DSP processors with architectures and instruction sets specifically designed

for DSP applications are manufactured by Texas Instruments, Freescale, Agere, Analog Devices, and

many others. The rapid growth and the exploitation of DSP technology is not a surprise, considering the

commercial advantages in terms of the fast, flexible, low power consumption, and potentially low-cost

design capabilities offered by these devices. In comparison to ASIC and FPGA solutions, DSP processors

have advantages in easing development and being reprogrammable in the field to allow a product feature

upgrade or bug fix. They are often more cost-effective than custom hardware such as ASIC and FPGA,

especially for low-volume applications. In comparison to the general-purpose μP/μC, DSP processors

have better speed, better energy efficiency, and lower cost.

In many practical applications, designers are facing challenges of implementing complex algorithms

that require more processing power than the DSP processors in use are capable of providing. For exam-

ple, multimedia on wireless and portable devices requires efficient multimedia compression algorithms.

The study of most prevalent imaging coding/decoding algorithms shows some DSP functions used for

multimedia compression algorithms that account for approximately 80 % of the processing load. These

common functions are discrete cosine transform (DCT), inverse DCT, pixel interpolation, motion es-

timation, and quantization, etc. The hardware extension or accelerator lets the DSP processor achieve

high-bandwidth performance for applications such as streaming video and interactive gaming on a sin-

gle device. The TMS320C5510 DSP used by this book consists of the hardware extensions that are

specifically designed to support multimedia applications. In addition, Altera has also added the hardware

accelerator into its FPGA as coprocessors to enhance the DSP processing abilities.

Today, DSP processors have become the foundation of many new markets beyond the traditional signal

processing areas for technologies and innovations in motor and motion control, automotive systems, home

appliances, consumer electronics, and vast range of communication systems and devices. These general-

purpose-programmable DSP processors are supported by integrated software development tools that

include C compilers, assemblers, optimizers, linkers, debuggers, simulators, and emulators. In this book,

we use Texas Instruments’ TMS320C55x for hands-on experiments. This high-performance and ultralow

power consumption DSP processor will be introduced in Chapter 2. In the following section, we will

briefly introduce some widely used DSP processors.

1.3.2 DSP Processors

In 1979, Intel introduced the 2920, a 25-bit integer processor with a 400 ns instruction cycle and a 25-bit

arithmetic-logic unit (ALU) for DSP applications. In 1982, Texas Instruments introduced the TMS32010,

a 16-bit fixed-point processor with a 16 × 16 hardware multiplier and a 32-bit ALU and accumulator.

This first commercially successful DSP processor was followed by the development of faster products

and floating-point processors. The performance and price range among DSP processors vary widely.

Today, dozens of DSP processor families are commercially available. Table 1.2 summarizes some of the

most popular DSP processors.

In the low-end and low-cost group are Texas Instruments’ TMS320C2000 (C24x and C28x) family,

Analog Devices’ ADSP-218x family, and Freescale’s DSP568xx family. These conventional DSP pro-

cessors include hardware multiplier and shifters, execute one instruction per clock cycle, and use the

complex instructions that perform multiple operations such as multiply, accumulate, and update address

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

14 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

Table 1.2 Current commercially available DSP processors

Vendor Family Arithmetic type Clock speed

TMS320C24x Fixed-point 40 MHz

TMS320C28x Fixed-point 150 MHz

TMS320C54x Fixed-point 160 MHz

Texas instruments TMS320C55x Fixed-point 300 MHz

TMS320C62x Fixed-point 300 MHz

TMS320C64x Fixed-point 1 GHz

TMS320C67x Floating-point 300 MHz

ADSP-218x Fixed-point 80 MHz

ADSP-219x Fixed-point 160 MHz

Analog devices ADSP-2126x Floating-point 200 MHz

ADSP-2136x Floating-point 333 MHz

ADSP-BF5xx Fixed-point 750 MHz

ADSP-TS20x Fixed/Floating 600 MHz

DSP56300 Fixed, 24-bit 275 MHz

DSP568xx Fixed-point 40 MHz

Freescale DSP5685x Fixed-point 120 MHz

MSC71xx Fixed-point 200 MHz

MSC81xx Fixed-point 400 MHz

Agere DSP1641x Fixed-point 285 MHz

Source: Adapted from [11]

pointers. They provide good performance with modest power consumption and memory usage, thus are

widely used in automotives, appliances, hard disk drives, modems, and consumer electronics. For exam-

ple, the TMS320C2000 and DSP568xx families are optimized for control applications, such as motor

and automobile control, by integrating many microcontroller features and peripherals on the chip.

The midrange processor group includes Texas Instruments’ TMS320C5000 (C54x and C55x), Analog

Devices’ ADSP219x and ADSP-BF5xx, and Freescale’s DSP563xx. These enhanced processors achieve

higher performance through a combination of increased clock rates and more advanced architectures.

These families often include deeper pipelines, instruction cache, complex instruction words, multiple

data buses (to access several data words per clock cycle), additional hardware accelerators, and parallel

execution units to allow more operations to be executed in parallel. For example, the TMS320C55x

has two multiply–accumulate (MAC) units. These midrange processors provide better performance with

lower power consumption, thus are typically used in portable applications such as cellular phones and

wireless devices, digital cameras, audio and video players, and digital hearing aids.

These conventional and enhanced DSP processors have the following features for common DSP

algorithms such as filtering:� Fast MAC units – The multiply–add or multiply–accumulate operation is required in most DSP

functions including filtering, fast Fourier transform, and correlation. To perform the MAC operation

efficiently, DSP processors integrate the multiplier and accumulator into the same data path to complete

the MAC operation in single instruction cycle.� Multiple memory accesses – Most DSP processors adopted modified Harvard architectures that keep

the program memory and data memory separate to allow simultaneous fetching of instruction and

data. In order to support simultaneous access of multiple data words, the DSP processors provide

multiple on-chip buses, independent memory banks, and on-chip dual-access data memory.

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

DSP HARDWARE 15� Special addressing modes – DSP processors often incorporate dedicated data-address generation units

for generating data addresses in parallel with the execution of instruction. These units usually support

circular addressing and bit-reversed addressing for some specific algorithms.� Special program control – Most DSP processors provide zero-overhead looping, which allows the

programmer to implement a loop without extra clock cycles for updating and testing loop counters,

or branching back to the top of loop.� Optimize instruction set – DSP processors provide special instructions that support the computa-

tional intensive DSP algorithms. For example, the TMS320C5000 processors support compare-select

instructions for fast Viterbi decoding, which will be discussed in Chapter 14.� Effective peripheral interface – DSP processors usually incorporate high-performance serial and

parallel input/output (I/O) interfaces to other devices such as ADC and DAC. They provide streamlined

I/O handling mechanisms such as buffered serial ports, direct memory access (DMA) controllers, and

low-overhead interrupt to transfer data with little or no intervention from the processor’s computational

units.

These DSP processors use specialized hardware and complex instructions for allowing more operations

to be executed in every instruction cycle. However, they are difficult to program in assembly language

and also difficult to design efficient C compilers in terms of speed and memory usage for supporting

these complex-instruction architectures.

With the goals of achieving high performance and creating architecture that supports efficient C

compilers, some DSP processors, such as the TMS320C6000 (C62x, C64x, and C67x), use very simple

instructions. These processors achieve a high level of parallelism by issuing and executing multiple simple

instructions in parallel at higher clock rates. For example, the TMS320C6000 uses very long instruction

word (VLIW) architecture that provides eight execution units to execute four to eight instructions per clock

cycle. These instructions have few restrictions on register usage and addressing modes, thus improving

the efficiency of C compilers. However, the disadvantage of using simple instructions is that the VLIW

processors need more instructions to perform a given task, thus require relatively high program memory

usage and power consumption. These high-performance DSP processors are typically used in high-end

video and radar systems, communication infrastructures, wireless base stations, and high-quality real-time

video encoding systems.

1.3.3 Fixed- and Floating-Point Processors

A basic distinction between DSP processors is the arithmetic formats: fixed-point or floating-point. This

is the most important factor for the system designers to determine the suitability of a DSP processor for a

chosen application. The fixed-point representation of signals and arithmetic will be discussed in Chapter 3.

Fixed-point DSP processors are either 16-bit or 24-bit devices, while floating-point processors are usually

32-bit devices. A typical 16-bit fixed-point processor, such as the TMS320C55x, stores numbers in a

16-bit integer or fraction format in a fixed range. Although coefficients and signals are only stored

with 16-bit precision, intermediate values (products) may be kept at 32-bit precision within the internal

40-bit accumulators in order to reduce cumulative rounding errors. Fixed-point DSP devices are usually

cheaper and faster than their floating-point counterparts because they use less silicon, have lower power

consumption, and require fewer external pins. Most high-volume, low-cost embedded applications, such

as appliance control, cellular phones, hard disk drives, modems, audio players, and digital cameras, use

fixed-point processors.

Floating-point arithmetic greatly expands the dynamic range of numbers. A typical 32-bit floating-

point DSP processor, such as the TMS320C67x, represents numbers with a 24-bit mantissa and an 8-bit

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

16 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

exponent. The mantissa represents a fraction in the rang −1.0 to +1.0, while the exponent is an integer

that represents the number of places that the binary point must be shifted left or right in order to obtain

the true value. A 32-bit floating-point format covers a large dynamic range, thus the data dynamic range

restrictions may be virtually ignored in a design using floating-point DSP processors. This is in contrast

to fixed-point designs, where the designer has to apply scaling factors and other techniques to prevent

arithmetic overflow, which are very difficult and time-consuming processes. As a result, floating-point

DSP processors are generally easy to program and use, but are usually more expensive and have higher

power consumption.

Example 1.7: The precision and dynamic range of commonly used 16-bit fixed-point processors

are summarized in the following table:

Precision Dynamic range

Unsigned integer 1 0 ≤ x ≤ 65 535

Signed integer 1 −32 768 ≤ x ≤ 32 767

Unsigned fraction 2−16 0 ≤ x ≤ (1 −2−16)

Signed fraction 2−15 −1 ≤ x ≤ (1 −2−15)

The precision of 32-bit floating-point DSP processors is 2−23 since there are 24 mantissa bits.

The dynamic range is 1.18 ×10−38 ≤ x ≤ 3.4 × 1038.

System designers have to determine the dynamic range and precision needed for the applications.

Floating-point processors may be needed in applications where coefficients vary in time, signals and

coefficients require a large dynamic range and high precisions, or where large memory structures are

required, such as in image processing. Floating-point DSP processors also allow for the efficient use of

high-level C compilers, thus reducing the cost of development and maintenance. The faster development

cycle for a floating-point processor may easily outweigh the extra cost of the DSP processor itself.

Therefore, floating-point processors can also be justified for applications where development costs are

high and production volumes are low.

1.3.4 Real-Time Constraints

A limitation of DSP systems for real-time applications is that the bandwidth of the system is limited by

the sampling rate. The processing speed determines the maximum rate at which the analog signal can

be sampled. For example, with the sample-by-sample processing, one output sample is generated when

one input sample is presented to the system. Therefore, the delay between the input and the output for

sample-by-sample processing is at most one sample interval (T s). A real-time DSP system demands

that the signal processing time, tp, must be less than the sampling period, T , in order to complete the

processing task before the new sample comes in. That is,

tp + to < T, (1.6)

where to is the overhead of I/O operations.

This hard real-time constraint limits the highest frequency signal that can be processed by DSP systems

using sample-by-sample processing approach. This limit on real-time bandwidth fM is given as

fM ≤ fs

2
<

1

2
(
tp + to

) . (1.7)

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

DSP SYSTEM DESIGN 17

It is clear that the longer the processing time tp, the lower the signal bandwidth that can be handled by a

given processor.

Although new and faster DSP processors have continuously been introduced, there is still a limit to

the processing that can be done in real time. This limit becomes even more apparent when system cost

is taken into consideration. Generally, the real-time bandwidth can be increased by using faster DSP

processors, simplified DSP algorithms, optimized DSP programs, and parallel processing using multiple

DSP processors, etc. However, there is still a trade-off between the system cost and performance.

Equation (1.7) also shows that the real-time bandwidth can be increased by reducing the overhead of I/O

operations. This can be achieved by using block-by-block processing approach. With block processing

methods, the I/O operations are usually handled by a DMA controller, which places data samples in a

memory buffer. The DMA controller interrupts the processor when the input buffer is full, and a block of

signal samples will be processed at a time. For example, for a real-time N -point fast Fourier transform

(will be discussed in Chapter 6), the N input samples have to be buffered by the DMA controller. The

block of N samples is processed after the buffer is full. The block computation must be completed before

the next block of N samples is arrived. Therefore, the delay between input and output in block processing

is dependent on the block size N , and this may cause a problem for some applications.

1.4 DSP System Design

A generalized DSP system design process is illustrated in Figure 1.9. For a given application, the theoret-

ical aspects of DSP system specifications such as system requirements, signal analysis, resource analysis,

and configuration analysis are first performed to define system requirements.

H
A
R
D
W

A
R
E

S
O
F
T
W

A
R
E

System requirements specifications

Algorithm development and simulation

Select DSP processor

Software
architecture

Coding and
debugging

Hardware
schematic

System integration and debug

System testing and release

Application

Hardware
prototype

Figure 1.9 Simplified DSP system design flow

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

18 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

1.4.1 Algorithm Development

DSP systems are often characterized by the embedded algorithm, which specifies the arithmetic operations

to be performed. The algorithm for a given application is initially described using difference equations

or signal-flow block diagrams with symbolic names for the inputs and outputs. In documenting an

algorithm, it is sometimes helpful to further clarify which inputs and outputs are involved by means

of a data-flow diagram. The next stage of the development process is to provide more details on the

sequence of operations that must be performed in order to derive the output. There are two methods of

characterizing the sequence of operations in a program: flowcharts or structured descriptions.

At the algorithm development stage, we most likely work with high-level language DSP tools (such

as MATLAB, Simulink, or C/C++) that are capable of algorithmic-level system simulations. We then

implement the algorithm using software, hardware, or both, depending on specific needs. A DSP algorithm

can be simulated using a general-purpose computer so that its performance can be tested and analyzed. A

block diagram of general-purpose computer implementation is illustrated in Figure 1.10. The test signals

may be internally generated by signal generators or digitized from a real environment based on the given

application or received from other computers via the networks. The simulation program uses the signal

samples stored in data file(s) as input(s) to produce output signals that will be saved in data file(s) for

further analysis.

Advantages of developing DSP algorithms using a general-purpose computer are:

1. Using high-level languages such as MATLAB, Simulink, C/C++, or other DSP software packages on

computers can significantly save algorithm development time. In addition, the prototype C programs

used for algorithm evaluation can be ported to different DSP hardware platforms.

2. It is easy to debug and modify high-level language programs on computers using integrated software

development tools.

3. Input/output operations based on disk files are simple to implement and the behaviors of the system

are easy to analyze.

4. Floating-point data format and arithmetic can be used for computer simulations, thus easing devel-

opment.

5. We can easily obtain bit-true simulations of the developed algorithms using MATLAB or Simulink

for fixed-point DSP implementation.

Analysis

MATLAB or C/C++

ADC

Other
computers

DAC

Other
computers

Signal generators

DSP
algorithms

DSP
software

Data
files

Data
files

Figure 1.10 DSP software developments using a general-purpose computer

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

DSP SYSTEM DESIGN 19

1.4.2 Selection of DSP Processors

As discussed earlier, DSP processors are used in a wide range of applications from high-performance

radar systems to low-cost consumer electronics. As shown in Table 1.2, semiconductor vendors have

responded to this demand by producing a variety of DSP processors. DSP system designers require

a full understanding of the application requirements in order to select the right DSP processor for

a given application. The objective is to choose the processor that meets the project’s requirements

with the most cost-effective solution. Some decisions can be made at an early stage based on arith-

metic format, performance, price, power consumption, ease of development, and integration, etc. In

real-time DSP applications, the efficiency of data flow into and out of the processor is also criti-

cal. However, these criteria will probably still leave a number of candidate processors for further

analysis.

Example 1.8: There are a number of ways to measure a processor’s execution speed. They include:� MIPS – millions of instructions per second;� MOPS – millions of operations per second;� MFLOPS – millions of floating-point operations per second;� MHz – clock rate; and� MMACS – millions of multiply–accumulate operations.

In addition, there are other metrics such as milliwatts for measuring power consumption, MIPS

per mw, or MIPS per dollar. These numbers provide only the sketchiest indication about perfor-

mance, power, and price for a given application. They cannot predict exactly how the processor

will measure up in the target system.

For high-volume applications, processor cost and product manufacture integration are important fac-

tors. For portable, battery-powered products such as cellular phones, digital cameras, and personal mul-

timedia players, power consumption is more critical. For low- to medium-volume applications, there will

be trade-offs among development time, cost of development tools, and the cost of the DSP processor

itself. The likelihood of having higher performance processors with upward-compatible software in the

future is also an important factor. For high-performance, low-volume applications such as communica-

tion infrastructures and wireless base stations, the performance, ease of development, and multiprocessor

configurations are paramount.

Example 1.9: A number of DSP applications along with the relative importance for performance,

price, and power consumption are listed in Table 1.3. This table shows that the designer of a

handheld device has extreme concerns about power efficiency, but the main criterion of DSP

selection for the communications infrastructures is its performance.

When processing speed is at a premium, the only valid comparison between processors is on an

algorithm-implementation basis. Optimum code must be written for all candidates and then the execution

time must be compared. Other important factors are memory usage and on-chip peripheral devices, such

as on-chip converters and I/O interfaces.

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

20 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

Table 1.3 Some DSP applications with the relative importance rating

Application Performance Price Power consumption

Audio receiver 1 2 3

DSP hearing aid 2 3 1

MP3 player 3 1 2

Portable video recorder 2 1 3

Desktop computer 1 2 3

Notebook computer 3 2 1

Cell phone handset 3 1 2

Cellular base station 1 2 3

Source: Adapted from [12]

Note: Rating – 1–3, with 1 being the most important

In addition, a full set of development tools and supports are important for DSP processor selection,

including:� Software development tools such as C compilers, assemblers, linkers, debuggers, and simulators.� Commercially available DSP boards for software development and testing before the target DSP

hardware is available.� Hardware testing tools such as in-circuit emulators and logic analyzers.� Development assistance such as application notes, DSP function libraries, application libraries, data

books, and low-cost prototyping, etc.

1.4.3 Software Development

The four common measures of good DSP software are reliability, maintainability, extensibility, and

efficiency. A reliable program is one that seldom (or never) fails. Since most programs will occasionally

fail, a maintainable program is one that is easily correctable. A truly maintainable program is one that can

be fixed by someone other than the original programmers. In order for a program to be truly maintainable,

it must be portable on more than one type of hardware. An extensible program is one that can be easily

modified when the requirements change.

A program is usually tested in a finite number of ways much smaller than the number of input data

conditions. This means that a program can be considered reliable only after years of bug-free use in

many different environments. A good DSP program often contains many small functions with only

one purpose, which can be easily reused by other programs for different purposes. Programming tricks

should be avoided at all costs, as they will often not be reliable and will almost always be difficult for

someone else to understand even with lots of comments. In addition, the use of variable names should

be meaningful in the context of the program.

As shown in Figure 1.9, the hardware and software design can be conducted at the same time for a

given DSP application. Since there are a lot of interdependent factors between hardware and software, an

ideal DSP designer will be a true ‘system’ engineer, capable of understanding issues with both hardware

and software. The cost of hardware has gone down dramatically in recent years, thus the majority of the

cost of a DSP solution now resides in software.

The software life cycle involves the completion of a software project: the project definition, the

detailed specification, coding and modular testing, integration, system testing, and maintenance. Software

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

DSP SYSTEM DESIGN 21

maintenance is a significant part of the cost for a DSP system. Maintenance includes enhancing the

software functions, fixing errors identified as the software is used, and modifying the software to work

with new hardware and software. It is essential to document programs thoroughly with titles and comment

statements because this greatly simplifies the task of software maintenance.

As discussed earlier, good programming techniques play an essential role in successful DSP ap-

plications. A structured and well-documented approach to programming should be initiated from the

beginning. It is important to develop an overall specification for signal processing tasks prior to writing

any program. The specification includes the basic algorithm and task description, memory requirements,

constraints on the program size, execution time, and so on. A thoroughly reviewed specification can catch

mistakes even before code has been written and prevent potential code changes at the system integration

stage. A flow diagram would be a very helpful design tool to adopt at this stage.

Writing and testing DSP code is a highly interactive process. With the use of integrated software de-

velopment tools that include simulators or evaluation boards, code may be tested regularly as it is written.

Writing code in modules or sections can help this process, as each module can be tested individually,

thus increasing the chance of the entire system working at the system integration stage.

There are two commonly used methods in developing software for DSP devices: using assembly

program or C/C++ program. Assembly language is similar to the machine code actually used by the

processor. Programming in assembly language gives the engineers full control of processor functions and

resources, thus resulting in the most efficient program for mapping the algorithm by hand. However, this

is a very time-consuming and laborious task, especially for today’s highly paralleled DSP architectures.

A C program, on the other hand, is easier for software development, upgrade, and maintenance. However,

the machine code generated by a C compiler is inefficient in both processing speed and memory usage.

Recently, DSP manufacturers have improved C compiler efficiency dramatically, especially with the DSP

processors that use simple instructions and general register files.

Often the ideal solution is to work with a mixture of C and assembly code. The overall program

is controlled and written by C code, but the run-time critical inner loops and modules are written in

assembly language. In a mixed programming environment, an assembly routine may be called as a

function or intrinsics, or in-line coded into the C program. A library of hand-optimized functions may

be built up and brought into the code when required. The assembly programming for the TMS320C55x

will be discussed in Chapter 2.

1.4.4 High-Level Software Development Tools

Software tools are computer programs that have been written to perform specific operations. Most DSP

operations can be categorized as being either analysis tasks or filtering tasks. Signal analysis deals

with the measurement of signal properties. MATLAB is a powerful environment for signal analysis

and visualization, which are critical components in understanding and developing a DSP system. C

programming is an efficient tool for performing signal processing and is portable over different DSP

platforms.

MATLAB is an interactive, technical computing environment for scientific and engineering numerical

analysis, computation, and visualization. Its strength lies in the fact that complex numerical problems

can be solved easily in a fraction of the time required with a programming language such as C. By using

its relatively simple programming capability, MATLAB can be easily extended to create new functions,

and is further enhanced by numerous toolboxes such as the Signal Processing Toolbox and Filter Design
Toolbox. In addition, MATLAB provides many graphical user interface (GUI) tools such as Filter Design

and Analysis Tool (FDATool).

The purpose of a programming language is to solve a problem involving the manipulation of informa-

tion. The purpose of a DSP program is to manipulate signals to solve a specific signal processing problem.

High-level languages such as C and C++ are computer languages that have English-like commands and

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

22 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

C program

(Source)

Machine
code

(Object)
Linker/loader Execution

Program
output

Libraries Data

C compiler

Figure 1.11 Program compilation, linking, and execution flow

instructions. High-level language programs are usually portable, so they can be recompiled and run on

many different computers. Although C/C++ is categorized as a high-level language, it can also be written

for low-level device drivers. In addition, a C compiler is available for most modern DSP processors such

as the TMS320C55x. Thus C programming is the most commonly used high-level language for DSP

applications.

C has become the language of choice for many DSP software development engineers not only because

it has powerful commands and data structures but also because it can easily be ported on different DSP

processors and platforms. The processes of compilation, linking/loading, and execution are outlined in

Figure 1.11. C compilers are available for a wide range of computers and DSP processors, thus making

the C program the most portable software for DSP applications. Many C programming environments

include GUI debugger programs, which are useful in identifying errors in a source program. Debugger

programs allow us to see values stored in variables at different points in a program, and to step through

the program line by line.

1.5 Introduction to DSP Development Tools

The manufacturers of DSP processors typically provide a set of software tools for the user to develop

efficient DSP software. The basic software development tools include C compiler, assembler, linker, and

simulator. In order to execute the designed DSP tasks on the target system, the C or assembly programs

must be translated into machine code and then linked together to form an executable code. This code

conversion process is carried out using software development tools illustrated in Figure 1.12.

The TMS320C55x software development tools include a C compiler, an assembler, a linker, an archiver,

a hex conversion utility, a cross-reference utility, and an absolute lister. The C55x C compiler generates

assembly source code from the C source files. The assembler translates assembly source files, either

hand-coded by DSP programmers or generated by the C compiler, into machine language object files.

The assembly tools use the common object file format (COFF) to facilitate modular programming.

Using COFF allows the programmer to define the system’s memory map at link time. This maximizes

performance by enabling the programmer to link the code and data objects into specific memory locations.

The archiver allows users to collect a group of files into a single archived file. The linker combines object

files and libraries into a single executable COFF object module. The hex conversion utility converts a

COFF object file into a format that can be downloaded to an EPROM programmer or a flash memory

program utility.

In this section, we will briefly describe the C compiler, assembler, and linker. A full description of

these tools can be found in the user’s guides [13, 14].

1.5.1 C Compiler

C language is the most popular high-level tool for evaluating algorithms and developing real-time soft-

ware for DSP applications. The C compiler can generate either a mnemonic assembly code or an algebraic

assembly code. In this book, we use the mnemonic assembly (ASM) language. The C compiler pack-

age includes a shell program, code optimizer, and C-to-ASM interlister. The shell program supports

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

INTRODUCTION TO DSP DEVELOPMENT TOOLS 23

Macro
source files

C
source files

C compiler

Archiver

Archiver

Library of
object files

Hex-
converter

EPROM
programmer

Linker

COFF
executable

file

COFF
object files

TMS320C55x
Target

Absolute
lister

×-reference
lister

Debugger
tools

Run-time
support
libraries

Library-build
utility

Macro
library

Assembly
source files

Assembler

Figure 1.12 TMS320C55x software development flow and tools

automatically compiled, assembled, and linked modules. The optimizer improves run-time and code

density efficiency of the C source file. The C-to-ASM interlister inserts the original comments in C

source code into the compiler’s output assembly code so users can view the corresponding assembly

instructions for each C statement generated by the compiler.

The C55x C compiler supports American National Standards Institute (ANSI) C and its run-time

support library. The run-time support library rts55.lib (or rts55x.lib for large memory model)

includes functions to support string operation, memory allocation, data conversion, trigonometry, and

exponential manipulations.

C language lacks specific features of DSP, especially those fixed-point data operations that are necessary

for many DSP algorithms. To improve compiler efficiency for DSP applications, the C55x C compiler

supports in-line assembly language for C programs. This allows adding highly efficient assembly code

directly into the C program. Intrinsics are another improvement for substituting DSP arithmetic operation

with DSP assembly intrinsic operators. We will introduce more compiler features in Chapter 2 and

subsequent chapters.

1.5.2 Assembler

The assembler translates processor-specific assembly language source files (in ASCII format) into binary

COFF object files. Source files can contain assembler directives, macro directives, and instructions.

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

24 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

Assembler directives are used to control various aspects of the assembly process, such as the source file

listing format, data alignment, section content, etc. Binary object files contain separate blocks (called

sections) of code or data that can be loaded into memory space.

Once the DSP algorithm has been written in assembly, it is necessary to add important assembly

directives to the source code. Assembler directives are used to control the assembly process and enter

data into the program. Assembly directives can be used to initialize memory, define global variables, set

conditional assembly blocks, and reserve memory space for code and data.

1.5.3 Linker

The linker combines multiple binary object files and libraries into a single executable program for the target

DSP hardware. It resolves external references and performs code relocation to create the executable mod-

ule. The C55x linker handles various requirements of different object files and libraries, as well as targets

system memory configurations. For a specific hardware configuration, the system designers need to pro-

vide the memory mapping specification to the linker. This task can be accomplished by using a linker com-

mand file. The visual linker is also a very useful tool that provides a visualized memory usage map directly.

The linker commands support expression assignment and evaluation, and provides MEMORY and

SECTION directives. Using these directives, we can define the memory model for the given target system.

We can also combine object file sections, allocate sections into specific memory areas, and define or

redefine global symbols at link time.

An example linker command file is listed in Table 1.4. The first portion uses the MEMORY directive to

identify the range of memory blocks that physically exist in the target hardware. These memory blocks

Table 1.4 Example of linker command file used by TMS320C55x

/* Specify the system memory map */
MEMORY
{

RAM (RWIX) : o = 0x000100, l = 0x00feff /* Data memory */
RAM0 (RWIX) : o = 0x010000, l = 0x008000 /* Data memory */
RAM1 (RWIX) : o = 0x018000, l = 0x008000 /* Data memory */
RAM2 (RWIX) : o = 0x040100, l = 0x040000 /* Program memory */
ROM (RIX) : o = 0x020100, l = 0x020000 /* Program memory */
VECS (RIX) : o = 0xffff00, l = 0x000100 /* Reset vector */

}
/* Specify the sections allocation into memory */
SECTIONS
{

vectors > VECS /* Interrupt vector table */
.text > ROM /* Code */
.switch > RAM /* Switch table info */
.const > RAM /* Constant data */
.cinit > RAM2 /* Initialization tables */
.data > RAM /* Initialized data */
.bss > RAM /* Global & static vars */
.stack > RAM /* Primary system stack */
.sysstack > RAM /* Secondary system stack */
expdata0 > RAM0 /* Global & static vars */
expdata1 > RAM1 /* Global & static vars */

}

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 25

are available for the software to use. Each memory block has its name, starting address, and the length

of the block. The address and length are given in bytes for C55x processors and in words for C54x

processors. For example, the data memory block called RAM starts at the byte address 0x100, and it

has a size of 0xFEFF bytes. Note that the prefix 0x indicates the following number is represented in

hexadecimal (hex) form.

The SECTIONS directive provides different code section names for the linker to allocate the program

and data within each memory block. For example, the program can be loaded into the .text section,

and the uninitialized global variables are in the .bss section. The attributes inside the parentheses are

optional to set memory access restrictions. These attributes are:

R – Memory space can be read.

W – Memory space can be written.

X – Memory space contains executable code.

I – Memory space can be initialized.

Several additional options used to initialize the memory can be found in [13].

1.5.4 Other Development Tools

Archiver is used to group files into a single archived file, that is, to build a library. The archiver can

also be used to modify a library by deleting, replacing, extracting, or adding members. Hex-converter

converts a COFF object file into an ASCII hex format file. The converted hex format files are often used

to program EPROM and flash memory devices. Absolute lister takes linked object files to create the .abs

files. These .abs files can be assembled together to produce a listing file that contains absolute addresses

of the entire system program. Cross-reference lister takes all the object files to produce a cross-reference

listing file. The cross-reference listing file includes symbols, definitions, and references in the linked

source files.

The DSP development tools also include simulator, EVM, XDS, and DSK. A simulator is the soft-

ware simulation tool that does not require any hardware support. The simulator can be used for code

development and testing. The EVM is a hardware evaluation module including I/O capabilities to allow

developers to evaluate the DSP algorithms for the specific DSP processor in real time. EVM is usually

a computer board to be connected with a host computer for evaluating the DSP tasks. The XDS usually

includes in-circuit emulation and boundary scan for system development and debug. The XDS is an

external stand-alone hardware device connected to a host computer and a DSP board. The DSK is a

low-cost development board for the user to develop and evaluate DSP algorithms under a Windows

operation system environment. In this book, we will use the Spectrum Digital’s TMS320VC5510 DSK

for real-time experiments.

The DSK works under the Code Composer Studio (CCS) development environment. The DSK package

includes a special version of the CCS [15]. The DSK communicates with CCS via its onboard universal

serial bus (USB) JTAG emulator. The C5510 DSK uses a 200 MHz TMS320VC5510 DSP processor, an

AIC23 stereo CODEC, 8 Mbytes synchronous DRAM, and 512 Kbytes flash memory.

1.6 Experiments and Program Examples

Texas Instruments’ CCS Integrated Development Environment (IDE) is a DSP development tool that

allows users to create, edit, build, debug, and analyze DSP programs. For building applications, the CCS

provides a project manager to handle the programming project. For debugging purposes, it provides

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

26 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

breakpoints, variable watch windows, memory/register/stack viewing windows, probe points to stream

data to and from the target, graphical analysis, execution profile, and the capability to display mixed

disassembled and C instructions. Another important feature of the CCS is its ability to create and manage

large projects from a GUI environment. In this section, we will use a simple sinewave example to introduce

the basic editing features, key IDE components, and the use of the C55x DSP development tools. We also

demonstrate simple approaches to software development and the debug process using the TMS320C55x

simulator. Finally, we will use the C5510 DSK to demonstrate an audio loop-back example in real time.

1.6.1 Experiments of Using CCS and DSK

After installing the DSK or CCS simulator, we can start the CCS IDE. Figure 1.13 shows the CCS running

on the DSK. The IDE consists of the standard toolbar, project toolbar, edit toolbar, and debug toolbar.

Some basic functions are summarized and listed in Figure 1.13. Table 1.5 briefly describes the files used

in this experiment.

Procedures of the experiment are listed as follows:

1. Create a project for the CCS: Choose Project→New to create a new project file and save it as

useCCS.pjt to the directory ..\experiments\exp1.6.1_CCSandDSK. The CCS uses the project

to operate its built-in utilities to create a full-build application.

Figure 1.13 CCS IDE

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 27

Table 1.5 File listing for experiment exp1.6.1CCSandDSK

Files Description

useCCS.c C file for testing experiment

useCCS.h C header file

useCCS.pjt DSP project file

useCCS.cmd DSP linker command file

2. Create C program files using the CCS editor: Choose File→New to create a new file, type in

the example C code listed in Tables 1.6 and 1.7. Save C code listed in Table 1.6 as useCCS.c to

..\experiments\exp1.6.1_CCSandDSK\src, and save C code listed in Table 1.7 as useCCS.h

to the directory ..\experiments\exp1.6.1_CCSandDSK\inc. This example reads precalculated

sine values from a data table, negates them, and stores the results in a reversed order to an output

buffer. The programs useCCS.c and useCCS.h are included in the companion CD. However, it is

recommended that we create them using the editor to become familiar with the CCS editing functions.

3. Create a linker command file for the simulator: Choose File→New to create another new file, and

type in the linker command file as listed in Table 1.4. Save this file as useCCS.cmd to the directory

..\experiments\exp1.6.1_CCSandDSK. The command file is used by the linker to map different

program segments into a prepartitioned system memory space.

4. Setting up the project: Add useCCS.c and useCCS.cmd to the project by choosing

Project→Add Files to Project, then select files useCCS.c and useCCS.cmd. Before build-

ing a project, the search paths of the included files and libraries should be setup for C com-

piler, assembler, and linker. To setup options for C compiler, assembler, and linker choose

Project→Build Options. We need to add search paths to include files and libraries that are

not included in the C55x DSP tools directories, such as the libraries and included files we created

Table 1.6 Program example, useCCS.c

#include "useCCS.h"

short outBuffer[BUF_SIZE];

void main()
{

short i, j;

j = 0;
while (1)
{

for (i=BUF_SIZE-1; i>= 0;i--)
{

outBuffer [j++] = 0 - sineTable[i]; // <- Set breakpoint

if (j >= BUF_SIZE)
j = 0;

}
j++;

}
}

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

28 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

Table 1.7 Program example header file, useCCS.h

#define BUF_SIZE 40
const short sineTable[BUF_SIZE]=

{0x0000, 0x000f, 0x001e, 0x002d, 0x003a, 0x0046, 0x0050, 0x0059,
0x005f, 0x0062, 0x0063, 0x0062, 0x005f, 0x0059, 0x0050, 0x0046,
0x003a, 0x002d, 0x001e, 0x000f, 0x0000, 0xfff1, 0xffe2, 0xffd3,
0xffc6, 0xffba, 0xffb0, 0xffa7, 0xffa1, 0xff9e, 0xff9d, 0xff9e,
0xffa1, 0xffa7, 0xffb0, 0xffba, 0xffc6, 0xffd3, 0xffe2, 0xfff1};

in the working directory. Programs written in C language require the use of the run-time support

library, either rts55.lib or rts55x.lib, for system initialization. This can be done by selecting

the compiler and linker dialog box and entering the C55x run-time support library, rts55.lib, and

adding the header file path related to the source file directory. We can also specify different directories

to store the output executable file and map file. Figure 1.14 shows an example of how to set the search

paths for compiler, assembler, and linker.

5. Build and run the program: Use Project→Rebuild All command to build the project.

If there are no errors, the CCS will generate the executable output file, useCCS.out. Be-

fore we can run the program, we need to load the executable output file to the C55x DSK

or the simulator. To do so, use File→Load Program menu and select the useCCS.out in

..\expriments\exp1.6.1_CCSandDSK\Debug directory and load it. Execute this program by

choosing Debug→Run. The processor status at the bottom-left-hand corner of the CCS will change

from CPU HALTED to CPU RUNNING. The running process can be stopped by the Debug→Halt

command. We can continue the program by reissuing the Run command or exiting the DSK or the

simulator by choosing File→Exit menu.

(a) Setting the include file searching path. (b) Setting the run-time support library.

Figure 1.14 Setup search paths for C compiler, assembler, and linker: (a) setting the include file searching path;

(b) setting the run-time support library

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 29

1.6.2 Debugging Program Using CCS and DSK

The CCS IDE has extended traditional DSP code generation tools by integrating a set of editing, emulating,

debugging, and analyzing capabilities in one entity. In this section, we will introduce some program

building steps and software debugging capabilities of the CCS.

The standard toolbar in Figure 1.13 allows users to create and open files, cut, copy, and paste text

within and between files. It also has undo and redo capabilities to aid file editing. Finding text can be

done within the same file or in different files. The CCS built-in context-sensitive help menu is also located

in the standard toolbar menu. More advanced editing features are in the edit toolbar menu, including

mark to, mark next, find match, and find next open parenthesis for C programs. The features of out-indent

and in-indent can be used to move a selected block of text horizontally. There are four bookmarks that

allow users to create, remove, edit, and search bookmarks.

The project environment contains C compiler, assembler, and linker. The project toolbar menu (see

Figure 1.13) gives users different choices while working on projects. The compile only, incremental

build, and build all features allow users to build the DSP projects efficiently. Breakpoints permit users to

set software breakpoints in the program and halt the processor whenever the program executes at those

breakpoint locations. Probe points are used to transfer data files in and out of the programs. The profiler

can be used to measure the execution time of given functions or code segments, which can be used to

analyze and identify critical run-time blocks of the programs.

The debug toolbar menu illustrated in Figure 1.13 contains several stepping operations: step-into-a-

function, step-over-a-function, and step-out-off-a-function. It can also perform the run-to-cursor-position

operation, which is a very convenient feature, allowing users to step through the code. The next three hot

buttons in the debug toolbar are run, halt, and animate. They allow users to execute, stop, and animate

the DSP programs. The watch windows are used to monitor variable contents. CPU registers and data

memory viewing windows provide additional information for ease of debugging programs. More custom

options are available from the pull-down menus, such as graphing data directly from the processor

memory.

We often need to check the changing values of variables during program execution for developing and

testing programs. This can be accomplished with debugging settings such as breakpoints, step commands,

and watch windows, which are illustrated in the following experiment.

Procedures of the experiment are listed as follows:

1. Add and remove breakpoints: Start with Project→Open, select useCCS.pjt from the directory

..\experiments\exp1.6.2_CCSandDSK. Build and load the example project useCCS.out. Dou-

ble click the C file, useCCS.c, in the project viewing window to open it in the editing window. To

add a breakpoint, move the cursor to the line where we want to set a breakpoint. The command

to enable a breakpoint can be given either from the Toggle Breakpoint hot button on the project

toolbar or by clicking the mouse button on the line of interest. The function key <F9> is a shortcut

that can be used to toggle a breakpoint. Once a breakpoint is enabled, a red dot will appear on the

left to indicate where the breakpoint is set. The program will run up to that line without passing

it. To remove breakpoints, we can either toggle breakpoints one by one or select the Remove All
Breakpoints hot button from the debug toolbar to clear all the breakpoints at once. Now load the

useCCS.out and open the source code window with source code useCCS.c, and put the cursor on

the line:

outBuffer[j++] = 0 - sineTable[i]; // <- set breakpoint

Click the Toggle Breakpoint button (or press <F9>) to set the breakpoint. The breakpoint will be

set as shown in Figure 1.15.

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

30 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

Figure 1.15 CCS screen snapshot of the example using CCS

2. Set up viewing windows: CCS IDE provides many useful windows to ease code development and the

debugging process. The following are some of the most often used windows:

CPU register viewing window: On the standard tool menu bar, click View→Registers→
CPU Registers to open the CPU registers window. We can edit the contents of any CPU register

by double clicking it. If we right click the CPU Register Window and select Allow Docking, we

can move the window around and resize it. As an example, try to change the temporary register T0

and accumulator AC0 to new values of T0 = 0x1234 and AC0 = 0x56789ABC.

Command window: From the CCS menu bar, clickTools→Command Window to add the command

window. We can resize and dock it as well. The command window will appear each time when we

rebuild the project.

Disassembly window: ClickView→Disassembly on the menu bar to see the disassembly window.

Every time we reload an executable out file, the disassembly window will appear automatically.

3. Workspace feature: We can customize the CCS display and settings using the workspace feature.

To save a workspace, click File→Workspace→Save Workspace and give the workspace a name

and path where the workspace will be stored. When we restart CCS, we can reload the workspace

by clicking File→Workspace→Load Workspace and use a workspace from previous work. Now

save the workspace for your current CCS settings then exit the CCS. Restart CCS and reload the

workspace. After the workspace is reloaded, you should have the identical settings restored.

4. Using the single-step features: When using C programs, the C55x system uses a function called boot

from the run-time support library rts55.lib to initialize the system. After we load the useCCS.out,

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 31

the program counter (PC) will be at the start of the boot function (in assembly code boot.asm). This

code should be displayed in the disassembly window. For a project starting with C programs, there is

a function called main() from which the C program begins to execute. We can issue the command

Go Main from the Debug menu to start the C program after loading the useCCS.out. After the Go
Main command is executed, the processor will be initialized for boot.asm and then halted at the

location where the function main() is. Hit the <F8> key or click the single-step button on the

debug toolbar repeatedly to single step through the program useCCS.c, and watch the values of

the CPU registers change. Move the cursor to different locations in the code and try the Run to
Cursor command (hold down the <Ctrl> and <F10> keys simultaneously).

5. Resource monitoring: CCS provides several resource viewing windows to aid software development

and the debugging process.

Watch windows: From View→Watch Window, open the watch window. The watch window can

be used to show the values of listed variables. Type the output buffer name, outBuffer, into the

expression box and click OK. Expand the outBuffer to view each individual element of the buffer.

Memory viewing: From View→Memory, open a memory window and enter the starting address

of the outBuffer in the data page to view the output buffer data. Since global variables are defined

globally, we can use the variable name as its address for memory viewing. Is memory viewing

showing the same data values as the watch window in previous step?

Graphics viewing: From View→Graph→Time/Frequency, open the graphic property dialog.

Set the display parameters as shown in Figure 1.16. The CCS allows the user to plot data directly

from memory by specifying the memory location and its length.

Set a breakpoint on the line of the following C statement:

outBuffer[j++] = 0 - sineTable[i]; // <- set breakpoint

Figure 1.16 Graphics display settings

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

32 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

Start animation execution (<F12> hot key), and view DSP CPU registers and outBuffer data in

watch window, memory window, and graphical plot window. Figure 1.15 shows one instant snapshot

of the animation. The yellow arrow represents the current program counter’s location, and the red

dot shows where the breakpoint is set. The data and register values in red color are the ones that have

just been updated.

1.6.3 File I/O Using Probe Point

Probe point is a useful tool for algorithm development, such as simulating the real-time input and output

operations with predigitized data in files. When a probe point is reached, the CCS can either read the

selected amount of data samples from a file of the host computer to the target processor memory or write

the processed data samples from the target processor to the host computer as an output file for analysis.

In the following example, we will learn how to setup probe points to transfer data between the example

program probePoint.c and a host computer. In the example, the input data is read into inBuffer[]

via probe point before the for loop, and the output data in outBuffer[] is written to the host computer

at the end of the program. The program probePoint.c is listed in Figure 1.17.

Write the C program as shown in Figure 1.17. This program reads in 128 words of data from

a file, and adds each data value with the loop counter, i. The result is saved in outBuffer[],

and written out to the host computer at the end of the program. Save the program in ..\experiments
\exp1.6.3_probePoint\src and create the linker command file probePoint.cmd based on the

Figure 1.17 CCS screen snapshot of example of using probe point: (a) set up probe point address and length for

output data buffer; (b) set up probe point address and length for input data buffer; and (c) connect probe points with

files

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 33

Table 1.8 File listing for experiment exp1.6.3_probePoint

Files Description

probePoint.c C file for testing probe point experiment

probePoint.h C header file

probePoint.pjt DSP project file

probePoint.cmd DSP linker command file

previous example useCCS. The sections expdata0 and expdata1 are defined for the input and out-

put data buffers. The pragma keyword in the C code will be discussed in Chapter 2. Table 1.8 gives a

brief description of the files used for CCS probe point experiment.

Procedures of the experiment are listed as follows:

1. Set probe point position: To set a probe point, put the cursor on the line where the probe point will

be set and click the Toggle Probe Point hot button. A blue dot to the left indicates that the probe

point is set (see Figure 1.17). The first probe point on the line of the for loop reads data into the

inBuffer[], while the second probe points at the end of the main program and writes data from

the outBuffer[] to the host computer.

2. Connect probe points: From File→File I/O, open the file I/O dialog box and select File Out-
put tab. From the Add File tab, enter probePointOut.dat as the filename from the directory

..\experiments\exp1.6.3_probePoint\data and select *.dat (Hex) as the file type and then

click Open tab. Use the output buffer name outBuffer as the address and 128 as the length of the

data block for transferring 128 data to the host computer from the output buffer when the probe point

is reached as shown in Figure 1.18(a). Also connect the input data probe point to the DSP processor.

Select the File Input tab from the File I/O dialog box and click Add File tab. Navigate to the

(a) Set up probe point address and length for output data buffer.

Figure 1.18 Connect probe points

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

34 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

(b) Set up probe point address and length for input data buffer.

(c) Connect probe points with files.

Figure 1.18 (Continued)

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 35

Table 1.9 Data input file used by CCS probe point

1651 1 c000 1 80
0x0000
0x0001
0x0002
0x0003
0x0004
. . .

folder ..\experiments\exp1.6.3_probePoint\data and choose probePointIn.dat file.

In the Address box, enter inBuffer for the input data buffer and set length to 128 (see

Figure 1.18(b)). Now select Add Probe Point tab to connect the probe point with the output file

probePointOut.dat and input data file probePointIn.dat. A new dialog box, Break/Probe
Points, as shown in Figure 1.18(c), will pop up. From this window, highlight the probe point

and click the Connect pull-down tab to select the output data file probePointOut.dat for

the output data file, and select the input file probePointIn.dat for the input data file. Fi-

nally, click the Replace button to connect the input and output probe points to these two files.

After closing the Break/Probe Points dialog box, the File I/O dialog box will be updated

to show that the probe point has been connected. Restart the program and run the program.

After execution, view the data file probePointOut.dat using the built-in editor by issuing

File → Open command. If there is a need to view or edit the data file using other editors/viewers,

exit the CCS or disconnect the file from the File I/O.

3. Probe point results: Input data file for experiment is shown in Table 1.9, and the output data file is

listed in Table 1.10. The first line contains the header information in hexadecimal format, which uses

the syntax illustrated in Figure 1.19.

For this example, the data shown in Tables 1.9 and 1.10 are in hexadecimal format, with the address

of inBuffer at 0xC000 and outBuffer at 0x8000; both are at the data page, and each block contains

128 (0x80) data samples.

1.6.4 File I/O Using C File System Functions

As shown in Figure 1.17, the probe point can be used to connect data files to the C55x system via CCS.

The CCS uses only the ACSII file format. Binary file format, on the other hand, is more efficient for

storing in the computers. In real-world applications, many data files are digitized and stored in binary

format instead of ASCII format. In this section, we will introduce the C file-I/O functions.

The CCS supports standard C library I/O functions and include fopen(), fclose(), fread

(), fwrite(), and so on. These functions not only provide the ability of operating on different

Table 1.10 Data output file saved by CCS probe point

1651 1 8000 1 80
0x0000
0x0002
0x0004
0x0006
0x0008
. . .

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

36 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

The number
of data in
each block

Page number of that block,
page 1 – data, 2 – program

The starting address of memory block where
data has been saved

Hex (1), integer (2), long integer (3), and floating-point (4)

Fixed at 1651

Magic Number Format Starting Address Page Number Length

Figure 1.19 CCS file header format

file formats, but also allow users to directly use the functions on computers. Comparing with probe

point introduced in the previous section, these file I/O functions are functions that are portable to other

development environments.

Table 1.11 shows an example of C program that uses fopen(), fclose(), fread(), and

fwrite() functions. The input is a stereo data file in linear PCM WAV (Microsoft file format for using

pulse code modulation audio data) file format. In this WAV file, a dialog is carried out between the left and

right stereo channels. The stereo audio data file is arranged such that the even samples are the left-channel

data and the odd samples are the right-channel data. The example program reads in audio data samples

in binary form from the input WAV file and writes out the left and right channels separately into two

binary data files. The output files are written using the linear PCM WAV file format and will have the

same sampling rate as the input file. These WAV files can be played back via the Windows Media Player.

In this example, the binary files are read and written in byte units as sizeof(char). The CCS file I/O

for C55x only supports this data format. For data units larger than byte, such as 16-bit short data type, the

read and write must be done in multiple byte accesses. In the example, the 16-bit linear PCM data is read

in and written out with 2 bytes at a time. When running this program on a computer, the data access can be

changed to its native data type sizeof(short). The files used are in linear PCM WAV file format. WAV

file format can have several different file types and it supports different sampling frequencies. Different

WAV file formats are given as an exercise in this chapter for readers to explore further. The detailed WAV

file format can be found in references [18–20]. The files used for this experiment are given in Table 1.12

with brief descriptions.

Procedures of the experiment are listed as follows:

1. Create the project fielIO.pjt and save it in the directory ..\experiments\exp1.6.4_fileIO.

Copy the linker command file from the previous experiment and rename it as fileIO.cmd.

Write the experiment program fielIO.c as shown in Table 1.9 and save it to the directory

..\experiments\exp1.6.4_fileIO\src. Write the WAV file header as shown in Table 1.13 and

save it as fielIO.h in the directory ..\experiments\exp1.6.4_fileIO\inc. The input data file

inStereo.wav is included in the CD and located in the directory ..\experiments\exp1.6.4 fileIO\data.

2. Build the fielIO project and test the program.

3. Listen to the output WAV files generated by the experiment using computer audio player such as

Windows Media Player and compare experimental output WAV file with the input WAV file.

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 37

Table 1.11 Program of using C file system, fielIO.c

#include <stdio.h>
#include "fielIO.h"

void main()
{

FILE *inFile; // File pointer of input signal
FILE *outLeftFile; // File pointer of left channel output signal
FILE *outRightFile; // File pointer of right channel output signal
short x[4];
char wavHd[44];
inFile = fopen("..\\data\\inStereo.wav", "rb");
if (inFile == NULL)
{

printf("Can't open inStereo.wav");
exit(0);

}
outLeftFile = fopen("..\\data\\outLeftCh.wav", "wb");
outRightFile = fopen("..\\data\\outRightCh.wav", "wb");

// Skip input wav file header
fread(wavHd, sizeof(char), 44, inFile);
// Add wav header to left and right channel output files
fwrite(wavHeader, sizeof(char), 44, outLeftFile);
fwrite(wavHeader, sizeof(char), 44, outRightFile);

// Read stereo input and write to left/right channels
while((fread(x, sizeof(char), 4, inFile) == 4))
{

fwrite(&x[0], sizeof(char), 2, outLeftFile);
fwrite(&x[2], sizeof(char), 2, outRightFile);

}
fclose(inFile);
fclose(outLeftFile);
fclose(outRightFile);

}

Table 1.12 File listing for experiment exp1.6.4_fileIO

Files Description

fileIO.c C file for testing file IO experiment

fileIO.h C header file

fileIO.pjt DSP project file

fileIO.cmd DSP linker command file

1.6.5 Code Efficiency Analysis Using Profiler

The profiler of the CCS measures the execution status of specific segments of a project. This is a very

useful tool for analyzing and optimizing large and complex DSP projects. In this experiment, we will

use the CCS profiler to obtain statistics of the execution time of DSP functions. The files used for this

experiment are listed in Table 1.14.

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

38 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

Table 1.13 Program example of header file, fielIO.h

// This wav file header is pre-calculated
// It can only be used for this experiment
short wavHeader[44]={
0x52, 0x49, 0x46, 0x46, // RIFF
0x2E, 0x8D, 0x01, 0x00, // 101678 (36 bytes + 101642 bytes data)
0x57, 0x41, 0x56, 0x45, // WAVE
0x66, 0x6D, 0x74, 0x20, // Formatted
0x10, 0x00, 0x00, 0x00, // PCM audio
0x01, 0x00, 0x01, 0x00, // Linear PCM, 1-channel
0x40, 0x1F, 0x00, 0x00, // 8 kHz sampling
0x80, 0x3E, 0x00, 0x00, // Byte rate = 16000
0x02, 0x00, 0x10, 0x00, // Block align = 2, 16-bit/sample
0x64, 0x61, 0x74, 0x61, // Data
0x0A, 0x8D, 0x01, 0x00}; // 101642 data bytes

Table 1.14 File listing for experiment exp1.6.5_profile

Files Description

profile.c C file for testing DSP profile experiment

profile.h C header file

profile.pjt DSP project file

profile.cmd DSP linker command file

Procedures of experiment are listed as follows:

1. Creating the DSP project: Create a new project profile.pjt and write a C program profile.c

as shown in Table 1.15. Build the project and load the program. For demonstration purposes, we will

profile a function and a segment of code in the program.

This program calls the sine function from the C math library to generate 1000 Hz tone at 8000 Hz

sampling rate. The generated 16-bit integer data is saved on the computer in WAV file format. As an

example, we will use CCS profile feature to profile the function sinewave() and the code segment

in main() which calls the sinewave() function.

2. Set up profile points: Build and load the program profile.out. Open the source code profile.c.

From the Profile Point menu, select Start New Session. This opens the profile window. We can

give a name to the profile session. Select Functions tab from the window. Click the function name

(not the calling function inside the main function), sinewave(), and drag this function into the

profile session window. This enables the CCS profiler to profile the function sinewave(). We

can profile a segment of the source code by choosing the Ranges tab instead of the Functions tab.

Highlight two lines of source code in main() where the sine function is called, and drag them

into the profiler session window. This enables profiling two lines of code segment. Finally, run the

program and record the cycle counts shown on the profile status window. The profile is run with

the assistance of breakpoints, so it is not suitable for real-time analysis. But, it does provide useful

analysis using the digitized data files. We use profile to identify the critical run-time code segments

and functions. These functions, or code segments, can then be optimized to improve their real-time

performances. Figure 1.20 shows the example profile results. The sine function in C library uses

an average of over 4000 cycles to generate one data sample. This is very inefficient due to the use

of floating-point arithmetic for calculation of the sine function. Since the TMS320C55x is a fixed-

point DSP processor, the processing speed has been dramatically slowed by emulating floating-point

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 39

Table 1.15 Program example using CCS profile features, profile.c

#include <stdio.h>
#include <math.h>
#include "profile.h"

void main()
{

FILE *outFile; // File pointer of output file
short x[2],i;

outFile = fopen("..\\data\\output.wav", "wb");

// Add wav header to left and right channel output files
fwrite(wavHeader, sizeof(char), 44, outFile);

// Generate 1 second 1 kHz sine wave at 8kHz sampling rate
for (i=0; i<8000; i++)
{

x[0] = sinewave(i); // <- Profile range start
x[1] = (x[0]>>8)&0xFF; // <- Profile range stop
x[0] = x[0]&0xFF;
fwrite(x, sizeof(char), 2, outFile);

}
fclose(outFile);

}

// Integer sine-wave generator
short sinewave(short n) // <- Profile function
{

return((short)(sin(TWOPI_f_F*(float)n)*16384.0));
}

arithmetic. We will discuss the implementation of fixed-point arithmetic for the C55x processors in

Chapter 3. We will also present a more efficient way to generate variety of digital signals including

sinewave in the following chapters.

1.6.6 Real-Time Experiments Using DSK

The programs we have presented in previous sections can be used either on a C5510 DSK or on a C55x

simulator. In this section, we will focus on the DSK for real-time experiments. The DSK is a low-cost

DSP development and evaluation hardware platform. It uses USB interface for connecting to the host

computer. A DSK can be used either for DSP program development and debugging or for real-time

demonstration and evaluation. We will introduce detailed DSK functions and features in Chapter 2 along

with the C5510 peripherals.

The DSK has several example programs included in its package. We modified an audio loop-back

demo that takes an audio input through the line-in jack, and plays back via the headphone output in real

time. The photo of the C5510 DSK is shown in Figure 1.21. For the audio demo example, we connect

DSK with an audio player as the input audio source and a headphone (or loudspeaker) as the audio output.

The demo program is listed in Table 1.16.

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

40 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

Figure 1.20 Profile window of DSP profile status

Figure 1.21 TMSVC 5510 DSK

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

Table 1.16 Program example of DSK audio loop-back, loopback.c

#include "loopbackcfg.h"
#include "dsk5510.h"
#include "dsk5510_aic23.h"

/* Codec configuration settings */
DSK5510_AIC23_Config config = { \

0x0017, /* 0 DSK5510_AIC23_LEFTINVOL Left line input channel
volume */ \

0x0017, /* 1 DSK5510_AIC23_RIGHTINVOL Right line input channel
volume */\

0x01f9, /* 2 DSK5510_AIC23_LEFTHPVOL Left channel headphone
volume */ \

0x01f9, /* 3 DSK5510_AIC23_RIGHTHPVOL Right channel headphone
volume */ \

0x0011, /* 4 DSK5510_AIC23_ANAPATH Analog audio path
control */ \

0x0000, /* 5 DSK5510_AIC23_DIGPATH Digital audio path
control */ \

0x0000, /* 6 DSK5510_AIC23_POWERDOWN Power down
control */ \

0x0043, /* 7 DSK5510_AIC23_DIGIF Digital audio interface
format */ \

0x0081, /* 8 DSK5510_AIC23_SAMPLERATE Sample rate
control */ \

0x0001, /* 9 DSK5510_AIC23_DIGACT Digital interface
activation */ \
};

void main()
{

DSK5510_AIC23_CodecHandle hCodec;
Int16 i,j,left,right;

/* Initialize the board support library, must be called first */
DSK5510_init();
/* Start the codec */
hCodec = DSK5510_AIC23_openCodec(0, &config);

/* Loop back line-in audio for 30 seconds at 48 kHz sampling rate */
for (i = 0; i < 30; i++)
{

for (j = 0; j < 48000; j++)
{

/* Read a sample from the left input channel */
while (!DSK5510_AIC23_read16(hCodec, &left));
/* Write a sample to the left output channel */
while (!DSK5510_AIC23_write16(hCodec, left));
/* Read a sample from the right input channel */
while (!DSK5510_AIC23_read16(hCodec, &right));
/* Write a sample to the right output channel */
while (!DSK5510_AIC23_write16(hCodec, right));

}
}
/* Close the codec */
DSK5510_AIC23_closeCodec(hCodec);

}

41

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

42 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

Table 1.17 File listing for experiment exp1.6.6_loopback

Files Description

loopback.c C file for testing DSK real-time loopback experiment

Loopback.cdb DSP BIOS configuration file

loopbackcfg.h C header file

loopback.pjt DSP project file

loopbackcfg.cmd DSP linker command file

desertSun.wav Test data file

fools8k.wav Test data file

This experimental program first initializes the DSK board and the AIC23 CODEC. It starts the audio

loopback at 48 kHz sampling rate for 1 min. Finally, it stops and closes down the AIC23. The settings

of the AIC23 will be presented in detail in Chapter 2. This example is included in the companion

CD and can be loaded into DSK directly. In the subsequent chapters, we will continue to modify this

program for use in other audio signal processing experiments. As we have discussed in this chapter, the

signal processing can be either in a sample-by-sample or in a block-by-block method. This audio loopback

experiment is implemented in the sample-by-sample method. It is not very efficient in terms of processing

I/O overhead. We will introduce block-by-block method to reduce the I/O overhead in the following

chapters.

The files used for this experiment are listed in Table 1.17. In addition, there are many built-in header

files automatically included by CCS.

Procedures of experiment are listed as follows:

1. Play the WAV file desertSun.wav in the directory ..\experiments\exp1.6.6_loopback\data
using media player in loop mode on a host computer, or use an audio player as audio source.

2. Connect one end of a stereo cable to the computer’s audio output jack, and the other end to the DSK’s

line-in jack. Connect a headphone to the DSK headphone output jack.

3. Start CCS and open loopback.pjt from the directory ..\experiments\exp1.6.6_loopback,

and then build and load the loopback.out.

4. Play the audio by the host computer in loop mode and run the program on the DSK. The DSK will

acquire the signal from the line-in input, and send it out to the DSK headphone output.

1.6.7 Sampling Theory

Aliasing is caused by using sampling frequency incorrectly. A chirp signal (will be discussed in Chapter 8)

is a sinusoid function with changing frequency, which is good for observing aliasing. This experiment

uses audible and visual results from the MATLAB to illustrate the aliasing phenomenon. Table 1.18 lists

the MATLAB code for experiment.

In the program given in Table 1.18, fl and fh are the low and high frequencies of the chirp signals,

respectively. The sampling frequency fs is set to 800 Hz. This experiment program generates 1 s of chirp

signal. The experiment uses MATLAB function sound() as the audio tool for listening to the chirp

signal and uses the plot() function as a visual aid to illustrate the aliasing result.

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 43

Table 1.18 MATLAB code to demonstrate aliasing

fl = 0; % Low frequency
fh = 200; % High frequency
fs = 800; % Sampling frequency
n = 0:1/fs:1; % 1 seconds of data
phi = 2*pi*(fl*n + (fh-fl)*n.*n/2);
y = 0.5*sin(phi);
sound(y, fs);
plot(y)

Procedures of the experiment are listed as follows:

1. Start MATLAB and set MATLAB path to the experiment directory.

2. Type samplingTheory in the MATLAB command window to start the experiment.

3. When the sampling frequency is set to 800 Hz, the code will generate a chirp signal sweeping from

0 to 200 Hz. The MATLAB uses the function sound to play the continuous chirp signal and plot the

entire signal as shown in Figure 1.22(a).

4. Now change the sampling frequency to fs = 200 Hz. Because the sampling frequency fs does not

meet the sampling theorem, the chirp signal generated will have aliasing. The result is audible and

can be viewed from a MATLAB plot. The sweeping frequency folded at 100 Hz is shown in Figure

1.22(b).

0.5

0

0

0 20 40 60 80 100 120 140 160 180 200

100 200 300 400

(a) 800 Hz sampling rate

(b) 200 Hz sampling rate

500 600 700 800
−0.5

0.5

0

−0.5

Figure 1.22 Sampling theory experiment using chirp signal: (a) 800 Hz sampling rate; (b) 200 Hz sampling rate

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

44 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

5. Now use the chirp experiment as reference, and write a signal generator using the sine function

available in MATLAB. Set the sampling frequency to 800 Hz. Start with sine function frequency

200 Hz, generate 2 s of audio, and plot the signal. Repeat this experiment five times by incrementing

the sine function frequency by 100 Hz each time.

1.6.8 Quantization in ADCs

Quantization is an important factor when designing a DSP system. We will discuss quantization in

Chapter 3. For this experiment, we use MATLAB to show that different ADC wordlengths have different

quantization errors. Table 1.19 shows a portion of the MATLAB code for this experiment.

Procedures of the experiment are listed as follows:

1. Start MATLAB and set the MATLAB path to the experiment directory.

2. Type ADCQuantization in the MATLAB command window to start the experiment.

3. When MATLAB prompts for input, enter the desired ADC peak voltage and wordlength.

4. Enter an input voltage to the ADC to compute the digital output and error. This experiment will calcu-

late the ADC resolution and compute the error in million volts; it will also display the corresponding

hexadecimal numbers that will be generated by ADC for the given voltage.

An example of output is listed in Table 1.20.

Table 1.19 MATLAB code for experiment of ADC quantization

peak = input('Enter the ADC peak voltage (0 - 5) = ');
bits = input('Enter the ADC wordlength (4 - 12) = ');
volt = input('Enter the analog voltage = ');

% Calculate resolution
resolution = peak / power(2, bits);

% Find digital output
digital = round(volt/resolution);

% Calculate error
error = volt - digital*resolution;

Table 1.20 Output of ADC quantization

>> ADCQuantization
Enter the ADC peak voltage (0 - 5) = 5
Enter the ADC wordlength (4 - 12) = 12
Enter the analog voltage (less than or equal to peak voltage) = 3.445
ADC resolution (mv) = 1.2207
ADC corresponding output (HEX) = B06
ADC quantization error (mv)= 0.1758

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

Exercises 45

References

[1] ITU Recommendation G.729, Coding of Speech at 8 kbit/s Using Conjugate-Structure Algebraic-Code-Excited
Linear-Prediction (CS-ACELP), Mar. 1996.

[2] ITU Recommendation G.723.1, Dual Rate Speech Coder for Multimedia Communications Transmitting at 5.3
and 6.3 kbit/s, Mar. 1996.

[3] ITU Recommendation G.722, 7 kHz Audio-Coding within 64 kbit/s, Nov. 1988.

[4] 3GPP TS 26.190, AMR Wideband Speech Codec: Transcoding Functions, 3GPP Technical Specification, Mar.

2002.

[5] ISO/IEC 13818-7, MPEG-2 Generic Coding of Moving Pictures and Associated Audio Information, Oct. 2000.

[6] ISO/IEC 11172-3, Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to About
1.5 Mbit/s - Part 3: Audio, Nov. 1992.

[7] ITU Recommendation G.711, Pulse Code Modulation (PCM) of Voice Frequencies, Nov. 1988.

[8] Texas Instruments, TLV320AIC23B Data Manual, Literature no. SLWS106H, 2004.

[9] Spectrum Digital, Inc., TMS320VC5510 DSK Technical Reference, 2002.

[10] S. Zack and S. Dhanani, ‘DSP co-processing in FPGA: Embedding high-performance, low-cost DSP functions,’

Xilinx White Paper, WP212, 2004.

[11] Berkeley Design Technology, Inc., ‘Choosing a DSP processor,’ White-Paper, 2000.

[12] G. Frantz and L. Adams, ‘The three Ps of value in selecting DSPs,’ Embedded System Programming, Oct. 2004.

[13] Texas Instruments, Inc., TMS320C55x Optimizing C Compiler User’s Guide, Literature no. SPRU281E, Revised

2003.

[14] Texas Instruments, Inc., TMS320C55x Assembly Language Tools User’s Guide, Literature no. SPRU280G,

Revised 2003.

[15] Spectrum Digital, Inc., TMS320C5000 DSP Platform Code Composer Studio DSK v2 IDE, DSK Tools for C5510

Version 1.0, Nov. 2002.

[16] Texas Instruments, Inc., Code Composer Studio User’s Guide (Rev B), Literature no. SPRU328B, Mar. 2000.

[17] Texas Instruments, Inc., Code Composer Studio v3.0 Getting Start Guide, Literature no. SPRU509E, Sept. 2004.

[18] IBM and Microsoft, Multimedia Programming Interface and Data Specification 1.0, Aug. 1991.

[19] Microsoft, New Multimedia Data Types and Data Techniques, Rev 1.3, Aug. 1994.

[20] Microsoft, Multiple Channel Audio Data and WAVE Files, Nov. 2002.

[21] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice Hall,

1989.

[22] S. J. Orfanidis, Introduction to Signal Processing, Englewood Cliffs, NJ: Prentice Hall, 1996.

[23] J. G. Proakis and D. G. Manolakis, Digital Signal Processing – Principles, Algorithms, and Applications, 3rd

Ed., Englewood Cliffs, NJ: Prentice Hall, 1996.

[24] A. Bateman and W. Yates, Digital Signal Processing Design, New York: Computer Science Press, 1989.

[25] S. M. Kuo and D. R. Morgan, Active Noise Control Systems – Algorithms and DSP Implementations, New York:

John Wiley & Sons, Inc., 1996.

[26] J. H. McClellan, R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia Approach, 2nd Ed., Englewood Cliffs,

NJ: Prentice Hall, 1998.

[27] S. M. Kuo and W. S. Gan, Digital Signal Processors – Architectures, Implementations, and Applications, Upper

Saddle River, NJ: Prentice Hall, 2005.

[28] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor Fundamentals: Architectures and Features,

Piscataway, NJ: IEEE Press, 1997.

[29] Berkeley Design Technology, Inc., ‘The evolution of DSP processor,’ A BDTi White Paper, 2000.

Exercises

1. Given an analog audio signal with frequencies up to 10 kHz.

(a) What is the minimum required sampling frequency that allows a perfect reconstruction of the signal from its

samples?

(b) What will happen if a sampling frequency of 8 kHz is used?

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

46 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

(c) What will happen if the sampling frequency is 50 kHz?

(d) When sampled at 50 kHz, if only taking every other samples (this is a decimation by 2), what is the frequency

of the new signal? Is this causing aliasing?

2. Refer to Example 1.1, assuming that we have to store 50 ms (1 ms = 10−3 s) of digitized signals. How many

samples are needed for (a) narrowband telecommunication systems with fs = 8 kHz, (b) wideband telecommu-

nication systems with fs = 16 kHz, (c) audio CDs with fs = 44.1 kHz, and (d) professional audio systems with

fs = 48 kHz.

3. Assume that the dynamic range of the human ear is about 100 dB, and the highest frequency the human ear can

hear is 20 kHz. If you are a high-end digital audio system designer, what size of converters and sampling rate

are needed? If your design uses single-channel 16-bit converter and 44.1 kHz sampling rate, how many bits are

needed to be stored for 1 min of music?

4. Given a discrete time sinusoidal signal of x(n) = 5sin(nπ/100) V.

(a) Find its peak-to-peak range?

(b) What are the quantization resolutions of (i) 8-bit, (ii) 12-bit, (iii) 16-bit, and (iv) 24-bit ADCs for this signal?

(c) In order to obtain the quantization resolution of below 1 mV, how many bits are required in the ADC?

5. A speech file (timit_1.asc) was sampled using 16-bit ADC with one of the following sampling rates: 8 kHz,

12 kHz, 16 kHz, 24 kHz, or 32 kHz. We can use MATLAB to play it and find the correct sampling rate. Try to

run exercise1_5.m under the exercise directory. This script plays the file at 8 kHz, 12 kHz, 16 kHz, 24 kHz,

and 32 kHz. Press the Enter key to continue if the program is paused. What is the correct sampling rate?

6. From the Option menu, set the CCS for automatically loading the program after the project has been built.

7. To reduce the number of mouse clicks, many pull-down menu items have been mapped to the hot buttons for the

standard and advanced edit, project management, and debug toolbars. There are still some functions, however,

that do not associate with any hot buttons. Use the Option menu to create shortcut keys for the following menu

items:

(a) map Go Main in the debug menu to Alt + M (<Alt> and <M> keys);

(b) map Reset in the debug menu to Alt + R;

(c) map Restart in the debug menu to Alt + S; and

(d) map Reload Program in the file menu to Ctrl + R.

8. After loading the program into the simulator and enabling Source/ASM mixed display mode from View →
Mixed Source/ASM, what is shown in the CCS source display window besides the C source code?

9. How do you change the format of displayed data in the watch window to hex, long, and floating-point format

from the integer format?

10. What does File → Workspace do? Try the save and reload workspace commands.

11. Besides using file I/O with the probe point, data values in a block of memory space can also be stored to a file.

Try the File → Data → Save and File → Data → Load commands.

12. Using Edit→Memory command we can manipulate (edit, copy, and fill) system memory of the useCCS.pjt
in section 1.6.1 with the following tasks:

(a) open memory window to view outBuffer;

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

EXERCISES 47

(b) fill outBuffer with data 0x5555; and

(c) copy the constant sineTable[] to outBuffer.

13. Use the CCS context-sensitive online help menu to find the TMS320C55x CUP diagram, and name all the buses

and processing units.

14. We have introduced probe point for connecting files in and out of the DSP program. Create a project that will

read in 16-bit, 32-bit, and floating-point data files into the DSP program. Perform multiplication of two data and

write the results out via probe point.

15. Create a project to use fgetc() and fputc() to get data from the host computer to the DSP processor and

write out the data back to the computer.

16. Use probe point to read the unknown 16-bit speech data file (timit_1.asc) and write it out in binary format

(timit_1.bin).

17. Study the WAV file format and write a program that can create a WAV file using the PCM binary file

(timit_1.bin) from above experiment. Play the created WAV file (timit_1.wav) on a personal com-

puter’s Windows Media Player.

18. Getting familiar with the DSK examples is very helpful. The DSK software package includes many DSP examples

for the DSK. Use the DSK to run some of these examples and observe what these examples do.

JWBK080-01 JWBK080-Kuo March 8, 2006 19:8 Char Count= 0

48

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

2
Introduction to TMS320C55x
Digital Signal Processor

To efficiently design and implement digital signal processing (DSP) systems, we must have a sound

knowledge of DSP algorithms as well as DSP processors. In this chapter, we will introduce the architecture

and programming of the Texas Instruments’ TMS320C55x fixed-point processors.

2.1 Introduction

As introduced in Chapter 1, the TMS320 fixed-point processor family consists of C1x, C2x, C5x, C2xx,

C54x, C55x, C62x, and C64x. In recent years, Texas Instruments have also introduced application-specific

DSP-based processors including DSC2x, DM2xx, DM3xx, DM6xxxx, and OMAP (open multimedia

application platform). DSC2x targets low-end digital cameras market. The digital medial processors aim at

the rapid developing digital media markets such as portable media players, media centers, digital satellite

broadcasting, simultaneously streaming video and audio, high-definition TVs, surveillance systems, as

well as high-end digital cameras. The OMAP family is primarily used in wireless and portable devices such

as new generation of cell phones and portable multimedia devices. Each generation of the TMS320 family

has its own unique central processing unit (CPU) with variety of memory and peripheral configurations.

The widely used TMS320C55x family includes C5501, C5502, C5503, C5509, C5510, and so on. In

this book, we use the TMS320C5510 as an example for real-time DSP implementations, experiments,

and applications. The C55x processor is designed for low power consumption, optimum performance,

and high code density. Its dual multiply-and-accumulate (MAC) architecture provides twice the cycle

efficiency for computing vector products, and its scaleable instruction length significantly improves the

code density. Some important features of the C55x processors are:� 64-byte instruction buffer queue that works as an on-chip program cache to support implementation

of block-repeat operations efficiently.� Two 17-bit by17-bit MAC units can execute dual MAC operations in a single cycle.� A 40-bit arithmetic-and-logic unit (ALU) performs high precision arithmetic and logic operations

with an additional 16-bit ALU to perform simple arithmetic operations in parallel to the main ALU.

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

49

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

50 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR� Four 40-bit accumulators for storing intermediate computational results in order to reduce memory

access.� Eight extended auxiliary registers (XARs) for data addressing plus four temporary data registers to

ease data processing requirements.� Circular addressing mode supports up to five circular buffers.� Single-instruction repeat and block-repeat operations of program for supporting zero-overhead

looping.� Multiple data variable and coefficient accesses in single instruction.

Detailed information of the TMS320C55x can be found in the references listed at the end of this chapter.

2.2 TMS320C55x Architecture

The C55x CPU consists of four processing units: instruction buffer unit (IU), program flow unit (PU),

address-data flow unit (AU), and data computation unit (DU). These units are connected to 12 different

address and data buses as shown in Figure 2.1.

2.2.1 Architecture Overview

IU fetches instructions from the memory into the CPU. The C55x instructions have different lengths

for optimum code density. Simple instructions use only 8 bits (1 byte), while complicated instruc-

tions may contain as many as 48 bits (6 bytes). For each clock cycle, the IU fetches 4 bytes of in-

struction code via its 32-bit program-read data bus (PB) and places them into the 64-byte instruc-

tion buffer. At the same time, the instruction decoder decodes an instruction as shown in Figure 2.2.

The decoded instruction is passed to the PU, AU, or DU.

The IU improves the program execution by maintaining instruction flow between the four units within

the CPU. If the IU is able to hold a complete segment of loop code, the program execution can be repeated

many times without fetching code from memory. Such capability not only improves the efficiency of

loop execution, but also saves the power consumption by reducing memory accesses. The instruction

buffer that can hold multiple instructions in conjunction with conditional program flow control is another

advantage. This can minimize the overhead caused by program flow discontinuities such as conditional

calls and branches.

PU controls program execution. As illustrated in Figure 2.3, the PU consists of a program counter

(PC), four status registers, a program address generator, and a pipeline protection unit. The PC tracks

the program execution every clock cycle. The program address generator produces a 24-bit address that

covers 16 Mbytes of memory space. Since most instructions will be executed sequentially, the C55x

utilizes pipeline structure to improve its execution efficiency. However, instructions such as branch,

call, return, conditional execution, and interrupt will cause a nonsequential program execution. The

dedicated pipeline protection unit prevents program flow from any pipeline vulnerabilities caused by a

nonsequential execution.

AU serves as the data access manager. The block diagram illustrated in Figure 2.4 shows that the

AU generates the data space addresses for data read and data write. The AU consists of eight 23-bit

XARS (XAR0–XAR7), four 16-bit temporary registers (T0–T3), a 23-bit coefficient pointer (XCDP),

and a 23-bit extended stack pointer (XSP). It consists of an additional 16-bit ALU that can be used for

simple arithmetic operations. The temporary registers can be utilized to expand compiler efficiency by

minimizing the need for memory access. The AU allows two address registers and a coefficient pointer

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X ARCHITECTURE 51

24-bit program-read address bus (PAB)

32-bit program-read data bus (PB)

Three 24-bit data-read address buses (BAB, CAB, DAB)

Three 16-bit data-read data buses (BB, CB, DB)

Two 24-bit data-write address buses (EAB, FAB)

Two 16-bit data-write data buses (EB, FB)

32bits CB DB BB CB DB

Instruction
buffer unit

IU

Data
computation

unit
DU

Program
flow unit

PU

Address-data
flow unit

AU

C55x CPU

Figure 2.1 Block diagram of TMS320C55x CPU

Program-read data bus (PB)

32 (4-byte opcode fetch)

Instruction
decoder

Instruction
buffer
queue

(64bytes)

PU

AU

DU
(1−6bytes
opcode)

48

IU

Figure 2.2 Simplified block diagram of the C55x IU

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

Program-read address bus (PAB)

 24-bit

PU Program counter (PC)

Status registers
(ST0, ST1, ST2, ST3)

Address generator

Pipeline protection unit

Figure 2.3 Simplified block diagram of the C55x PU

FB

EB

FAB

EAB

BAB

CAB

DAB

C

DB

D
A
T
A

M
E
M
O
R
Y

S
P
A
C
E

XAR0

XAR1

XAR2

XAR3

XAR4

XAR5

XAR6

XAR7

XCDP

XSP

16-bit
ALU

T0

T1

T2

T3

16-bit 23-bit

AU

Data-
address

generator
unit

(24-bit)

Figure 2.4 Simplified block diagram of the C55x AU

AC0

AC1

AC2

AC3

MAC

MAC

ALU
(40-bit)

Barrel
shifter

Overflow
and

saturation

EB

FB

16-bit

16-bit

BB

C

DB

16-bit

16-bit

16-bit

DU

Figure 2.5 Simplified block diagram of the C55x DU

52

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X ARCHITECTURE 53

to be used together for some instructions to access two data samples and one coefficient in a single clock

cycle. The AU also supports up to five circular buffers, which will be discussed later.

DU handles intensive computation for C55x applications. As illustrated in Figure 2.5, the DU consists

of a pair of MAC units, a 40-bit ALU, four 40-bit accumulators (AC0, AC1, AC2, and AC3), a barrel

shifter, and rounding and saturation control logic. There are three data-read data buses that allow two

data paths and a coefficient path to be connected to the dual MAC units simultaneously. In a single cycle,

each MAC unit can perform a 17-bit by 17-bit multiplication and a 40-bit addition (or subtraction) with

saturation option. The ALU can perform 40-bit arithmetic, logic, rounding, and saturation operations

using the accumulators. It can also be used to achieve two 16-bit arithmetic operations in both the upper

and lower portions of an accumulator at the same time. The ALU can accept immediate values from the

IU as data and communicate with other AU and PU registers. The barrel shifter may be used to perform

data shift in the range of 2−32 (shift right 32 bits) to 231 (shift left 31 bits).

2.2.2 Buses

As illustrated in Figure 2.1, the TMS320C55x has one program data bus, five data buses, and six address

buses. The C55x architecture is built around these 12 buses. The program buses carry the instruction

code and immediate operands from program memory, while the data buses connect various units. This

architecture maximizes the processing power by maintaining separate memory bus structures for full-

speed execution.

The program buses include a 32-bit PB and a 24-bit program-read address bus (PAB). The PAB carries

the program memory address in order to read the code from the program space. The PB transfers 4 bytes

of code to the IU at each clock cycle. The unit of program address used by the C55x processors is byte.

Thus, the addressable program space is in the range of 0x000000–0xFFFFFF. (The prefix 0x indicates

that the following numbers are in hexadecimal format.)

The data buses consist of three 16-bit data-read data buses (BB, CB, and DB) and three 24-bit data-read

address buses (BAB, CAB, and DAB). This architecture supports three simultaneous data reads from

data memory or I/O space. The CB and DB can send data to the PU, AU, and DU, while the BB can

only work with the DU. The primary function of the BB is to connect memory to the dual MAC, so some

specific operations can fetch two data and one coefficient simultaneously. The data-write operations use

two 16-bit data-write data buses (EB and FB) and two 24-bit data-write address buses (EAB and FAB).

For a single 16-bit data write, only the EB is used. A 32-bit data write will use both the the EB and the

FB in one cycle. The data-write address buses (EAB and FAB) have the same 24-bit addressing range.

The data memory space is 23-bit word addressable from address 0x000000 to 0x7FFFFF.

2.2.3 On-Chip Memories

The C55x uses unified program and data memory configurations with separated I/O space. All 16 Mbytes

of memory space are available for program and data. The program memory space is used for program

code, which is stored in byte units. The data memory space is used for data storage. The memory mapped

registers (MMRs) also reside in data memory space. When the processor fetches instructions from the

program memory space, the C55x address generator uses the 24-bit PAB. When the processor accesses

data memory space, the C55x address generator masks off the least significant bit (LSB) of the data address

line to ensure that the data is stored in memory in 16-bit word entity. The 16 Mbytes memory map is

shown in Figure 2.6. Data space is divided into 128 data pages (0–127), and each page has 64 K words.

The C55x on-chip memory from addresses 0x0000 to 0xFFFF uses the dual access RAM (DARAM).

The DARAM is divided into eight blocks of 8 Kbytes each, see Table 2.1. Within each block, C55x can

perform two accesses (two reads, two writes, or one read and one write) per cycle. The on-chip DARAM

can be accessed via the internal program bus, data bus, or direct memory access (DMA) buses. The

DARAM is often used for frequently accessed data.

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

54 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

MMRs 00 0000−00 005F 00 0000−00 00BF Reserved

00 0060
00 FFFF

00 00C0
01 FFFF

01 0000

01 FFFF

02 0000

03 FFFF

02 0000

02 FFFF

04 0000

05 FFFF

7F 0000

7F FFFF

FE 0000

FF FFFF

Page 0

Page 1

Page 2

Page 127

Program space addresses
(byte in hexadecimal)

C55x memory
program/data space

Data space addresses
(word in hexadecimal)

⎨

⎨

⎨

⎨

Figure 2.6 TMS320C55x program space and data space memory map

The C55x on-chip memory also includes single-access RAM (SARAM). The SARAM location starts

from the byte address 0x10000 to 0x4FFFF. It consists of 32 blocks of 8 Kbytes each (see Table 2.2).

Each access (one read or one write) will take one cycle. The C55x on-chip SARAM can be accessed by

the internal program, data, or DMA buses.

The C55x contains an on-chip read-only memory (ROM) in a single 32 K-byte block. It starts from the

byte address 0xFF8000 to 0xFFFFFF. Table 2.3 shows the addresses and contents of ROM in C5510. The

bootloader provides multiple methods to load the program at power up or hardware reset. The bootloader

uses vector table for placing interrupts. The 256-value sine lookup table can be used to generate sine

function.

Table 2.1 C5510 DARAM blocks and addresses

DARAM byte address range DARAM memory blocks

0x0000−0x1FFF DARAM 0

0x2000−0x3FFF DARAM 1

0x4000−0x5FFF DARAM 2

0x6000−0x7FFF DARAM 3

0x8000−0x9FFF DARAM 4

0xA000−0xBFFF DARAM 5

0xC000−0xDFFF DARAM 6

0xE000−0xFFFF DARAM 7

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X ARCHITECTURE 55

Table 2.2 C5510 DARAM blocks and addresses

SARAM byte address range SARAM memory blocks

0x10000−0x11FFF SARAM 0

0x12000−0x13FFF SARAM 1

0x14000−0x15FFF SARAM 2

· ·· ·
· ·· ·
· ·· ·

0x4C000−0x4DFFF SARAM 30

0x4E000−0x4FFFF SARAM 31

2.2.4 Memory Mapped Registers

The C55x processor has MMRs for internal managing, controlling, and monitoring. These MMRs are

located at the reserved RAM block from 0x00000 to 0x0005F. Table 2.4 lists all the CPU registers of

C5510.

The accumulators AC0, AC1, AC2, and AC3 are 40-bit registers. They are formed by two 16-bit and

one 8-bit registers as shown in Figure 2.7. The guard bits, AG, are used to hold data result of more than

32 bits to prevent overflow during accumulation.

The temporary data registers, T0, T1, T2, and T3, are 16-bit registers. They are used to hold data

results less or equal to 16 bits. There are eight auxiliary registers, AR0-AR7, which can be used for

several purposes. Auxiliary registers can be used as data pointers for indirect addressing mode and

circular addressing mode. The coefficient data pointer (CDP) is a unique addressing register used for

accessing coefficients via coefficient data bus during multiple data access operations. Stack pointer tracks

the data memory address position at the top of the stack. The stack must be set with sufficient locations

at reset to ensure that the system works correctly. Auxiliary registers, CDP register, and stack pointer

register are all 23-bit registers. These 23-bit registers are formed by combining two independent registers

(see Figure 2.8). The data in lower 16-bit portion will not carry into higher 7-bit portion of the register.

The C55x processor has four system status registers: ST0 C55, ST1 C55, ST2 C55, and ST3 C55.

These registers contain system control bits and flag bits. The control bits directly affect the C55x operation

conditions. The flag bits report the processor current status or results. These bits are shown in Figure 2.9,

and see C55x reference guides for details.

2.2.5 Interrupts and Interrupt Vector

The C5510 has an interrupt vector that serves all the internal and external interrupts. Interrupt vector

given in Table 2.5 lists the priorities for all internal and external interrupts. The addresses of the interrupts

are the offsets from the interrupt vector pointer.

Table 2.3 C5510 ROM block addresses and contents

SARAM byte address range SARAM memory blocks

0xFF8000−0xFF8FFF Bootloader

0xFF9000−0xFFF9FF Reserved

0xFFFA00−0xFFFBFF Sine lookup table

0xFFFC00−0xFFFEFF Factory test code

0xFFFF00−0xFFFEFB Vector table

0xFFFFFC−0xFFFEFF ID code

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

56 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

Table 2.4 C5510 MMRs

Reg. Addr. Function description Reg. Addr. Function description

IER0 0x00 Interrupt mask register 0 DPH 0x2B Extended data-page pointer

IFR0 0x01 Interrupt flag register 0 0x2C Reserved

ST0 55 0x02 Status register 0 for C55x 0x2D Reserved

ST1 55 0x03 Status register 1 for C55x DP 0x2E Memory data-page start address

ST3 55 0x04 Status register 3 for C55x PDP 0x2F Peripheral data-page start address

0x05 Reserved BK47 0x30 Circular buffer size register for

AR[4–7]

ST0 0x06 ST0 (for 54x compatibility) BKC 0x31 Circular buffer size register for

CDP

ST1 0x07 ST1 (for 54x compatibility) BSA01 0x32 Circular buffer start addr. reg. for

AR[0–1]

AC0L 0x08 Accumulator 0 [15 0] BSA23 0x33 Circular buffer start addr. reg. for

AR[2–3]

AC0H 0x09 Accumulator 0 [31 16] BSA45 0x34 Circular buffer start addr. reg. for

AR[4–5]

AC0G 0x0A Accumulator 0 [39 32] BSA67 0x35 Circular buffer start addr. reg. for

AR[6–7]

AC1L 0x0B Accumulator 1 [15 0] BSAC 0x36 Circular buffer coefficient start

addr. reg.

AC1H 0x0C Accumulator 1 [31 16] BIOS 0x37 Data page ptr storage for 128-word

data table

AC1G 0x0D Accumulator 1 [39 32] TRN1 0x38 Transition register 1

T3 0x0E Temporary register 3 BRC1 0x39 Block-repeat counter 1

TRN0 0x0F Transition register BRS1 0x3A Block-repeat save 1

AR0 0x10 Auxiliary register 0 CSR 0x3B Computed single repeat

AR1 0x11 Auxiliary register 1 RSA0H 0x3C Repeat start address 0 high

AR2 0x12 Auxiliary register 2 RSA0L 0x3D Repeat start address 0 low

AR3 0x13 Auxiliary register 3 REA0H 0x3E Repeat end address 0 high

AR4 0x14 Auxiliary register 4 REA0L 0x3F Repeat end address 0 low

AR5 0x15 Auxiliary register 5 RSA1H 0x40 Repeat start address 1 high

AR6 0x16 Auxiliary register 6 RSA1L 0x41 Repeat start address 1 low

AR7 0x17 Auxiliary register 7 REA1H 0x42 Repeat end address 1 high

SP 0x18 Stack pointer register REA1L 0x43 Repeat end address 1 low

BK03 0x19 Circular buffer size register RPTC 0x44 Repeat counter

BRC0 0x1A Block-repeat counter IER1 0x45 Interrupt mask register 1

RSA0L 0x1B Block-repeat start address IFR1 0x46 Interrupt flag register 1

REA0L 0x1C Block-repeat end address DBIER0 0x47 Debug IER0

PMST 0x1D Processor mode status register DBIER1 0x48 Debug IER1

XPC 0x1E Program counter extension register IVPD 0x49 Interrupt vector pointer, DSP

0x1F Reserved IVPH 0x4A Interrupt vector pointer, HOST

T0 0x20 Temporary data register 0 ST2 55 0x4B Status register 2 for C55x

T1 0x21 Temporary data register 1 SSP 0x4C System stack pointer

T2 0x22 Temporary data register 2 SP 0x4D User stack pointer

T3 0x23 Temporary data register 3 SPH 0x4E Extended data-page pointer for SP

and SSP

AC2L 0x24 Accumulator 2 [15 0] CDPH 0x4F Main data-page pointer for the CDP

AC2H 0x25 Accumulator 2 [31 16]

AC2G 0x26 ccumulator 2 [39 32]

CDP 0x27 Coefficient data pointer

AC3L 0x28 Accumulator 3 [15 0]

AC3H 0x29 Accumulator 3 [31 16]

AC3G 0x2A Accumulator 3 [39 32]

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X ARCHITECTURE 57

AG AH AL

39 32 31 16 15 0

Figure 2.7 TMS320C55x accumulator structure

ARH

CDPH

SPH SP

CDP

ARn XARn

XCDP

XSP

22 16 15 0

Figure 2.8 TMS320C55x 23-bit MMRs

ACOV2 ACOV3 TC1 TC2 CARRY ACOV0 ACOV1

DP [8:0]

15 14 13 12 11 10 9

ST0_55:

BRAF CPL XF HM INTM M40 SATD

15 14 13 12 11 10 9

ST1_55:

SXMD

8

C16 FRCT C54CM ASM [4:0]

7 6 5

ARMS RESERVED [14:13] DBGM EALLOW RDM RESERVE

15 12 11 10 9

CDPLC

8

AR7LC AR6LC AR5LC AR4LC AR3LC AR2LC AR1LC

7 6 5 4 3 2 1

AR0LC

0

ST2_55:

CAFRZ HINT RESERVED [11:8]

15 14 13 12

CBERR MPNMC SATA RESERVED [4:3] CLKOFF SMUL

7 6 5 2 1

SST

0

ST3_55:

CAEN CACLR

Figure 2.9 TME320C55x status registers

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

58 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

Table 2.5 C5510 interrupt vector

Name Offset Priority Function description

RESET 0x00 0 Reset (hardware and software)

MNI 0x08 1 Nonmaskable interrupt

INT0 0x10 3 External interrupt #0

INT2 0x18 5 External interrupt #2

TINT0 0x20 6 Timer #0 interrupt

RINT0 0x28 7 McBSP #0 receive interrupt

RINT1 0x30 9 McBSP #1 receive interrupt

XINT1 0x38 10 McBSP #1 transmit interrupt

SINT8 0x40 11 Software interrupt #8

DMAC1 0x48 13 DMA channel #1 interrupt

DSPINT 0x50 14 Interrupt from host

INT3 0x58 15 External interrupt #3

RINT2 0x60 17 McBSP #2 receive interrupt

XINT2 0x68 18 McBSP #2 transmit interrupt

DMAC4 0x70 21 DMA channel #4 interrupt

DMAC5 0x78 22 DMA channel #5 interrupt

INT1 0x80 4 External interrupt #1

XINT0 0x88 8 McBSP #0 transmit interrupt

DMAC0 0x90 12 DMA channel #0 interrupt

INT4 0x98 16 External interrupt #4

DMAC2 0xA0 19 DMA channel #2 interrupt

DMAC3 0xA8 20 DMA channel #3 interrupt

TINT1 0xB0 23 Timer #1 interrupt

INT5 0xB8 24 External interrupt #5

BERR 0xC0 2 Bus error interrupt

DLOG 0xC8 25 Data log interrupt

RTOS 0xD0 26 Real-time operating system interrupt

SINT27 0xD8 27 Software interrupt #27

SINT28 0xE0 28 Software interrupt #28

SINT29 0xE8 29 Software interrupt #29

SINT30 0xF0 30 Software interrupt #30

SINT31 0xF8 31 Software interrupt #31

These interrupts can be enabled or disabled (masked) by the interrupt enable registers, IER0 and IER1.

The interrupt flag registers, IFR0 and IFR1, indicate if an interrupt has occurred. The interrupt enable

bits and flag bits assignments are given in Figure 2.10. When a flag bit of the IFR is set to 1, it indicates

an interrupt has happened and that interrupt is pending to be served.

2.3 TMS320C55x Peripherals

In this section, we use the C5510 as an example to introduce some commonly used peripherals of the

C55x processors. The C5510 consists of the following peripherals and the functional block diagram is

shown in Figure 2.11.� an external memory interface (EMIF);� a six-channel DMA controller;� a 16-bit parallel enhanced host-port interface (EHPI);

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X PERIPHERALS 59

DMAC5 RINT2 INT3 DSPINT DMAC1

15 12 11 10 9

RESERV

8

XINT1 RINT1 RINT0 TINT0 INT2 INT0 RESERVED [1:0]

7 6 5 4 3 2

IFR0/IER

DMAC4 XINT2

14 13

RESERVED [15:11] RTOS DLOG

10 9

BER

8

INT5 TINT1 DMAC3 DMAC2 INT4 DMAC0 XINT0

7 6 5 4 3 2 1

INT1

0

IFR1/IER:1

Figure 2.10 TMS320C55x interrupt enable and flag registers

EHPI

C55X CPU

DMA
controller

EMIF

Peripheral
controller

Power
management

ClockGPIO Timer

McBSP

Figure 2.11 TMS320C55x functional blocks

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

60 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR� a digital phase-locked loop (DPLL) clock generator;� two timers;� three multichannel buffered serial ports (McBSP); and� eight configurable general-purpose I/O (GPIO) pins;

2.3.1 External Memory Interface

The C55x EMIF connects the processor with external memory devices. The memory devices can be

ROM, Flash, SRAM, synchronous burst SRAM (SBSRAM), and synchronous DRAM (SDRAM). The

EMIF supports the program and data memory accesses at 32, 16, or 8 bit.

The C55x external memory is divided into four spaces according to chip enable (CE) settings (see

Figure 2.12). The highest address block, 0xFF8000–0xFFFFFF, can be configured either as a continuous

CE3 space or shared by internal processor ROM. The configuration depends upon the C55x status

register MPNMC bit selection. A memory device must be physically connected to the proper CE pin of

the EMIF. For example, an SDRAM memory’s chip select pin must be connected to EMIF CE1 pin in

order to be used in the CE1 memory space. The EMIF is managed by EMIF registers. The C5510 EMIF

registers are given in Table 2.6. Each CE space can support either asynchronous or synchronous memory.

For asynchronous memory, it can be a 32-, 16-, or 8-bit device. For synchronous memory, it supports

SDRAM and SBSDRAM. More detailed description can be found in reference [7].

2.3.2 Direct Memory Access

The DMA is used to transfer data between the internal memory, external memory, and peripherals. Since

the DMA data transfer is independent of the CPU, the C55x processor can simultaneously perform

processing tasks at foreground while DMA transfers data at background. There are six DMA channels on

External memory

CE1 space

CE0 space 0x05 0000−0x3F FFFF

CE3 space

CE2 space

0x40 0000−0x7F FFFF

0x80 0000−0xBF FFFF

0xC0 0000−0xFF 7FFF
0xFF 8000−0xFF FFFF

Byte addresses

Figure 2.12 TMS320C55x EMIF

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X PERIPHERALS 61

Table 2.6 C5510 EMIF registers

Register Address Function description

EGCR 0x0800 Global control register

EMI RST 0x0801 Global reset register

EMI BE 0x0802 Bus error status register

CE0 1 0x0803 CE0 space control register 1

CE0 2 0x0804 CE0 space control register 2

CE0 3 0x0805 CE0 space control register 3

CE1 1 0x0806 CE1 space control register 1

CE1 2 0x0807 CE1 space control register 2

CE1 3 0x0808 CE1 space control register 3

CE2 1 0x0809 CE2 space control register 1

CE2 2 0x080A CE2 space control register 2

CE2 3 0x080B CE2 space control register 3

CE3 1 0x080C CE3 space control register 1

CE3 2 0x080D CE3 space control register 2

CE3 3 0x080E CE3 space control register 3

SDC1 0x080F SDRAM control register

SDPER 0x0810 SDRAM period register

SDCNT 0x0811 SDRAM counter register

INIT 0x0812 SDRAM init register

SDC2 0x0813 SDRAM control register 2

the C55x processors, thus allowing up to six different operations. Each DMA channel has its own interrupt

associated for event control. The DMA uses four standard ports for DARAM, SARAM, peripherals, and

external memory. Each DMA channel’s priority can be programmed independently. The data transfer

source and destination addresses are programmable to provide more flexibility.

Table 2.7 lists the DMA synchronization events. Event sync is determined by the SYNC field in DMA

channel control register, DMA CCR. Channel 1–5 configuration registers are in the same order as channel

0. The DMA global registers and channel 0 configuration registers are given in Table 2.8.

2.3.3 Enhanced Host-Port Interface

The C5510 has an EHPI that allows a host processor to access C55x’s internal DARAM and SARAM as

well as portions of the external memory within its 20-bit address range. The range of 16-bit data access

Table 2.7 C5510 DMA synchronization events

SYNC field SYNC event SYNC field SYNC event

0x00 No sync event 0x0B Reserved

0x01 McBSP0 receive event REVT0 0x0C Reserved

0x02 McBSP0 transmit event XEVT0 0x0D Timer0 event

0x03 Reserved 0x0E Timer1 event

0x04 Reserved 0x0F External interrupt 0

0x05 McBSP1 receive event REVT0 0x10 External interrupt 1

0x06 McBSP1 transmit event XEVT0 0x11 External interrupt 2

0x07 Reserved 0x12 External interrupt 3

0x08 Reserved 0x13 External interrupt 4

0x09 McBSP2 receive event REVT0 0x14 External interrupt 5

0x0A McBSP2 transmit event XEVT0 Reserved

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

62 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

Table 2.8 C5510 DMA configuration registers (channel 0 only)

Register Address Function description

Global Register

DMA GCR 0x0E00 DMA global control register

DMA GSCR 0x0E02 EMIF bus error status register

Channel #0 Registers

DMA CSDP0 0x0C00 DMA channel 0 source/destination parameters register

DMA CCR0 0x0C01 DMA channel 0 control register

DMA CICR0 0x0C02 DMA channel 0 interrupt control register

DMA CSR0 0x0C03 DMA channel 0 status register

DMA CSSA L0 0x0C04 DMA channel 0 source start address register (low bits)

DMA CSSA U0 0x0C05 DMA channel 0 source start address register (up bits)

DMA CDSA L0 0x0C06 DMA channel 0 source destination address register (low bits)

DMA CDSA U0 0x0C07 DMA channel 0 source destination address register (up bits)

DMA CEN0 0x0C08 DMA channel 0 element number register

DMA CFN0 0x0C09 DMA channel 0 frame number register

DMA CSFI0 0x0C0A DMA channel 0 source frame index register

DMA CSEI0 0x0C0B DMA channel 0 source element index register

DMA CSAC0 0x0C0C DMA channel 0 source address counter

DMA CDAC0 0x0C0D DMA channel 0 destination address counter

DMA CDEI0 0x0C0E DMA channel 0 destination element index register

DMA CDFI0 0x0C0F DMA channel 0 destination frame index register

starts from word address 0x00030 to 0xFFFFF, except the spaces for MMRs and peripheral registers.

The address auto-increment capability improves the data transfer efficiency. The EHPI provides a 16-bit

parallel data access between the host processor and the DSP processor. The data transfer is handled by

the DMA controller. There are two configurations: nonmultiplexed mode and multiplexed mode. For

the nonmultiplexed mode, the EHPI uses separated address and data buses while the multiplexed mode

shares the same bus for both address and data. In order to pass data between C55x’s peripherals (or

MMRs) and host processor, the data must be first transferred to a shared memory that can be accessed

by both the host processor and the DSP processor.

2.3.4 Multichannel Buffered Serial Ports

TMS320C55x processors use McBSP for direct serial interface with other serial devices connected to

the system. The McBSP has the following key features:� full-duplex communication;� double-buffered transmission and triple-buffered reception;� independent clocking and framing for receiving and transmitting;� support external clock generation and sync frame signal;� programmable sampling rate for internal clock generation and sync frame signal;

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X PERIPHERALS 63� support data size of 8, 12, 16, 20, 24, and 32 bits; and� ability of performing μ-law and A-law companding.

The McBSP functional block diagram is shown in Figure 2.13. In the receive path, the incoming

data is triple buffered. This allows one buffer to receive the data while other two buffers to be used by

the processor. In the transmit path, double-buffer scheme is used. This allows one buffer of data to be

transmitted out while the other buffer to be filled with new data for transmission. If the data width is

16-bit or less, only one 16-bit register will be used at each stage. These registers are DDR1, RBR1, and

RSR1 in the receiving path, and DXR1 and XSR1 in the transmit path. When the data size is greater than

16 bits, two registers will be used at each stage of the data transfer. We will use the most commonly used

16-bit data transfer as an example to explain the functions of McBSP.

When a receive data bit arrives at C55x’s DR pin, it will be shifted into the receive shift register (RSR).

After all 16 receive bits are shifted into RSR, the whole word will be copied to the receive buffer register

(RBR) if the previous data word in the RBR has already been copied. After the previous data in the data

receive register (DRR) has been read, the RBR will copy its data to DRR for the processor or DMA to

read. The data transmit process starts by the processor (or DMA controller) writing a data word to the data

transmit register (DXR). After the last bit in the transmit shift register (XSR) is shifted out through the DX

pin, the data in DXR will be copied into XSR. Using the McBSP’s hardware companding feature, the

linear data word can be compressed into 8-bit byte according to either μ-law or A-law standard while

the received μ-law or A-law 8-bit data can be expanded to 16-bit linear data. The companding algorithm

follows ITU G.711 recommendation.

XSR[1, 2]

RSR[1, 2] RBR[1, 2]

Compand

DXR[1, 2]

DRR[1, 2]

2 MCRs

8 RCERs

8 XCERs

2 SPCRs

2 RCRs

2 XCRs

2 SRGRs

PCR

Registers for
multichannel
control and
monitoring

Registers for
data, clock, and
frame sync
control and
monitoring

XINT
RINT

XEVT
REVT
XEVTA
REVTA

DX

DR

CLKX
CLKR

FSX
FSR

CLKS

Interrupt

Events To
DMA

To CPU

Figure 2.13 TMS320C55x McBSP functional block

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

64 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

As shown in Figure 2.13, the McBSP will send interrupt notification to the processor via XINT or RINT

interrupt, and send important events to the DMA controller via REVT, XEVT, REVTA, and XEVTA.

These pins are summarized as follows:

RINT – receive interrupt: The McBSP can send receive interrupt request to C55x according to a preselected

condition in the receiver of the McBSP.

XINT – transmit interrupt: The McBSP can send transmit interrupt request to C55x according to a

preselected condition in the transmitter of the McBSP.

REVT – receive synchronization event: This signal is sent to the DMA controller when a data is received

in the DRR.

XEVT – transmit synchronization event: This signal is sent to the DMA controller when the DXR is ready

to accept the next serial word data.

The C55x has three McBSPs: McBSP0, McBSP1, and McBSP2. Each McBSP has 31 registers.

Table 2.9 lists the registers for McBSP0 as an example.

Table 2.9 Registers and addresses for the McBSP0

Register Address Function description

DRR2 0 0x2800 McBSP0 data receive register 2

DRR1 0 0x2801 McBSP0 data receive register 1

DXR2 0 0x2802 McBSP0 data transmit register 2

DXR1 0 0x2803 McBSP0 data transmit register 1

SPCR2 0 0x2804 McBSP0 serial port control register 2

SPCR1 0 0x2805 McBSP0 serial port control register 1

RCR2 0 0x2806 McBSP0 receive control register 2

RCR1 0 0x2807 McBSP0 receive control register 1

XCR2 0 0x2808 McBSP0 transmit control register 2

XCR1 0 0x2809 McBSP0 transmit control register 1

SRGR2 0 0x280A McBSP0 sample rate generator register 2

SRGR1 0 0x280B McBSP0 sample rate generator register 1

MCR2 0 0x280C McBSP0 multichannel register 2

MCR1 0 0x280D McBSP0 multichannel register 1

RCERA 0 0x280E McBSP0 receive channel enable register partition A

RCERB 0 0x280F McBSP0 receive channel enable register partition B

XCERA 0 0x2810 McBSP0 transmit channel enable register partition A

XCERB 0 0x2811 McBSP0 transmit channel enable register partition B

PCR0 0x2812 McBSP0 pin control register

RCERC 0 0x2813 McBSP0 receive channel enable register partition C

RCERD 0 0x2814 McBSP0 receive channel enable register partition D

XCERC 0 0x2815 McBSP0 transmit channel enable register partition C

XCERD 0 0x2816 McBSP0 transmit channel enable register partition D

RCERE 0 0x2817 McBSP0 receive channel enable register partition E

RCERF 0 0x2818 McBSP0 receive channel enable register partition F

XCERE 0 0x2819 McBSP0 transmit channel enable register partition E

XCERF 0 0x281A McBSP0 transmit channel enable register partition F

RCERG 0 0x281B McBSP0 receive channel enable register partition G

RCERH 0 0x281C McBSP0 receive channel enable register partition H

XCERG 0 0x281D McBSP0 transmit channel enable register partition G

XCERH 0 0x281E McBSP0 transmit channel enable register partition H

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X ADDRESSING MODES 65

Table 2.10 Registers and addresses for clock generator and timers

Register Address Function description

Clock Generator Register

CLKMD 0x1C00 DMA global control register

Timer Registers

TIM0 0x1000 Timer0 count register

PRD0 0x1001 Timer0 period register

TCR0 0x1002 Timer0 timer control register

PRSC0 0x1003 Timer0 timer prescale register

TIM1 0x2400 Timer1 count register

PRD1 0x2401 Timer1 period register

TCR1 0x2402 Timer1 timer control register

PRS10 0x2403 Timer1 timer prescale register

2.3.5 Clock Generator and Timers

The C5510 has a clock generator and two general-purpose timers. The clock generator takes an input

clock signal from the CLKIN pin, and modifies this signal to generate the output clock signal for

processor, peripherals, and other modules inside the C55x. The output clock signal is called the DSP

(CPU) clock, which can be sent out via the CLKOUT pin. The clock generator consists of a DPLL circuit

for high precision clock signal. An important feature of the clock generator is its idle mode for power

conservation applications. The TMS320C55x has two general-purpose timers. Each timer has a dynamic

range of 20 bits. The registers for clock generator and timers are listed in Table 2.10.

2.3.6 General Purpose Input/Output Port

TMS320C55x has a GPIO port, which consists of two I/O port registers, an I/O direction register, and an

I/O data register. The I/O direction register controls the direction of a particular I/O pin. The C55x has

eight I/O pins. Each can be independently configured as input or output. At power up, all the I/O pins

are set as inputs. The I/O registers are listed in Table 2.11.

2.4 TMS320C55x Addressing Modes

The TMS320C55x can address 16 Mbytes of memory space using the following addressing modes:� direct addressing mode;� indirect addressing mode;� absolute addressing mode;

Table 2.11 C5510 GPIO registers

Register Address Function description

IODIR 0x3400 GPIO direction register

IODATA 0x3401 GPIO data register

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

66 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

Table 2.12 C55x mov instruction with different operand forms

Instruction Description

1. mov #k,dst Load the 16-bit signed constant k to the destination register

dst
2. mov src,dst Load the content of source register src to the destination

register dst
3. mov Smem,dst Load the content of memory location Smem to the destination

register dst
4. mov Xmem,Ymem,ACx The content of Xmem is loaded into the lower part of ACx,

while the content of Ymem is sign extended and loaded into

upper part of ACx
5. mov dbl(Lmem),pair(TAx) Load upper 16-bit data and lower 16-bit data from Lmem to

the TAx and TA(x+1), respectively

6. amov #k23,xdst Load the effective address of k23 (23-bit constant) into

extended destination register (xdst)

� MMR addressing mode;� register bits addressing mode; and� circular addressing mode.

To explain these different addressing modes, Table 2.12 lists the move (mov) instruction with different

syntaxes.

As illustrated in Table 2.12, each addressing mode uses one or more operands. Some of the operand

types are explained as follows:� Smem means a short data word (16-bit) from data memory, I/O memory, or MMRs.� Lmem means a long data word (32-bit) from either data memory space or MMRs.� Xmem and Ymem are used by an instruction to perform two 16-bit data memory accesses simul-

taneously.� src and dst are source and destination registers, respectively.� #k is a signed immediate constant; for example, #k16 is a 16-bit constant ranging from –32768 to

32767.� dbl is a memory qualifier for memory access for a long data word.� xdst is an extended register (23-bit).

2.4.1 Direct Addressing Modes

There are four types of direct addressing modes: data-page pointer (DP) direct, stack pointer (SP) direct,

register-bit direct, and peripheral data-page pointer (PDP) direct.

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X ADDRESSING MODES 67

DP (16bits)

@x (7bits)

DPH (7bits)

DP direct address (23bits)

+

XDP

Figure 2.14 Using the DP-direct addressing mode to access variable x

The DP-direct addressing mode uses the main data page specified by the 23-bit extended data-page

pointer (XDP). Figure 2.14 shows a generation of DP-direct address. The upper 7-bit DPH determines

the main data page (0-127), and the lower 16-bit DP defines the starting address in the data page selected

by the DPH. The instruction contains a 7-bit offset in the data page (@x) that directly points to the variable

x(Smem). The data-page registers DPH, DP, and XDP can be loaded by the mov instruction as

mov #k7,DPH ; Load DPH with a 7-bit constant k7
mov #k16,DP ; Load DP with a 16-bit constant k16

The first instruction loads the high portion of the extended data-page pointer, DPH, with a 7-bit constantk7

to set up the main data page. The second instruction initializes the starting address of the DP. Example 2.1

shows how to initialize the DPH and DP pointers.

Example 2.1: Instruction

mov #0x3,DPH

mov #0x0100,DP

DPH 0 DPH 03

DP 0000 DP 0100

Before instruction After instruction

The XDP also can be initialized in one instruction using a 23-bit constant as

amov #k23,XDP ; Load XDP with a 23-bit constant

The syntax used in the assembly code isamov #k23,xdst, where#k23 is a 23-bit address, the destination

xdst is an extended register. Example 2.2 initializes the XDP to data page 1 with starting address 0x4000.

Example 2.2: Instruction

amov #0x14000, XDP

DPH 0 DPH 01

DP 0000 DP 4000

Before instruction After instruction

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

68 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

PDP

Upper (9bits) Lower (7bits)

PDP-direct address (16bits)

@x (7bits)+

Figure 2.15 Using PDP-direct addressing mode to access variable x

The following code shows how to use DP-direct addressing mode:

X .set 0x1FFEF
mov# 0x1,DPH ; Load DPH with 1
mov# 0x0FFEF,DP ; Load DP with starting address
.dp X
mov# 0x5555,@X ; Store 0x5555 to memory location X
mov# 0xFFFF,@(X+5) ; Store 0xFFFF to memory location X+5

In this example, the symbol @ tells the assembler that this instruction uses the direct addressing mode.

The directive .dp indicates the base address of the variable X without using memory space.

The SP-direct addressing mode is similar to the DP-direct addressing mode. The 23-bit address can be

formed with the XSP in the same way as XDP. The upper 7 bits (SPH) select the main data page and the

lower 16 bits (SP) determine the starting address. The 7-bit stack offset is contained in the instruction.

When SPH = 0 (main page 0), the stack must not use the reserved memory space for MMRs from address

0 to 0x5F.

The I/O space addressing mode only has 16-bit addressing range. The 512 peripheral data pages are

selected by the upper 9 bits of the PDP register. The 7-bit offset in the lower portion of the PDP register

determines the location inside the selected peripheral data page as illustrated in Figure 2.15.

2.4.2 Indirect Addressing Modes

There are four types of indirect addressing modes. The AR-indirect mode uses one of the eight aux-

iliary registers as a pointer to data memory, I/O space, and MMRs. The dual AR indirect mode uses

two auxiliary registers for dual data memory accesses. The CDP indirect mode uses the CDP for point-

ing to coefficients in data memory space. The coefficient-dual-AR indirect mode uses the CDP and

the dual AR indirect modes for generating three addresses. The indirect addressing is the most fre-

quently used addressing mode. It provides powerful pointer update and modification schemes as listed in

Table 2.13.

The AR-indirect addressing mode uses auxiliary registers (AR0–AR7) to point to data memory space.

The upper 7 bits of the XAR point to the main data page while the lower 16 bits point to a data location in

that page. Since the I/O-space address is limited to a 16-bit range, the upper portion of the XAR must be

set to zero when accessing I/O space. The maximum block size (32 K words) of the indirect addressing

mode is limited by using 16-bit auxiliary registers. Example 2.3 uses the indirect addressing mode to

copy the data stored in data memory, pointed by AR0, to the destination register AC0.

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X ADDRESSING MODES 69

Table 2.13 AR and CDP indirect addressing pointer modification schemes

Operand ARn/CDP pointer modifications

*ARn or *CDP ARn (or CDP) is not modified

*ARn± or *CDP± ARn (or CDP) is modified after the operation by:

±1 for 16-bit operation (ARn=ARn ±1)

±2 for 32-bit operation (ARn=ARn±2)

*ARn(#k16)
or *CDP(#k16)

ARn (or CDP) is not modified

The signed 16-bit constant k16 is used as the offset from the base

pointer ARn (or CDP)

*+ARn(#k16) ARn (or CDP) is modified before the operation

or *+CDP(#k16) The signed 16-bit constant k16 is added as the offset to the base

pointer ARn (or CDP) before generating new address

*(ARn±T0/T1) ARn is modified after the operation by ±16-bit content in T0 or

T1, (ARn=ARn±T0/T1)

*ARn(T0/T1) ARn is not modified

T0 or T1 is used as the offset for the base pointer ARn

Example 2.3: Instruction

mov *AR0, AC0

AC0 00 0FAB 8678 AC0 00 0000 12AB

AR0 0100 AR0 0100

Data memory Data memory

0x100 12AB 0x100 12AB

Before instruction After instruction

The dual AR indirect addressing mode allows two data memory accesses through the auxiliary registers.

It can access two 16-bit data in memory using the syntax

mov Xmem,Ymem,ACx

given in Table 2.12. Example 2.4 performs two 16-bit data loads with AR2 and AR3 as the data pointers

to Xmem and Ymem, respectively. The data pointed at by AR3 is sign extended to 24 bits, loaded into the

upper portion of the destination accumulator AC0(39:16), and the data pointed at by AR2 is loaded into

the lower portion of AC0(15:0). The data pointers AR2 and AR3 are also updated.

Example 2.4: Instruction

mov *AR2+, *AR3-, AC0

AC0 FF FFAB 8678 AC0 00 3333 5555

AR2 0100 AR2 0101

AR3 0300 AR3 02FF

Data memory Data memory

0x100 5555 0x100 5555

0x300 3333 0x300 3333

Before instruction After instruction

The extended coefficient data pointer (XCDP) is the concatenation of the CDPH (the upper 7 bits)

and the CDP (the lower 16 bits). The CDP-indirect addressing mode uses the upper 7 bits to define the

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

70 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

main data page and the lower 16 bits to point to the memory location within the specified data page.

Example 2.5 uses the CDP-indirect addressing mode where CDP contains the address of the coefficient

in data memory. This instruction first increases the CDP pointer by 2, then loads a coefficient pointed by

the updated coefficient pointer to the destination register AC3.

Example 2.5: Instruction

mov *+CDP (#2), AC3

AC3 00 0FAB EF45 AC3 00 0000 5631

CDP 0400 CDP 0402

Data memory Data memory

0x402 5631 0x402 5631

Before instruction After instruction

2.4.3 Absolute Addressing Modes

The memory can also be addressed using either k16 or k23 absolute addressing mode. The k23 absolute

mode specifies an address as a 23-bit unsigned constant. Example 2.6 shows an example of loading the

data content at address 0x1234 on main data page 1 into the temporary register T2, where the symbol

*() represents the absolute addressing mode.

Example 2.6: Instruction

mov *(#x011234), T2

T2 0000 T2 FFFF

Data memory Data memory

0x01 1234 FFFF 0x01 1234 FFFF

Before instruction After instruction

The k16 absolute addressing mode uses the operand *abs(#k16), where k16 is a 16-bit unsigned

constant. In this mode, the DPH (7-bit) is forced to zero and concatenated with the unsigned constant

k16 to form a 23-bit data space memory address. The I/O absolute addressing mode uses the operand

port(#k16). The absolute address can also be the variable name such as the variable x in the following

example:

mov *(x),AC0

This instruction loads the accumulator AC0 with a content of variable x. When using absolute addressing

mode, we do not need to worry about the DP. The drawback is that it needs more code space to represent

the 23-bit addresses.

2.4.4 Memory Mapped Register Addressing Mode

The absolute, direct, and indirect addressing modes can be used to address MMRs, which are located in

the data memory from address 0x0 to 0x5F on the main data page 0 as shown in Figure 2.6. To access

MMRs using the k16 absolute operand, the DPH must be set to zero. Example 2.7 uses the absolute

addressing mode to load the 16-bit content of AR2 into the temporary register T2.

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X ADDRESSING MODES 71

Example 2.7: Instruction

mov *abs16(#AR2), T2

AR2 1357 AR2 1357

T2 0000 T2 1357

Before instruction After instruction

For the MMR-direct addressing mode, the DP-direct addressing mode must be selected. Example 2.8

uses direct addressing mode to load the content of the lower portion of the accumulator AC0 (15:0) into

the temporary register T0. When the mmap() qualifier is used for the MMR-direct addressing mode, it

forces the data-address generator to access the main data page 0. That is, XDP = 0.

Example 2.8: Instruction

mov mmap16(@AC0L), T0

AC0 00 12DF 0202 AC0 00 12DF 0202

T0 0000 T0 0202

Before instruction After instruction

Accessing the MMRs using indirect addressing mode is the same as addressing the data memory

space. Since the MMRs are located in data page 0, the XAR and XCDP must be initialized to page 0

by setting the upper 7 bits to zero. The following instructions load the content of AC0 into T1 and T2

registers:

amov #AC0H,XAR6

mov *AR6-,T2

mov *AR6+,T1

In this example, the first instruction loads the effective address of the upper portion of the accumulator

AC0 (AC0H, located at address 0x9 on page 0) to XAR6. That is, XAR6 = 0x000009. The second

instruction uses AR6 as a pointer to copy the content of AC0H into the T2 register, and then the pointer

was decremented by 1 to point to the lower portion of AC0 (AC0L, located at address 0x8). The third

instruction copies the content of AC0L into the register T1 and modifies AR6 to point to AC0H again.

2.4.5 Register Bits Addressing Mode

Both direct and indirect addressing modes can be used to address a bit or a pair of bits in a specific

register. The direct addressing mode uses a bit offset to access a particular register’s bit. The offset is the

number of bits counting from the LSB. The instruction of register-bit direct addressing mode is shown

in Example 2.9. The bit test instruction btstp will update the test condition bits (TC1 and TC2) of the

status register ST0.

Example 2.9: Instruction

btstp @30, AC1

AC1 00 7ADF 3D05 AC1 00 7ADF 3D05

TC1 0 TC1 1

TC2 0 TC2 0

Before instruction After instruction

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

72 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

We can also use the indirect addressing modes to specify register bit(s) as follows:

mov# 2,AR4 ; AR4 contains the bit offset 2
bset* AR4,AC3 ; Set the AC3 bit pointed by AR4 to 1
btstp* AR4,AC1 ; Test AC1 bit-pair pointed by AR4

The register bits addressing mode supports only the bit test, bit set, bit clear, and bit complement instruc-

tions in conjunction with the accumulators (AC0–AC3), auxiliary registers (AR0–AR7), and temporary

registers (T0–T3).

2.4.6 Circular Addressing Mode

Circular addressing mode updates data pointers in modulo fashion for accessing data buffers continuously

without resetting the pointers. When the pointer reaches the end of the buffer, it will wrap back to the

beginning of the buffer for the next iteration. Auxiliary registers (AR0–AR7) and the CDP can be used

as circular pointers in indirect addressing mode. The following steps are used to set up circular buffers:

1. Initialize the most significant 7 bits of XAR (ARnH or CDPH) to select the main data page for a

circular buffer. For example, mov #k7,AR2H.

2. Initialize the 16-bit circular pointer (ARn or CDP). The pointer can point to any memory location

within the buffer. For example, mov #k16,AR2. The initialization of the address pointers in the

examples of steps 1 and 2 can be combined using the single instruction: amov #k23,XAR2.

3. Initialize the 16-bit circular buffer starting address register (BSA01, BSA23, BSA45, BSA67, or

BSAC) associated with the auxiliary registers. For example, if AR2 (or AR3) is used as the circu-

lar pointer, we have to use BSA23 and initialize it using mov #k16,BSA23. The main data page

concatenated with the content of this register defines the 23-bit starting address of the circular buffer.

4. Initialize the data buffer size register (BK03, BK47, or BKC). When using AR0–AR3 (or AR4–AR7)

as the circular pointer, BK03 (or BK47) should be initialized. The instruction mov #16,BK03 sets

up a circular buffer of 16 elements for the auxiliary registers AR0–AR3.

5. Enable the circular buffer by setting the appropriate bit in the status register ST2. For example, the

instruction bset AR2LC enables AR2 for circular addressing.

The following example demonstrates how to initialize a circular buffer COEFF[4] with four integers,

and how to use the circular addressing mode to access data in the buffer:

amov#COEFF,XAR2 ; Main data page for COEFF[4]
mov#COEFF,BSA23 ; Buffer base address is COEFF[0]
mov#0x4,BK03 ; Set buffer size of 4 words
mov#2,AR2 ; AR2 points to COEFF[2]
bset AR2LC ; AR2 is configured as circular pointer
mov*AR2+,T0 ; T0 is loaded with COEFF[2]
mov*AR2+,T1 ; T1 is loaded with COEFF[3]
mov*AR2+,T2 ; T2 is loaded with COEFF[0]
mov*AR2+,T3 ; T3 is loaded with COEFF[1]

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

PIPELINE AND PARALLELISM 73

Since the circular addressing uses the indirect addressing modes, the circular pointers can be updated

using the modifications listed in Table 2.13. The applications of using circular buffers for FIR filtering

will be introduced in Chapter 4.

2.5 Pipeline and Parallelism

The pipeline technique has been widely used to improve DSP processors’ performance. The pipeline

execution breaks a sequence of operations into smaller segments and efficiently executes these smaller

pieces in parallel to reduce the overall execution time.

2.5.1 TMS320C55x Pipeline

The C55x has two independent pipelines as illustrated in Figure 2.16: the program fetch pipeline and the

program execution pipeline. The numbers on the top of the diagram represent the CPU clock cycle. The

program fetch pipeline consists of the following three stages:

PA (program address): Instruction unit places the program address on the PAB.

PM (program memory address stable): The C55x requires one clock cycle for its program memory

address bus to be stabilized before that memory can be read.

PB (program fetch from program data bus): Four bytes of the program code are fetched from the program

memory via the 32-bit PB. The code is placed into the instruction buffer queue (IBQ).

At the same time, the seven-stage execution pipeline independently performs the sequence of fetch,

decode, address, access, read, and execution. The C55x execution pipeline stages are summarized as

follows:

F (fetch): An instruction is fetched from the IBQ. The size of the instruction varies from 1 byte up to

6 bytes.

D (decode): Decode logic decodes these bytes as an instruction or a parallel instruction pair. The decode

logic will dispatch the instruction to the PU, AU, or DU.

IBQ

F D AD AC1AC2 R X

F D AD AC1AC2 R X

F D AD AC1AC2 R X

F D AD AC1AC2 R X

F D AD AC1AC2 R X

F D AD AC1AC2 R X

F D AD AC1AC2 R X

F D AD AC1AC2 R X

F D AD AC1AC2 R X

PA PM PB

PA PM PB

PA PM PB

PA PM PB

1 2 3 4 5

1 2 3 4 5

6 7 8 9 10 11 12 13 14 15

Execution pipeline:
F −Fetch from IBQ
D−Decode
AD−Address
AC1−Access 1
AC2−Access 2
R−Read
X−Execute

Fetch pipeline:
PA−P-address
PM−P-memory
PB−Fetch to IBQ

64x8 1−6bytes4bytes

Figure 2.16 The C55x fetch and execution pipelines

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

74 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

AD (address): AU calculates data addresses using its data-address generation unit, modifies pointers if

required, and computes the program space address for PC-relative branching instructions.

AC (access cycle 1 and 2): The first cycle is used to send the addresses to the data-read address

buses (BAB, CAB, and DAB) for read operations, or transfer an operand to the processor via the

CB. The second cycle is inserted to allow the address lines to be stabilized before the memory is

read.

R (read): Data and operands are transferred to the processor via the CB for the Ymem operand, the BB for

the Cmem operand, and the DB for the Smem or Xmem operands. For reading the Lmem operand, both the

CB and the DB are used. The AU will generate the address for the operand write and send the address

to the data-write address buses (EAB and FAB).

X (execute): Most data processing operations are done in this stage. The ALU inside the AU as well as

the ALU and dual MAC inside the DU perform data processing, store an operand via the FB, or store

a long operand via the EB and FB.

Figure 2.16 shows that the execution pipeline will be full after seven cycles, and every cycle that follows

will complete the execution of one instruction. If the pipeline is always full, this technique increases the

processing speed seven times. However, when a disturbing execution such as a branch instruction occurs,

it breaks the sequential pipeline. Under such circumstances, the pipeline will be flushed and will need

to be refilled. This is called pipeline breakdown. The use of IBQ can minimize the impact of pipeline

breakdown. Proper use of conditional execution instructions to replace branch instructions can also reduce

the pipeline breakdown.

2.5.2 Parallel Execution

The TMS320C55x uses multiple-bus architecture, dual MAC units, and separated PU, AU and DU for

parallel execution. The C55x supports two types of parallel processing: implied (built-in) and explicit

(user-built). The implied parallel instructions use the parallel columns symbol ‘::’ to separate the pair

of instructions that will be processed in parallel. The explicit parallel instructions use the parallel bar

symbol ‘||’ to indicate the pair of parallel instructions. These two types of parallel instructions can be used

together to form a combined parallel instruction. The following examples show the user-built, built-in,

and combined parallel instructions that can be carried out in just one clock cycle.

User-built:

mpym *AR1+,*AR2+,AC0 ; User-built parallel instruction
|| and AR4,T1 ; using DU and AU

Built-in:

mac *AR2-,*CDP-,AC0 ; Built-in parallel instruction
:: mac *AR3+,*CDP-,AC1 ; using dual-MAC units

Built-in and user-built combination:

mpy *AR2+,*CDP+,AC0 ; Combined parallel instruction
:: mpy *AR3+,*CDP+,AC1 ; using dual-MAC units and PU
|| rpt #15

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

PIPELINE AND PARALLELISM 75

Table 2.14 Partial list of the C55x registers and buses

PU registers/buses AU registers/buses DU registers/buses

RPTC T0, T1, T2, T3 AC0, AC1, AC2, AC3

BRC0, BRC1 AR0, AR1, AR2, AR3, TRN0, TRN1

RSA0, RSA1 AR4, AR5, AR6, AR7

REA0, REA1 CDP

BSA01, BSA23, BSA45,

BSA67

BK01, BK23, BK45, BK67

Read buses: CB, DB Read buses: CB, DB Read buses: BB, CB, DB

Write buses: EB, FB Write buses: EB, FB Write buses: EB, FB

Some of the restrictions for using parallel instructions are summarized as follows:� For either the user-built or the built-in parallelism, only two instructions can be executed in parallel,

and these two instructions must not exceed 6 bytes.� Not all instructions can be used for parallel operations.� When addressing memory space, only the indirect addressing mode is allowed.� Parallelism is allowed between and within execution units, but there cannot be any hardware resources

conflicts between units, buses, or within the unit itself.

There are several restrictions that define the parallelism within each unit when applying parallel operations

in assembly code. The detailed descriptions are given in the TMS320C55x DSP Mnemonic Instruction

Set Reference Guide.

The PU, AU, and DU can be involved in parallel operations. Understanding the register files and buses

in each of these units will help to be aware of the potential conflicts when using the parallel instructions.

Table 2.14 lists some of the registers and buses in PU, AU, and DU.

The parallel instructions used in the following example are incorrect because the second instruction

uses the direct addressing mode:

mov *AR2,AC0
|| mov T1,@x

We can correct this problem by replacing the direct addressing mode, @x, with an indirect addressing

mode, *AR1, so both memory accesses are using indirect addressing mode as follows:

mov *AR2,AC0
|| mov T1,*AR1

Consider the following example where the first instruction loads the content of AC0 that resides inside

the DU to the auxiliary register AR2 inside the AU. The second instruction attempts to use the content

of AC3 as the program address for a function call. Because there is only one link between AU and DU,

when both instructions try to access the accumulators in the DU via the single link, it creates a conflict.

mov AC0,AR2
|| call AC3

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

76 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

To solve this problem, we can change the subroutine call from call by accumulator to call by address as

follows:

mov AC0,AR2
|| call my_func

This is because the instruction call my_func uses only the PU.

The coefficient-dual-AR indirect addressing mode is used to perform operations with dual-AR indirect

addressing mode. The coefficient indirect addressing mode supports three simultaneous memory accesses

(Xmem, Ymem, and Cmem). The FIR filter (will be introduced in Chapter 4) is one of the applications that

can effectively use coefficient indirect addressing mode. The following code is an example of using the

coefficient indirect addressing mode:

mpy *AR2+,*CDP+,AC2 ; AR1 pointer to data x1
:: mpy *AR3+,*CDP+,AC3 ; AR2 pointer to data x2
| | rpt #6 ; Repeat the following 7 times

mac *AR2+,*CDP+,AC2 ; AC2 has accumulated result
:: mac *AR3+,*CDP+,AC3 ; AC3 has another result

In this example, the memory buffers Xmem and Ymem are pointed at by AR2 and AR3, respectively, while

the coefficient array is pointed at by CDP. The multiplication results are added with the contents in the

accumulators AC2 and AC3.

2.6 TMS320C55x Instruction Set

In this section, we will introduce more C55x instructions for DSP applications. In general, we can divide

the instruction set into four categories: arithmetic, logic and bit manipulation, move (load and store), and

program flow control instructions.

2.6.1 Arithmetic Instructions

Arithmetic instructions include addition (add), subtraction (sub), and multiplication (mpy). The combina-

tion of these basic operations produces powerful subset of instructions such as the multiply–accumulation

(mac) and multiply–subtraction (mas) instructions. Most arithmetic operations can be executed condition-

ally. The C55x also supports extended precision arithmetic such as add-with-carry, subtract-with-borrow,

signed/signed, signed/unsigned, and unsigned/unsigned instructions. In Example 2.10, the instruction

mpym multiplies the data pointed by AR1 and CDP, stores the product in the accumulator AC0, and

updates AR1 and CDP after the multiplication.

Example 2.10: Instruction

mpym *AR1+, *CDP−, AC0

AC0 FF FFFF FF00 AC0 00 0000 0020

FRCT 0 FRCT 0

AR1 02E0 AR1 02E1

CDP 0400 CDP 03FF

Data memory Data memory

0x2E0 0002 0x2E0 0002

0x400 0010 0x400 0010

Before instruction After instruction

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X INSTRUCTION SET 77

In Example 2.11, the macmr40 instruction performs MAC operation using AR1 and AR2 as data

pointers. At the same time, the instruction also carries out the following operations:� The keyword ‘r’ produces a rounded result in the higher portion of the accumulator AC3. After

rounding, the lower portion of AC3(15:0) is cleared.� 40-bit overflow detection is enabled by the keyword ‘40’. If overflow occurs, the result in accumulator

AC3 will be saturated to a 40-bit maximum value.� The option ‘T3=*AR1+’ loads the data pointed at by AR1 into T3.� Finally, AR1 and AR2 are incremented by 1 to point to the next data memory location.

Example 2.11: Instruction

macmr40 T3=*AR1+, *AR2+, AC3

AC3 00 0000 0020 AC3 00 235B 0000

FRCT 1 FRCT 1

T3 FFF0 T3 3456

AR1 0200 AR1 0201

AR2 0380 AR2 0381

Data memory Data memory

0x200 3456 0x200 3456

0x380 5678 0x380 5678

Before instruction After instruction

2.6.2 Logic and Bit Manipulation Instructions

Logic operation instructions such as and, or, not, and xor (exclusive-OR) on data values are widely used

in decision-making and execution-flow control. They are also found in applications such as error correc-

tion coding in data communications, which will be introduced in Chapter 14. For example, the instruction

and #0xf,AC0

clears all upper bits in the accumulator AC0 but not the four LSBs.

Example 2.12: Instruction

and #0xf,AC0

AC0 00 1234 5678 AC0 00 0000 0008

Before instruction After instruction

The bit manipulation instructions act on an individual bit or a pair of bits of a register or data memory.

These instructions include bit clear, bit set, and bit test to a specified bit or a bit pair. Similar to logic opera-

tions, the bit manipulation instructions are often used with logic operations in supporting decision-making

processes. In Example 2.13, the bit-clear instruction clears the carry bit (bit 11) of the status register ST0.

Example 2.13: Instruction

blcr #11, ST0

ST0 0800 ST0 0000

Before instruction After instruction

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

78 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

2.6.3 Move Instruction

The move instruction copies data values between registers, memory locations, register to memory, or

memory to register. Example 2.14 initializes the upper 16 bits of accumulator AC1 with a constant and

clears the lower portion of the AC1. We can use the instruction

mov #k<<16,AC1

where the constant k is shifted left by 16 bits first and then loaded into the upper portion of the accumulator

AC1 (31:16), and the lower portion of the accumulator AC1 (15:0) is zero filled. The 16-bit constant that

follows the # can be any 16-bit signed number.

Example 2.14: Instruction

mov #5<<16,AC1

AC1 00 0011 0800 AC1 00 0005 0000

Before instruction After instruction

A more complicated instruction given in Example 2.15 completes the following operations in one

clock cycle:� The unsigned data content in AC0 is shifted left according to the content in T2.� The upper portion of the AC0 (31:16) is rounded.� The data value in AC0 may be saturated if the left-shift or the rounding process causes the result in

AC0 to overflow.� The final result, after left shifting, rounding, and possible saturation, is stored into the data memory

pointed at by the pointer AR1 as an unsigned value.� Pointer AR1 is automatically incremented by 1.

Example 2.15: Instruction

mov uns (rnd(HI(satuate(AC0<<T2)))), *AR1+
AC0 00 0FAB 8678 AC0 00 0FAB 8678

AR1 0x100 AR1 0x101

T2 0x2 T2 0x2

Data memory Data memory

0x100 1234 0x100 3EAE

Before instruction After instruction

2.6.4 Program Flow Control Instructions

The program flow control instructions determine the execution flow of the program, including branching

(b), subroutine call (call), loop operation (rptb), return to caller (ret), etc. These instructions can

be either conditionally or unconditionally executed. Conditional call (callcc) along with conditional

branch (bcc) and conditional return (retcc) can be used to control the program flow according to certain

conditions. For example,

callcc my_routine, TC1

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X INSTRUCTION SET 79

is the conditional instruction that will call the subroutine my_routine only if the test control bit TC1 of

the status register ST0 is set.

The conditional execution instruction xcc can be implemented in either conditional execution or partial

conditional execution. In Example 2.16, the conditional execution instruction tests the TC1 bit. If TC1 is

set, the following instruction mov *AR1+,AC0 will be executed, and both AC0 and AR1 are updated. If

the condition is false, AC0 and AR1 will not be changed. Conditional execution instruction xcc allows

conditional execution of one instruction or two paralleled instructions. The label is used for readability,

especially when two parallel instructions are used.

Example 2.16: Instruction

xcc label, TC1

mov *AR1+, AC0

label

TC1 = 1 TC1 = 0

AC0 00 0000 0000 AC0 00 0000 55AA AC0 00 0000 0000 AC0 00 0000 0000

AR1 0100 AR1 0101 AR1 0100 AR1 0101

Data memory Data memory Data memory Data memory

0x100 55AA 0x100 55AA 0x100 55AA 0x100 55AA

Before instruction After instruction Before instruction After instruction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

In addition to conditional execution, the C55x also provides the capability of partial conditional

execution of an instruction. An example of partial conditional execution is given in Example 2.17. When

the condition is true, both AR1 and AC0 will be updated. However, if the condition is false, the execution

phase of the pipeline will not be carried out. Since the first operand (the address pointer AR1) is updated

in the read phase of the pipeline, AR1 will be updated whether or not the condition is true while the

accumulator AC0 will remain unchanged at the execution phase. That is, the instruction is only partially

executed.

Example 2.17: Instruction

xccpart label, TC1

mov *AR1+, AC0

label

TC1 = 1 TC1 = 0

AC0 00 0000 0000 AC0 00 0000 55AA AC0 00 0000 0000 AC0 00 0000 0000

AR1 0100 AR1 0101 AR1 0100 AR1 0101

Data memory Data memory Data memory Data memory

0x100 55AA 0x100 55AA 0x100 55AA 0x100 55AA

Before instruction After instruction Before instruction After instruction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Many DSP applications, such as filtering, require repeated executions of instructions. These arithmetic

operations may be located inside nested loops. If the number of instructions in the inner loop is small,

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

80 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

the percentage of overhead for loop control may be very high compared with the instructions used in the

inner loop. The loop-control instructions, such as testing and updating the loop counter(s), pointer(s),

and branches back to the beginning of the loop, impose a heavy overhead for any tight loop processing.

To minimize the overhead, the C55x provides built-in hardware for zero-overhead loop operations.

The single-repeat instruction (rpt) repeats the following single-cycle instruction or two single-cycle

instructions that can be executed in parallel. For example,

rpt #N-1 ; Repeat next instruction N times
mov *AR2+,*AR3+

The immediate number, N-1, is loaded into the single-repeat counter (RPTC) by the rpt instruction. It

allows the following instruction, mov *AR2+,*AR3+, to be executed N times.

The block-repeat instruction (rptb) forms a loop that repeats a block of instructions. It supports a

nested loop with an inner loop being placed inside the outer loop. Block-repeat operations use block-repeat

counters BRC0 and BRC1. For example,

mov #N-1,BRC0 ; Repeat outer loop N times
mov #M-1,BRC1 ; Repeat inner loop M times
rptb outloop-1 ; Repeat outer loop up to outloop
mpy *AR1+,*CDP+,AC0
mpy *AR2+,*CDP+,AC1
rptb inloop-1 ; Repeat inner loop up to inloop
mac *AR1+,*CDP+,AC0
mac *AR2+,*CDP+,AC1

inloop ; End of inner loop
mov AC0,*AR3+ ; Save result in AC0
mov AC1,*AR4+ ; Save result in AC1

outloop ; End of outer loop

This example uses two block-repeat instructions to control nested repetitive operations. The following

block-repeat structure

rptb label_name-1
(a block of instructions)

label_name

executes a block of instructions between the rptb instruction and the end label label_name. The

maximum size of code that can be used inside a block-repeat loop is limited to 64 Kbytes, and the

maximum number of times a loop can be repeated is limited to 65 536 (= 216) due to the 16-bit block-

repeat counters. Because of the pipeline scheme, the minimum cycles within a block-repeat loop are two.

For a single loop, the BRC0 should be used as the repeat counter. When implementing nested loops, the

repeat counter BRC1 must be used for the inner-loop counter while BRC0 for the outer-loop counter.

Since repeat counter BRC1 will be reloaded each time when it reaches zero, it only needs to be initialized

once.

The local block-repeat structure is illustrated as follows:

rptblocal label_name-1
(Instructions of 56 bytes or less)

label_name

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X INSTRUCTION SET 81

This has the similar structure as the previous block-repeat loop, but is more efficient because the loop

code is placed inside the IBQ. Unlike the previous block-repeat loop, the local block-repeat loop fetches

instructions from the memory once only. These instructions are stored in the IU and are used throughout

the entire looping operation. The size of IBQ limits the size of local-repeat loop to 56 bytes or less.

Finally, we list some basic C55x mnemonic instructions in Table 2.15. The listed examples are just a

small set of the rich C55x assembly instructions, especially the conditional instructions. The complete

list of the mnemonic instruction set is provided by the TMS320C55x DSP mnemonic Instruction Set

Reference Guide.

Table 2.15 TMS320C55x instruction set

Syntax Meaning Example

aadd Modify AR aadd AR0, AR1
abdst Absolute distance abdst *AR0+, *AR1+, AC0, AC1
abs Absolute value abs AC0, AC1
add Addition add uns(*AR4), AC1, AC0
addsub Addition and subtraction addsub *AR3, AC1, TC2, AC0
amov Modify AR amov AR0, AR1
and Bitwise AND and AC0<#16, AC1
asub Modify AR asub AR0, AR1
b Branch bcc AC0
bclr Bit field clear bclr AC2, *AR2
bcnt Bit filed counting bcnt AC1, AC@, TC1, T1
bfxpa Bit filed expand bfxpa #0x4022, AC0, T0
bfxtr Bit field extract bfxtr #0x2204, AC0, T0
bnot Bit complement bnot AC0, *AR3
band Bit field comparison band *AR0, #0x0040, TC1
bset Bit set bset INTM
btst Bit test btst AC0, *AR0, TC2
btstclr Bit test and clear btstset #0xA, *AR1, TC0
btstset Bit test and set btstset #0x8, *AR3, TC1
call Function call call AC1
delay Memory delay delay *AR2+
cmp Compare cmp *AR1+ == #0x200, TC1
firsadd FIR symmetric add firsadd *AR0, *AR1, *CDP, AC0, AC1
firssub FIR symmetric sub firssub *AR0, *AR1, *CDP, AC0, AC1
idle Force DSP to idle idle
intr Software interrupt intr #3
lms Least mean square lms *AR0+, *AR1+, AC0, AC1
mant Normalization mant AC0 ::
nexp AC0, T1
mac Multiply–accumulate macr *AR2, *CDP, AC0

:: macr *AR3,
*CDP, AC1

mack Multiply–accumulate mack T0, #0xff00, AC0, AC1
mar Modify AR register amar *AR0+, *AR1-, *CDP
mas Multiply–subtraction mas uns(*AR2), uns(*CDP), AC0
max Maximum value max AC0, AC1
maxdiff Compare and select maximum maxdiff AC0, AC1, AC2, AC1
min Minimum value min AC1, T0
mindiff Compare and select minimum mindiff AC0, AC1, AC2, AC1
mov Move data mov *AR3<<T0, AC0

continues overleaf

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

82 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

Table 2.15 (continued)

Syntax Meaning Example

mpy Multiply mpy *AR2, *CDP, AC0
:: mpy *AR3, *CDP, AC1

mpyk Multiply mpyk #-54, AC0, AC1
neg Negate neg AC0, AC1
not Bitwise complement not AC0, AC1
or Bitwise OR or AC0, AC1
pop POP from stack popboth AR5
psh PSH to stack psh AC0
reset Software reset reset
ret Return retcc
reti Return from interrupt reti
rol Rotate left rol CARRY, AC1, TC2, AC1
ror Rotate right ror TC2, AC0, TC2, AC1
round Rounding round AC0, AC2
rpt Repeat rpt #15
rptb Repeat block rptblocal label-1
sat Saturate sat AC0, AC1
sftl Logic shift sftl AC2, #-1
sfts Signed shift sfts AC0, T1, AC1
sqr Square sqr AC1, AC0
sqdst Square distance sqdst *AR0, *AR1, AC0, AC1
sub Subtraction sub dual(*AR4), AC0, AC2
subadd Subtraction and addition subadd T0, *AR0+, AC0
swap Swap register swap AR4, AR5
trap Software trap trap #5
xcc Execute conditionally xcc *AR0 != #0

add *AR2+, AC0
xor Bitwise XOR xor AC0, AC1

2.7 TMS320C55x Assembly Language Programming

We will introduce assembly programming in this section. The C55x assembly language source files

usually contain assembler directives, macro directives, and assembly instructions.

2.7.1 Assembly Directives

Assembly directives control assembly processes such as the source file listing format, data alignment,

and section contents. They also enter data to the program, initialize memory, define global variables, set

conditional assembly blocks, and reserve memory space for code and data. Some commonly used C55x

assembly directives are described in this section.

The .bss directive reserves uninitialized memory for data variables defined in the .bss section. It is

often used to allocate data into RAM for run-time variables such as I/O buffers. For example,

.bss xn_buffer,size_in_words

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X ASSEMBLY LANGUAGE PROGRAMMING 83

where the xn_buffer points to the first location of the reserved memory space, and the size_in_words

specifies the number of words to be reserved in the .bss section. If we do not specify names for

uninitialized data sections, the assembler will put all the uninitialized data into the .bss section, which

is word addressable.

The .data directive tells the assembler to begin assembling the source code into the .data section,

which usually contains data tables or preinitialized data such as a sine table. The .data section is word

addressable.

The .sect directive defines a code or data section and tells the assembler to begin assembling source

code or data into that section. It is often used to divide long programs into logical partitions. It can separate

subroutines from the main program, or separate constants that belong to different tasks. For example,

.sect "user_section"

assigns the code into the user-defined section called user_section. Code sections from different source

files with the same section name are placed together.

Similar to the .bss directive, the .usect directive reserves memory space in an uninitialized section. It

places data into user-defined sections. It is often used to divide large data sections into logical partitions,

such as separating the transmitter variables from the receiver variables. The syntax for the .usect

directive is

symbol .usect "section_name", size_in_words

where symbol is the variable, or the starting address of a data array, which will be placed into the section

named section_name.

The .text directive tells the assembler to begin assembling source code into the .text section, which

is the default section for program code. If we do not specify a code section, the assembler will put all the

programs into the .text section.

The .int (or .word) directive places one or more 16-bit integer values into consecutive words in the

current memory section. This allows users to initialize memory with constants. For example,

data1 .word 0x1234
data2 .int 1010111b

In these examples, data1 is initialized to the hexadecimal number 0x1234 (decimal number 4660),

while data2 is initialized to the binary number 1010111b (decimal 87).

The .set (or .equ) directive assigns values to symbols. This type of symbols is known as assembly

time constants. These symbols can then be used by source statements in the same manner as a numeric

constant. The .set directive has the form

symbol .set value

where the symbol must appear in the first column. This equates the constant value to the symbol.

The symbolic name used in the program will be replaced with the constant value by the assembler

during assembly time, thus allowing programmers to write more readable programs. The .set and .equ

directives can be used interchangeably.

The .global (.def or .ref) directive makes the symbols global to the external functions. The

.def directive indicates a defined symbol that is given in the current file and known to other external

files. The .ref directive references an external defined symbol that is defined in another file. The .def

directive has the form

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

84 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

.def symbol_name

The symbol_name can be a function name or a variable name that is defined in this file and can be refer-

enced by other functions in different files. The .global directive can be interchanged with either .def

or .ref directive.

The .include (or .copy) directive reads source file from another file. The .include directive has

the form

.include "file_name"

The file_name is used to tell the assembler which file to be read in as part of the source file.

2.7.2 Assembly Statement Syntax

The assembly statements may be separated into four ordered fields. The basic syntax for a C55x assembly

statement is

[label][:] mnemonic [operand list] [;comment]

The elements inside the brackets are optional. Statements must begin with a label, blank, asterisk, or

semicolon. Each field must be separated by at least one blank. For ease of reading and maintenance, it is

strongly recommended that we use meaningful mnemonics for labels, variables, and subroutine names.

An example of C55x assembly statement is given in Table 2.16. The four ordered fields used in assembly

program are explained as follows.

The label field can contain up to 32 alphanumeric characters (A–Z, a–z, 0–9, _, and $). It associates

a symbolic address with a unique program location. The line that is labeled in the assembly program

can then be referenced by the defined symbolic name. This is useful for modular programming and

branch instructions. Labels are optional but, if used, they must begin in the first column. Labels are case

sensitive and must start with an alphabetic letter or underscore. In the example depicted in Table 2.16,

the symbol start is a label in the program’s text section and is placed in the first column. The symbol

start is defined as a global function entry point. Functions in other files are able to reference it. The

complex_data_loop symbol is another label in the text section. This is a local label for setting up

the block-repeat loop by the assembler. The symbol stk_size is a label used to indicate that the .set

directive equates the constant 0x100 to be used as the stack size to allocate memory for the stack.

The mnemonic field can contain a mnemonic instruction, assembler directive, macro directive, or

macro call. Note, the mnemonic field cannot start in the first column; otherwise, it would be interpreted

as a label. In Table 2.16, mnemonic instructions bset and bclr are used to configure the C55x processor

status registers.

The operand field is a list of operands. An operand can be a constant, symbol, or combination of

constants and symbols in an expression. An operand can also be an assembly time expression that refers

to memory, I/O ports, or pointers. Another category of the operands can be the registers and accumulators.

Constants can be expressed in binary, decimal, or hexadecimal formats. For example, a binary constant is

a string of binary digits (0s and 1s) followed by the suffix B (or b) and a hexadecimal constant is a string

of hexadecimal digits (0, 1, . . . , 9, A, B, C, D, E, and F) followed by the suffix H (or h). A hexadecimal

number can also use the prefix 0x similar to those used by C language. The prefix # is used to indicate an

immediate constant. For example, #123 indicates that the operand is a constant of decimal number 123,

while #0x53CD is the hexadecimal number of 53CD (equal to a decimal number of 21 453). Symbols

defined in an assembly program with assembler directives may be labels, register names, constants, etc.

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

TMS320C55X ASSEMBLY LANGUAGE PROGRAMMING 85

Table 2.16 An example of C55x assembly program

;
; Assembly program example
;
N .set 128
stk_size .set 0x100

stack .usect ".stack",stk_size ; Stack
sysstack .usect ".stack",stk_size ; System stack
_Xin .usect "in_data",(2*N) ; Input data array
_Xout .usect "out_data",(2*N) ; Output data array
_Spectrum .usect "out_data",N ; Data spectrum array

.sect data
input .copy "input.inc" ; Copy input.inc into program

.def start ; Define this program' entry point

.def _Xin,_Xout,_Spectrum ; Make these data global data

.ref _dft_128,_mag_128 ; Reference external functions

.sect text
start

bset SATD ; Set up saturation for D unit
bset SATA ; Set up saturation for A unit
bset SXMD ; Set up sign extension mode
bclr C54CM ; Disable C54x compatibility mode
bclr CPL ; Turn off compiler mode
amov #(stack+stk_size),XSP ; Setup DSP stack
mov #(sysstack+stk_size),SSP ; Setup system stack
mov #N-1,BRC0 ; Init counter for loop N times
amov #input,XAR0 ; Input data array pointer
amov #_Xin,XAR1 ; Xin array pointer
rptblocal complex_data_loop-1 ; Form complex data
mov *AR0+,*AR1+
mov #0, *AR1+

complex_data_loop
amov #_Xin,XAR0 ; Xin array pointer
amov #_Xout,XAR1 ; Xout array pointer
call _dft_128 ; Perform 128-point DFT
amov #_Xout,XAR0 ; Xout pointer
amov #_Spectrum,XAR1 ; Spectrum array pointer
call _mag_128 ; Compute squared-magnitude response
.end

For example, we use the .set directive to assign a value to a symbol N as in the example given by

Table 2.16. Thus, the symbol N becomes a constant value of 128 during assembly time.

The assembly instruction

mov *AR0+,*AR1+

located inside the repeat loop copies the content pointed at by address pointer AR0 to a different memory

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

86 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

location pointed at by address pointer AR1. The operand can also be a function name, such as

call _dft_128

Comments are notes about the program, which are significant. A comment can begin with an asterisk

or a semicolon in column one. Comments that begin in any other column must begin with a semicolon.

The following line

amov #(stack+stk_size),XSP ; Setup C55x stack

in Table 2.16 uses comment to note that this instruction is used to set up the C55x stack.

Assembly programming involves many considerations: allocating sections for program, data, constant,

and variables; initializing the processor mode; deciding the proper addressing mode; and writing the

assembly program. The example given in Table 2.16 has a text section, .sect text, where the assembly

program code resides; a data section, .sect data, where a data file is copied into this program; and

five uninitialized data sections, .usect, for stacks and data arrays. This example program uses indirect

addressing mode to read in a set of data samples and performs discrete Fourier transform, which will be

discussed in Chapter 6.

2.8 C Language Programming for TMS320C55x

In recent years, high-level languages such as C and C++ for DSP processors have become more popular

and the C compilers are better designed to generate more efficient code. In this section, we will introduce

some basic C programming considerations for TMS320C55x architecture.

2.8.1 Data Types

The C55x C compiler supports standard C data types. However, the C55x has some different data types

as compared with other computer-based architectures (see Table 2.17).

For most general-purpose computers and microprocessors, C data type char is 8-bit but the C55x C

data type char is 16-bit word. The C55x long long data type is 40-bit (as accumulators), not 64-bit

as most of the general-purpose computers. Also, the data type int is defined as 16-bit data by C55x,

while many other computers define int as 32-bit data. In order to write portable C programs, avoid using

char, int, and long long if possible.

Table 2.17 C data types

Data size (bits)

Data type C55x Computer

char 16 8

int 16 32

short 16 16

long 32 32

long long 40 64

float 32 32

double 64 64

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

C LANGUAGE PROGRAMMING FOR TMS320C55X 87

2.8.2 Assembly Code Generation by C Compiler

The C55x C compiler translates a C source code into an assembly source code first, the C55x assembler

converts the assembly code into a binary object file, and the C55x linker combines it with other object

files and library files to create an executable file. Knowing how the C compiler generates the assembly

code can help us to write correct and efficient C programs.

Multiplication and addition are two most widely used statements in C programming for DSP applica-

tions. One common mistake of working with short variables is not using data type cast to force them

into 32-bit data. For example, the correct C statement of multiplying two 16-bit numbers is

long mult_32bit;
short data1_16bit, data2_16bit;
mult_32bit = (long)data1_16bit * data2_16bit;

The C55x compiler will treat it as a 16-bit number times another 16-bit number with 32-bit product

because the compiler preprocessor knows that both data operands are 16-bit. The following statements

are written incorrectly for the C55x compiler:

mult_32bit = data1_16bit * data2_16bit;
mult_32bit = (long)(data1_16bit * data2_16bit);
add_32bit = data1_16bit + data2_16bit;
sub_32bit = (long)(data1_16bit - data2_16bit);

The following example shows the CCS debugger’s mixed mode display. The C55x compiler generates

the assembly code (in gray) that performs a 16-bit data a multiplied by another 16-bit data b. Only the

last C statement

c = (long)a * b;

generates the correct 32-bit result c.

short a=0x4000, b=0x6000;
long c;
void main()
{

// Wrong: only the lower 16-bit result in AC0 is saved to c
c = a * b;
000100 A511018F mov *abs16(#018fh),T1
000104 D31105018E mpym *abs16(#018eh),T1,AC0
000109 A010 98 mov mmap(AC0L),AC0
00010C EB11080190 mov AC0,dbl(*abs16(#0190h))

// Wrong: only the lower 16-bit result in AC0 is saved to c
c = (long)(a * b);
000111 D31105018E mpym *abs16(#018eh),T1,AC0
000116 A010 98 mov mmap(AC0L),AC0
000119 EB11080190 mov AC0,dbl(*abs16(#0190h))

// Correct: 32-bit result in AC0 is saved to c
c = (long)a * b;

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

88 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

00011E D31105018E mpym *abs16(#018eh),T1,AC0
000123 EB11080190 mov AC0,dbl(*abs16(#0190h))

}

Understanding the C55x architecture also helps the compiler to generate more efficient code. For

example, the loop statement such as

for(i=0; i<count; i++)

is widely used in C programming for general-purpose computers. The C55x C compiler will generate

different assembly code according to the data type of the loop counter, i. As discussed in Section 2.6, a for

loop can be efficiently implemented using the C55x block-repeat instructions rpt and rptb. However,

the block-repeat counters BRC0 and BRC1 are 16-bit registers, and this limits the loop counter to 16 bits.

If we know that the loop will not exceed the maximum of 65535 (216−1) iterations, we should define the

loop counter i as either short or unsigned short. If a long data type is used, the C55x compiler will

not generate the loop using block-repeat instructions. The following example shows the CCS debugger’s

mixed mode display. The C55x compiler generates a more efficient code when the loop counter is defined

as a 16-bit short variable.

short a[300];

void main()
{

long i;
short *p=a, j;

000263 760142B8 mov #322,AR3
000267 3C00 mov #0,AC0

// Inefficient for-loop using long loop counter i
for (i=0; i<100; i++)
{

*p++ = 0;
000269 L1:
000269 E66300 mov #0,*AR3+
00026C 76006418 mov #100,AC1
000270 4010 add #1,AC0
000272 120410 cmp AC0 < AC1, TC1
000275 0464F1 bcc L1,TC1

}
// More efficient for-loop using short loop counter j
for (j=0; j<100; j++)
{

*p++ = 0;
000278 4C63 rpt #99
00027A E66300 mov #0,*AR3+

}
}

Avoiding compiler built-in supporting library functions can also improve the real-time efficiency. This

is because the use of library functions requires function calls, which need to set up and pass the arguments

before the call and collect return values. Also, some of the C55x registers need to be saved by the caller

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

C LANGUAGE PROGRAMMING FOR TMS320C55X 89

function so that they can be used by the library functions. An example of modulo statement in C is

listed below. It is clear that the C55x C compiler will generate more efficient code when using 2n−1 for

modulo-2n operation.

void main()
{

short a=30;
000102 E6001E mov #30,*SP(#00h)

// Modulo operation calls library function
a = a % 7;
000105 A400 3D75 mov *SP(#00h),T0 | | mov #7,T1
000109 6C000297 call __remi
00010D C400 mov T0,*SP(#00h)

// Inefficient modulo operation of a power of 2 number
a = a % 8;
00010F 2240 3D7A mov T0,AC0 | | mov #7,AR2
000113 36AA 11453E not AR2,AR2 | | sfts AC0,#-2,AC1
000118 76E00091 bfxtr #57344,AC1,AR1
00011C 2409 add AC0,AR1
00011E 289A and AR1,AR2
000120 26A0 sub AR2,AC0
000122 C000 mov AC0,*SP(#00h)

// Efficient modulo operation of a power of 2 number
a = a & (8-1);
000124 F4000007 and #7,*SP(#00h)

}

2.8.3 Compiler Keywords and Pragma Directives

The C55x C compiler supports the const and volatile keywords. The const keyword controls data

objects allocation. It ensures that the data objects will not be changed by placing constant data into

ROM space. The volatile keyword is especially important when the compiler optimization feature is

turned on. This is because the optimizer may aggressively rearrange code around and may even remove

segments of code and data variables. However, the optimizer will keep all the variables with volatile

keyword.

The C55x compiler also supports three new keywords:ioport,interrupt, andonchip. The keyword

ioport is used for compiler to distinguish memory space related to the I/O. The peripheral registers, such

as EMIF, DMA, Timer, McBSP, etc., are all located in the I/O memory space. To access these registers,

we must use the ioport keyword. The ioport keyword can only be applied to global variables and

used for the local or global pointers. Since I/O is only addressable in 16-bit range, all variables including

pointers are 16-bit even if the program is compiled for the large memory model.

Interrupts and interrupt services are common for DSP programs in real-time applications. Due to the

fact that interrupt service routine (ISR) requires specific register handling and relies on special sequences

to entry and return, the interrupt keyword supported by the C55x compiler specifies the function that

is actually an ISR.

To utilize its dual MAC feature in C, the C55x compiler uses a keyword onchip to qualify the memory

that may be used by dual MAC instructions. This memory must locate at the on-chip DARAM.

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

90 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

Table 2.18 C program example of enabling DPLL

// Function of enabling or disabling clock generator PLL

#define PLLENABLE_SET 1 // PLL enable

#define CLKMD_ADDR 0x1c00
#define CLKMD (ioport volatile unsigned short *)CLKMD_ADDR

#pragma CODE_SECTION(pllEnable, ".text:C55xCode'');

void pllEnable(short enable)
{

short clkModeReg;
clkModeReg = *CLKMD;
if (enable)

*CLKMD = clkModeReg | (PLLENABLE_SET<<4);
else

*CLKMD = clkModeReg & 0xFFEF;

}

The CODE_SECTION pragma allocates a program memory space and places the function associated

with the pragma into that section. The DATA_SECTION pragma allocates a data memory space and places

the data associated with the pragma into that data section instead of the .bss section.

Table 2.18 shows a C program example that enables the DPLL. In this example, the function

pllEnable is placed in the program memory space inside the .text section with a subsection of

C55xCode.

2.9 Mixed C-and-Assembly Language Programming

As discussed in Chapter 1, the mixing of C and assembly programs is used for many DSP applications.

High-level C code provides the ease of maintenance and portability, while assembly code has the ad-

vantages of run-time efficiency and code density. In this section, we will introduce how to interface C

with assembly programs, and review the guidelines of the C function calling conventions. The assembly

routines called by a C function can have arguments and return values just like C functions. The following

guidelines are used for writing the C55x assembly code that is callable by C functions:

Naming convention: Use the underscore ‘ ’ as a prefix for all variables and routine names that will be

accessed by C functions. For example, use _asm_func as the name of an assembly routine called by a C

function. If a variable is defined in the assembly routine, it must use the underscore prefix for C function

to access it, such as _asm_var. The prefix ‘ ’ is used by the C compiler only. When we access assembly

routines or variables from C functions, we do not need to use the underscore as a prefix.

Variable definition: The variables that are accessed by both C and assembly routines must be defined

as global variables using the directive .global, .def, or .ref by the assembler.

Compiler mode: By using the C compiler, the C55x CPL (compiler mode) bit is automatically set for

using stack pointer relative addressing mode when entering an assembly routine. The indirect addressing

modes are preferred under this configuration. If we need to use direct addressing modes to access data

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

MIXED C-AND-ASSEMBLY LANGUAGE PROGRAMMING 91

memory in a C-callable assembly routine, we must change to DP-direct addressing mode. This can be

done by clearing the CPL bit. However, before the assembly routine returns to its C caller function, the

CPL bit must be restored. The bit clear and bit set instructions, bclr CPL and bset CPL, can be used

to reset and set the CPL bit in the status register ST1, respectively. The following example code can be

used to check the CPL bit, turn CPL bit off if it is set, and restore the CPL bit before returning it to the

caller:

btstclr #14,*(ST1),TC1 ; Turn off CPL bits if it is set
(more instructions ...)
xcc continue,TC1 ; TC1 is set if we turn off CPL bit
bset CPL ; Turn on CPL bit

continue
ret

Passing arguments: To pass arguments from a C function to an assembly routine, we must follow

the strict rules of C-callable conversions set by the C55x compiler. When passing an argument, the C

compiler assigns it to a particular data type and then places it using a register according to its data type.

The C55x C compiler uses the following three classes to define the data types:� Data pointer: short *, int *, or long *;� 16-bit data: char, short, or int; and� 32-bit data: long, float, double, or function pointers.

If the arguments are pointers to data memory, they are treated as data pointers. If the argument can fit

into a 16-bit register such as short, int, and char, it is considered to be 16-bit data. Otherwise, it is

32-bit data. The arguments can also be structures. A structure of two words (32 bits) or less is treated

as a 32-bit data argument and is passed using a 32-bit register. For structures larger than two words, the

arguments are passed by reference. The C compiler will pass the address of a structure as a pointer, and

this pointer is treated like a data argument.

For a subroutine call, the arguments are assigned to registers in the order that the arguments are listed

by the function. They are placed in the registers according to their data type, in the order shown in

Table 2.19.

Table 2.19 shows the overlap between the AR registers used for data pointers and the registers used for

16-bit data. For example, if T0 and T1 hold 16-bit data arguments and AR0 already holds a data-pointer

argument, a third 16-bit data argument would be placed into AR1 (see the second example in Figure 2.17).

If the registers of the appropriate type are not available, the arguments are passed onto the stack (see the

third example given in Figure 2.17).

Table 2.19 Argument classes assigned to registers

Argument type Register assignment order

16-bits data pointer AR0, AR1, AR2, AR3, AR4

23-bit data pointer XAR0, XAR1, XAR2, XAR3, XAR4

16-bit data T0, T1, AR0, AR1, AR2, AR3, AR4

32-bit data AC0, AC1, AC2

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

92 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

short func (short i1, long i2, short *p3);

AC0

long func (short *p1, short i2, short i3, short i4);

void func(long l1, ling l2, long l3, long l4, short i5);

AC0 AC1 AC2 Stack T0

T0 AC0 AR0

AR0 AR1T1T0

↓
T0

↓ ↓ ↓

↓↓ ↓ ↓ ↓

↓↓↓↓↓

Figure 2.17 Examples of arguments passing conventions

Return values: The calling function collects the return values from the called function/subroutine. A

16-bit data is returned in the register T0, and a 32-bit data is returned in the accumulator AC0. A data

pointer is returned in (X)AR0, and a structure is returned on the local stack.

Register use and preservation: When making a function call, the register assignments and preservations

between the caller and the called functions are strictly defined. Table 2.20 describes how the registers

are preserved during a function call. The called function must save the contents of the save-on-entry

registers (T2, T3, AR5, AR6, and AR7) if it will use these registers. The calling function must push the

contents of any other save-on-call registers onto the stack if these registers’ contents are needed after

the function/subroutine call. A called function can freely use any of the save-on-call registers (AC0–

AC3, T0, T1, and AR0–AR4) without saving its value. More detailed descriptions can be found in the

TMS320C55x Optimizing C Compiler User’s Guide.

As an example of mixed C-and-assembly programming, the following C program calls an assembly

function findMax() that returns the maximum value of given array:

extern short findMax(short *p, short n);
void main()
{

short a[8]={19, 55, 2, 28, 19, 84, 12, 10};

Table 2.20 Register use and preservation conventions

Registers Preserved by Used for

AC0–AC2 Calling function

Save-on-call

16-, 32-, or 40-bit data

24-bit code pointers

(X)AR0–(X)AR4 Calling function

Save-on-call

16-bit data

16- or 23-bit pointers

T0 and T1 Calling function

Save-on-call

16-bit data

AC3 Called function

Save-on-entry

16-, 32-, or 40-bit data

(X)AR5–(X)AR7 Called function

Save-on-entry

16-bit data

16- or 23-bit pointers

T2 and T3 Called function

Save-on-entry

16-bit data

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 93

static short max;

max = findMax(a, 8);
}

The assembly function findMax() is listed as follows:

;
; Function prototype:
; short findMax(short *p, short n);
;
; Entry: AR0 is the pointer of p and T0 contains length n
; Exit: T0 contains the maximum data value found
;

.def _findMax ; Using "_" prefix for C-callable

.text
_findMax:

sub #2,T0
mov T0,BRC0 ; Setup up loop counter
mov *AR0+,T0 ; Place the first data in T0

|| rptblocal loop-1 ; Loop through entire array
mov *AR0+,AR1 ; Place the next data in AR1
cmp T0<AR1,TC1 ; Check to see if new data is greater

|| nop ; than the maximum?
xccpart TC1 ; If find new maximum, place it in T0

|| mov AR1,T0
loop

ret ; Return with maximum data in T0

The assembly routine findMax returns the 16-bit maximum value of the array pointed by the data

pointer *p. The assembly function uses the underscore ‘_’ as the prefix for function name. The first

argument is a 16-bit data pointer and it is passed via auxiliary register AR0. The array size is the second

argument, which is a 16-bit data and is passed via the temporary register T0. The return value is a 16-bit

data in T0 register.

2.10 Experiments and Program Examples

In this section, we will use the CCS and DSK to show the programming considerations of the C55x

processors.

2.10.1 Interfacing C with Assembly Code

In this experiment, we will learn how to write C-callable assembly routines. The C function main calls

the assembly routine sum to add two elements in an array, and returns the sum to the C-calling function.

The C program is listed as follows:

extern short sum(short *); /* Assembly routine sum */
short x[2]={0x1234,0x4321}; /* Define x[] as global array */
short s; /* Define s as global variable */

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

94 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

Table 2.21 File listing for experiment exp2.10.1_C_ASM

Files Description

c_asmTest.c C function for testing the experiment

sum.asm Assembly function to compute the sum

c_asm.pjt DSP project file

c_asm.cmd DSP linker command file

void main()
{

s = sum(x); /* Call assembly routine _sum */
}

The assembly routine sum called by the C main program is listed as follows:

.global _sum
_sum

mov *AR0+,AC0 ; AC0 = x[1]
add *AR0+,AC0 ; AC0 = x[1]+x[2]
mov AC0,T0 ; Return value in T0
ret ; Return to calling function

The label _sum defines the entry point of the assembly subroutine, and the directive .global de-

fines this assembly routine sum(short *) as a global function. Table 2.21 lists the files used for this

experiment.

Procedures of the experiment are listed as follows:

1. Use CCS to create the project c_asm.pjt.

2. Add the C and assembly files listed in Table 2.21 to the project from CCS Project→Add Files to

Project tab.

3. From the CCS Project→Options→Linker→Library tab, include the run-time support library

rst55.lib.

4. Compile, debug, and load the program to the CCS (or DSK), then issue the Go Main command.

5. Watch and record the contents of AC0, AR0, and T0 in the CPU register window. Watch memory

location ‘s’ and ‘x’ and record when the content of result ‘s’ is updated. Why?

6. Single step through the C and assembly code.

2.10.2 Addressing Modes Using Assembly Programming

In this experiment, we will use assembly routines to exercise and understand C55x addressing modes.

The assembly routines used for experiment are called by the following C function:

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 95

short a[8]; /* Define array Ai[] */
short x[8]; /* Define array Xi[] */
short result1, result2; /* Define variables */
main()
{

absAddr(void);
directAddr(void);
result1 = indirectAddr(a, x);
result2 = parallelProc(a, x);

}

The assembly routine absAddr() uses the absolute addressing mode to initialize the array a[8] =

{1, 2, 3, 4, 5, 6, 7, 8} in data memory. Since the array a[8] is defined in the C function, the assembly

routine references it using the directive .global (or .ref).

The assembly routine directAddr() uses the direct addressing mode to initialize the array x[8]=

{9, 3, 2, 0, 1, 9, 7, 1 } in data memory. As mentioned in Section 2.4.1, there are four different

direct addressing modes. We use the DP-direct addressing mode for this experiment. The instruction

btstclr #14,*(ST1),TC1

tests the CPL (compiler mode) bit of the status register ST1 (bit 14). The compiler mode will be set if

this routine is called by a C function. If the test is true, the test flag bit TC1 of status register ST0 will

be set, and this instruction clears the CPL bit. This is necessary for using DP-direct addressing mode. At

the end of the code, the conditional execution instruction

xcc continue,TC1

sets the CPL bit if TC1 is set.

A dot product of two vectors a and x of length L can be expressed as

y =
L−1∑
i=0

ai xi = a0x0 + a1x1 + · · · + aL−1xL−1,

where ai and xi are elements of vectors a and x, respectively. In this experiment, we expect the dot product

y = 0x0089. There are many ways to access the elements of arrays, such as direct, indirect, and absolute

addressing modes. In this experiment, we implement the dot-product routine indirectAddr(short

*, short *) using the indirect addressing mode and store the returned value in the variable result

in data memory. Arrays a and x are defined as global arrays, and the return value is passed back to the C

function by register T0.

_indirectAddr
mpym *AR0+,*AR1+,AC0
mpym *AR0+,*AR1+,AC1
add AC1,AC0
mpym *AR0+,*AR1+,AC1
add AC1,AC0
mpym *AR0+,*AR1+,AC1
add AC1,AC0
mpym *AR0+,*AR1+,AC1
add AC1,AC0

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

96 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

mpym *AR0+,*AR1+,AC1
add AC1,AC0
mpym *AR0+,*AR1+,AC1
add AC1,AC0
mpym *AR0+,*AR1+,AC1
add AC1,AC0
mov AC0,T0
ret

The assembly routine parallelProc (short *, short *) uses the indirect addressing mode in

conjunction with parallel and repeat instructions to improve the code density and efficiency. The auxiliary

registers AR0 and AR1 are used as data pointers to array a and array x, respectively. The instruction

macm performs MAC operation. The parallel bar | | indicates the parallel execution of two instructions.

The repeat instruction rpt #K will repeat the followed instruction K+1 times:

_parallelProc
mpym *AR0+,*AR1+,AC0

| | rpt #6
macm *AR0+,*AR1+,AC0
mov AC0,T0
ret

Table 2.22 briefly describes the files used for this experiment. Procedures of the experiment are listed

as follows:

1. Create the projectaddrModes.pjt, add the C and assembly files listed in Table 2.22, and the run-time

support library rts55.lib to the project. Build and load the project.

2. Use the memory watch window to see how the arrays a and x are initialized in data memory by

routines absAddr.asm and directAddr.asm.

3. Open the CPU register window to see how the dot product is computed by indirectAddr.asm and

parallel.asm.

4. Use the profiler to measure the sum-of-product operations and compare the cycle difference between

the assembly routines indirectAddr.asm and parallel.asm.

5. Generate map files to compare the code size of assembly routines indirectAddr.asm and paral-

lel.asm. Note that the program size is given in bytes.

Table 2.22 File listing for experiment exp2.10.2_addrModes

Files Description

addrModesTest.c C function for testing the experiment

absAddr.asm Assembly routine uses absolute addressing mode

dirctAddr.asm Assembly routine uses direct addressing mode

indirectAddr.asm Assembly routine uses indirect addressing mode

parallelProc.asm Assembly routine uses parallel instructions

addrModes.pjt DSP project file

addrModes.cmd DSP linker command file

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 97

2.10.3 Phase-Locked Loop and Timers

In this experiment, we will set up the PLL for C55x timers. We use the data type qualifiers ioport and

volatile in C language to access MMRs and I/O registers. We use the pragma keyword for memory

management, and also introduce the in-line assembly insertion.

The C55x peripheral register, CLKMD, controls the clock generator. When the PLL is enabled, the

output clock frequency can be obtained by the following equation:

Output frequency = PLLMULT

PLLDIV + 1
Input frequency. (2.1)

For example, if the input frequency is 24 MHz with PLLDIV = 2 and PLLMULT = 25, the output

frequency of the PLL will be 200 MHz.

DSP processor’s timers generate accurate timing pulses; thus, they are widely used in practical ap-

plications for managing and controlling the DSP systems. The TMS320C55x has two general-purpose

timers; each has a prescale register (PRSC), a 16-bit period register (PRD), a 16-bit main counter (TIM),

and a timer control register (TCR). The prescale counter (PSC) and time-divide-down counter (TDDR) of

the PRSC are 4-bit. When the timer operates, TIM can be automatically reloaded from the PRD register,

and the PSC can be automatically reloaded from the TDDR of the PRSC register when it reaches zero.

Both TIM and PSC counters are decrement-by-1 counters. The PSC counter is driven by the processor

input clock. For each clock cycle, the PSC is decremented by 1 until it reaches 0. After PSC reaches 0,

TIM will be decremented by 1 at the next clock cycle. Once TIM reaches 0, the next clock pulse will

make the timer to issue the interrupt TINT to the processor and the timer event TEVT to DMA, as well

as generate the output signal TOUT. The timer period is calculated by

Period = (TDDR + 1) (PRD + 1) Input clock period. (2.2)

For instance, if the input clock frequency is 160 MHz with TDDR = 9 and PRD = 15999, the timer

period will be 1 ms. When the timer expires, the interrupt TINT will automatically set the flag in the

interrupt flag register TFR0 for Timer0 (or IFR1 for Timer1).

The C55x C compiler supports the asm statement that inserts a single line of assembly code into C

programs. In program initTimer(), we used inline assembly statement

asm("\tBSET #ST1_INTM, ST1_55");

within C code to directly control the C55x global interrupt mask register. The syntax of the in-line

assembly statement is

asm("assembly instruction");

Before we change any of the C55x system registers, it is a good practice to disable the processor

interrupts. This can prevent unpredictable events caused by the corruption of system registers. The most

efficient way to disable all the C55x interrupts is to set the global interrupt mask register, INTM. Since

the timer interrupt will be enabled after initializing the timer, this experiment also clears all the pending

interrupts before the completion of the DSK initialization by writing 0xFFFF to IFR0 register. The steps

of initializing C55x timer can be summarized as follows:

1. Disable the global interrupt to prevent interrupts during timer initialization.

2. Clear any pending interrupts and stop timer interrupt.

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

98 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

3. Initialize the timer with new TDDR, PRD, and PRD-reload values.

4. Enable timer interrupt.

5. Reenable the global interrupt INTM.

The timer can be stopped any time by setting the TCR timer stop bit TSS, and enabled by clearing the

TSS bit.

TMS320C55x can support up to 32 interrupts including hardware and software interrupts. These

interrupts can be categorized as maskable and non-maskable interrupts. The maskable interrupts can be

blocked by the software. If multiple interrupts occur simultaneously, the C55x will serve these interrupts

based on their priorities listed in Table 2.5. When an interrupt occurs, an interrupt request will be issued to

the C55x processor. The C55x will complete the current instruction, flush the instruction pipeline, issue

an interrupt request acknowledgment, and prepare itself to serve the interrupt. The C55x will fetch the

corresponding ISR address and branch to that ISR for performing interrupt service. The C55x interrupt

vector table given in Table 2.23 defines the ISR address offsets. In this experiment, we use timer interrupt

as an example.

Table 2.23 Example of using interrupt vector table, vectorsTable.asm

;
; Interrupt table for C5510
;

.def _Reset

.ref _c_int00

.ref _c_tint0

; Vector macro
;
vector .macro isrName

b :isrName:
nop_16

| | nop_16
.endm

; Default handler
;

.sect ".text:example:timer0"
_no_ISR b _no_ISR

; Interrupt vectors
;

.sect ".vectors"

_Reset: vector _c_int00 ; 0x00 Reset (HW or SW)
NMI: vector _no_ISR ; 0x08 Non-maskable hardware interrupt
INT0: vector _no_ISR ; 0x10 External interrupt INT0
INT2: vector _no_ISR ; 0x18 External interrupt INT2

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 99

Table 2.23 (continued)

TINT0: vector _c_tint0 ; 0x20 Timer 0 interrupt TINT0
RINT0: vector _no_ISR ; 0x28 McBSP 0 receive interrupt RINT0
RINT1: vector _no_ISR ; 0x30 McBSP 1 receive interrupt RINT1
XINT1: vector _no_ISR ; 0x38 McBSP 1 transmit interrupt XINT1
SINT8: vector _no_ISR ; 0x40 Software interrupt 8 SINT8
DMAC1: vector _no_ISR ; 0x48 DMA channel 1 interrupt DMAC1
DSPINT: vector _no_ISR ; 0x50 Interrupt from Host EHPI DSPINT
INT3: vector _no_ISR ; 0x58 External interrupt 3 INT3
RINT2: vector _no_ISR ; 0x60 McBSP 2 receive interrupt RINT2
XINT2: vector _no_ISR ; 0x68 McBSP 2 transmit interrupt XINT2
DMAC4: vector _no_ISR ; 0x70 DMA channel 4 interrupt DMAC4
DMAC5: vector _no_ISR ; 0x78 DMA channel 5 interrupt DMAC5
INT1: vector _no_ISR ; 0x80 External interrupt 1 INT1
XINT0: vector _no_ISR ; 0x88 McBSP 0 transmit interrupt XINT0
DMAC0: vector _no_ISR ; 0x90 DMA channel 0 interrupt DMAC0
INT4: vector _no_ISR ; 0x98 External interrupt 4 INT4
DMAC2: vector _no_ISR ; 0xa0 DMA channel 2 interrupt DMAC2
DMAC3: vector _no_ISR ; 0xa8 DMA channel 3 interrupt DMAC3
TINT1: vector _no_ISR ; 0xb0 Timer 1 interrupt TINT1
INT5: vector _no_ISR ; 0xb8 External interrupt 5 INT5
BERR: vector _no_ISR ; 0xc0 Bus error interrupt BERR
DLOG: vector _no_ISR ; 0xc8 Data log interrupt DLOG
RTOS: vector _no_ISR ; 0xd0 Real-time OS interrupt RTOS
SINT27: vector _no_ISR ; 0xd8 Software interrupt 27 SINT27
SINT28: vector _no_ISR ; 0xe0 Software interrupt 28 SINT28
SINT29: vector _no_ISR ; 0xe8 Software interrupt 29 SINT29
SINT30: vector _no_ISR ; 0xf0 Software interrupt 30 SINT30
SINT31: vector _no_ISR ; 0xf8 Software interrupt 31 SINT31
.end

In Table 2.23, each interrupt address occupies 8 bytes. The first 4 bytes contain the address of the ISR.

The next 4 bytes are instructions that will be executed before the processor entering the ISR because of

the C55x pipeline. Therefore, we can move some of the ISR instructions into this 4-byte space.

In Table 2.23, we use assembly macro to replace the repeated statements used by the program. With

assembly macro, we can define our own instructions and shorten the source statements for easy reading.

The assembly macro must start with a macro name in the source code label field followed by the identifier

keyword .macro and end with the keyword .endm. The macro statements can have optional parameters.

The body of the macro may have assembly instructions and assembly directives. In Table 2.23, the macro

vector .macro isrName
b :isrName:
nop_16

| | nop_16
.endm

uses the macro name vector, the optional parameter is isrName. There are three assembly instructions

inside the macro vector. The first instruction is a branch instruction. The next two nop instructions

are used for the following 4-byte program memory. The total size of this macro is 8 bytes. The branch

instruction uses substitution symbol isrName. The macro substitution symbol allows user to use macro

multiple times with different parameters or data. The interrupt table listed in Table 2.23 has two ISR

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

100 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

Table 2.24 Program example of timer ISR, tint0.c

#include "timer.h"

#pragma DATA_SECTION(time, ".bss:example:timer0");
#pragma CODE_SECTION(c_tint0, ".text:example:timer0");

C55xTimer time; // Define timer variable

interrupt void c_tint0(void)
{

time.us += 10; // Each interrupt is 10 us
if (time.us == 1000)
{

time.us = 0;
if (time.ms++ == 1000)
{

time.ms = 0;
time.s++;

}
}

}

addresses: _c_int00 and _c_tint0. The _c_int00 is the C55x power-on reset ISR address, and

_ctint_0 is the timer0 ISR address. For other vectors in Table 2.23, the vector addresses are replaced

with _no_ISR, a dummy ISR placeholder.

Table 2.24 shows the example of the timer ISR. Every time when the timer interrupt occurs, this ISR

will increment the counter by 10 μs as programmed timer unit. When writing C program for C55x, the

ISR must use the keyword interrupt qualifier to inform the C compiler for generating interrupt content

saving and restore procedures while entering and exiting an interrupt.

The vector table must be placed at the special memory location specified by the linker command file.

The code section .sect ".vectors" in Table 2.23 matches the vector section defined by the linker

command file timer.cmd as shown in Table 2.25. When defining memory addresses for the C55x, the

linker command file requires the use of byte unit for address and length of the sections. For example, the

VECS section starts at byte address 0x100, which is the same as 0x80 for the word address.

The program for timer experiment is listed in Table 2.26. This program uses a 10-μs timer to measure

the run-time function application(). Because the application function loading is varying, the time

measured is also changing. Using the C compiler optimization, we can build an efficient program that

Table 2.25 Example of timer linker command file, timer.cmd

-stack 0x2000 /* C55x DSP stack size */
-sysstack 0x1000 /* System stack size */
-heap 0x2000 /* DSP heap size */

-c /* Use C linking conventions */

MEMORY
{

PAGE 0: /* ---- C55x unified memory space -------- */
VECS (RIX) : origin=0x000100, length=0x000100 /* 256-byte vectors */
DARAM (RWIX) : origin=0x000200, length=0x00fe00 /* Internal DARAM */

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 101

Table 2.25 (continued)

SARAM (RWIX) : origin=0x010000, length=0x040000 /* Internal SARAM */
PAGE 2: /* ---- C55x 64K-word I/O memory space --------*/
IOPORT (RWI) : origin = 0x000000, length = 0x020000

}

SECTIONS
{

vectors > VECS PAGE 0 /* Interrupt vectors */
.text > SARAM PAGE 0 /* Code */
.data > SARAM PAGE 0 /* Initialized variables */
.bss > DARAM PAGE 0 /* Global & static variables */
.const > DARAM PAGE 0 /* Constant data */
.sysmem > SARAM PAGE 0 /* Dynamic memory (malloc) */
.stack > SARAM PAGE 0 /* Primary system stack */
.sysstack > SARAM PAGE 0 /* Secondary system stack */
.cio > SARAM PAGE 0 /* C I/O buffers */
.switch > SARAM PAGE 0 /* Switch statement tables */
.cinit > SARAM PAGE 0 /* Auto-initialization tables */
.pinit > SARAM PAGE 0 /* Initialization fn tables */

.ioport > IOPORT PAGE 2 /* Global&static IO variables */
}

runs much faster. Table 2.27 lists the run-time benchmark comparison of this demo program built with

and without C compiler optimization option.

Table 2.28 lists the files used for this experiment. Although we have included all the files for the

experiment, the readers are strongly encouraged to create this experiment step by step.

Table 2.26 Program example of timer, timerTest.c

#include <stdio.h>
#include "timer.h"

#pragma CODE_SECTION(main, ".text:example:timer0");
#pragma CODE_SECTION(application, ".text:example:timer0");

static unsigned long application(unsigned long cnt, short lp);

void main()
{

short k,loop;
unsigned long sampleCnt;

asm(" MOV #0x01,mmap(IVPD)");// Set up C55x interrupt vector pointer
asm(" MOV #0x01,mmap(IVPH)");// Set up HOST interrupt vector pointer
initCLKMD(); // Initialize CLKMD register
initTimer(); // Initialize timer
loop = 100;
for (k=0; k<9; k++)
{

time.us = 0; // Reset time variables

continues overleaf

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

102 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

Table 2.26 (continued)

time.ms = 0;
time.s = 0;
startTimer(); // Start timer
sampleCnt = application(0, loop);
stopTimer(); // Stop timer
loop -= 10;
printf("samples processed = %10ld\ttime used = %d(s)%d(ms)%d(us)\ n",

sampleCnt,time.s,time.ms,time.us);
}

}
// Example of DSP application
static unsigned long application(unsigned long cnt, short lp)
{

short i,j,k,n;

for (i=0; i<lp; i++)
{

for (j=0; j<lp; j++)
{

for (k=0; k<lp; k++)
{

for (n=0; n<lp; n++)
{

cnt++;
}

}
}

}
return (cnt);

}

Procedures of the experiment are listed as follows:

1. Create the project timer.pjt, and add all the files listed in Table 2.28 to the project.

2. Include the run-time support library, build the project with compiler optimization option set to no

optimization, and load the experiment to DSK. Run the timer experiment and record the time spent

for each time the function application is called.

Table 2.27 Benchmark of program example, timerTest.c

Number of samples processed Without optimization With optimization –o2

100 000 000 7(s)407(ms)970(μs) 0(s)10(ms)920(μs)

65 610 000 4(s)868(ms)940(μs) 0(s) 8(ms) 0(μs)

40 960 000 3(s) 44(ms)990(μs) 0(s) 5(ms)650(μs)

24 010 000 1(s)790(ms)170(μs) 0(s) 3(ms)810(μs)

12 960 000 0(s)970(ms)240(μs) 0(s) 2(ms)430(μs)

6 250 000 0(s)470(ms)170(μs) 0(s) 1(ms)420(μs)

2 560 000 0(s)193(ms)970(μs) 0(s) 0(ms)740(μs)

810 000 0(s) 62(ms)120(μs) 0(s) 0(ms)320(μs)

160 000 0(s) 12(ms)570(μs) 0(s) 0(ms)100(μs)

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 103

Table 2.28 File listing for experiment exp2.10.3_DSPTimer

Files Description

timerTest.c.c C function for testing DSP timer experiment

vectorsTable.asm Assembly routine sets interrupt vector table

clkmdInit.c C function initializes C55x clock CLKMD register

timerInit.c C function initializes C55x timer0

timerStart.c C function starts C55x timer0

timerStop.c C function stops C55x timer0

tinit0.c C timer0 interrupt service function

timer.h C header file for DSP timer experiment

timer.pjt DSP project file

timer.cmd DSP linker command file

3. Set the compiler optimization option to -o2 for the file timerDemo.c. Rerun the experiment and

compare the time spent for the function application. By turning the optimization option on, all

the C files in the project will be compiled with C compiler optimizer. How to set the build option
such that the CCS will only optimize one particular file?

2.10.4 EMIF Configuration for Using SDRAM

In this experiment, we will set up the EMIF registers to use the SDRAM for the C5510 DSK with the

memory configuration as shown in Figure 2.18.

The DARAM and SARAM are the on-chip memories, while the SDRAM is an external memory. The

SDRAM starts at word address 0x028000 controlled by chip enable CE0. The chip enable CE1 controls

the Flash memory and the complex programmable logic device.

In this experiment, we configure CE0 for SDRAM and CE1 for flash memory. After resetting the

EMIF, the program clears the EMIF error flags. EMIF global control register is set to use half of the

CPU clock frequency. MTYPE bit of CE0 is set for SDRAM. The experiment initializes the EMIF and

writes data to SDRAM. The data in SDRAM can be viewed using CCS graph display feature. Figure

2.19 shows how to set up the display type as RGB color image and selects data addresses in SDRAM

for display, and Figure 2.20 displays the color pattern. Because the SDRAM is an external memory, it

requires 23-bit address range to access SDRAM. We compile and link the project using large memory

MMR

Internal RAM

Internal RAM

SDRAM

Flash/CPLD

External

External

DARAM

DARAM

SARAM

CE0

CE1

CE2

CE3

0x000000

0x000030

0x008000

0x028000

0x200000

0x400000

0x600000

Starting addr DSK memory Memory type

Figure 2.18 TMS320VC5510 DSK memory configuration

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

104 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

Figure 2.19 Graph display setting for EMIF demonstration example

Figure 2.20 The RGB color checker display by the EMIF test program

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 105

Table 2.29 File listing for experiment exp2.10.4_emifSDRAM

Files Description

emifTest.c C function for testing EMIF experiment

emifInit.c C function initializes C55x EMIF module

drawBox.c C function writes data to SDRAM

emif.h C header file for EMIF experiment

emif.pjt DSP project file

emif.cmd DSP linker command file

model. When using large memory model, we need to link the program with the run-time support library

rts55x.lib. For this experiment, we modify the linker command file to include the SDRAM memory

space and external SDRAM memory section as following:

MEMORY
{

SDRAM (RWIX): origin=0x050000, length=0x3B0000 /* External SDRAM */
}
SECTIONS
{

.edata > SDRAM PAGE 0 /* SDRAM memory: external memory */
}

The files used for this experiment are listed in Table 2.29. Procedures of the experiment are listed as

follows:

1. Create the project emif.pjt, and add files listed in Table 2.29 and the run-time support library

rts55x.lib to the project. Set the Build Option to use large memory mode.

2. Build the project and load it to DSK. Run the experiment and view the SDRAM memory using CCS

graphic display tool to verify RGB data write to SDRAM. Do you see the data pattern as shown in

Figure 2.20?

2.10.5 Programming Flash Memory Devices

Many DSP products use flash memories to store application program and data. The programmable flash

memory offers the cost-effective and reliable read/write nonvolatile random accesses. The C5510 DSK

consists of 256K words (4 Mbits) external flash memory. The flash memory is mapped to the C55x EMIF

CE1 memory space. In this experiment, we will demonstrate several basic functions of flash programming.

The C5510 DSK uses 4 Mbits of flash memory. The starting address of the flash memory is at word

address 0x200000. The flash memory device is operated by writing specific data sequences into the

flash memory command registers. Writing to incorrect address or using invalid data will cause the flash

memory to reset. After resets, the flash device is in read-only state. The flash memory reset is performed

by writing reset command word 0xF0 to any valid flash memory location.

The flash memory must be erased before writing new data. The erase operation includes both chip erase

and sector erase. The chip erase will erase all the data contained in the entire flash memory device while

the sector erase will erase the data contained only in the specific sector. The erase command sequence

is writing the specific data pattern 0xAA-0x55-0x80-0xAA-0x55-0x10 to flash memory address offset

0x555 and 0x2AA. After the command sequence has been completed, we check the flash memory status

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

106 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

Table 2.30 File listing for experiment exp2.10.5_flashProgram

Files Description

flashTest.c C function for testing flash programming experiment

emifInit.c C function initializes C55x EMIF module

flashErase.c C function erases flash memory data

flashID.c C function obtains flash device IDs

flashReset.c C function resets flash memory

flashWrite.c C function writes data to flash memory

emif.h C header file used for EMIF settings

flash.h C header file for flash programming experiment

flash.pjt DSP project file

flash.cmd DSP linker command file

dtmf18005551234.dat Data file in ASCII format

bit DQ7 to detect if the erase has completed. The bit DQ5 indicates if the operation has been timed out.

If this bit is set, it indicates a timeout error.

When programming flash memory, the write sequence must be issued for each data at each flash

memory address. The data can be a 16-bit word or an 8-bit byte. This experiment uses 16-bit flash

memory write program. The write command sequence is 0xAA-0x55-0xA0-addr-data. After each data

has been written, the processor checks the data ready bit, DQ7, before writing another data.

The program first initializes the EMIF to map the flash device to CE1. It then resets the flash device

and uses the function flashID() to obtain the manufacture ID and device ID. This important step

allows system to determine exactly which flash memory device has being used, and thus enables flexible

programming for using different programming algorithms for different flash memory devices. The pro-

gram then erases the entire flash memory and reprograms it. Finally, the program reads data back from

the flash memory and compares with the original data.

In this experiment, we introduce several basic programming functions and demonstrate flash-erase and

flash-write procedures. We also identify specific flash memory devices. Table 2.30 lists the files used for

this experiment.

Procedures of the experiment are listed as follows:

1. Create the project flash.pjt, and add the files listed in Table 2.30 to the project.

2. Build the project and load it to DSK. Run the experiment and view the flash memory data pattern

with CCS memory window after flash programming is completed.

3. Reload the flash program to DSK. Use Go Main command to start the experiment. Single step

through the program to view the flash memory manufacture ID and chip ID. Use CCS debug window

to view flash memory (what is the correct starting address for flash memory?) before calling the

flashErase() function. Single step into the erase function and view the flash memory using CCS.

Finally, run the code to write the data into the flash memory.

2.10.6 Using McBSP

The C5510 DSK uses McBSP1 and McBSP2 for connecting the analog interface chip TLV320AIC23,

where McBSP1 is used as control channel and McBSP2 is used as data channel. In this experiment, we

will introduce the basic programming of the McBSP and use CCS to build the McBSP DSP library.

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 107

Every McBSP consists of two serial port control registers (SPCR) in I/O memory spaces. These control

registers are used for controlling digital loopback, sign extension, clock stop, and interrupt modes. There

are also several signal pins that allow user to check the current status of transmit and receive operations.

Each McBSP port has two transmit control registers (XCR) and two receive control registers (RCR).

These I/O MMRs allow users to specify transmit and receive frame phases, wordlength, and the number

of the words to transfer.

There are two sample rate generator registers (SRGR) for each McBSP port. Sample rate generator

can generate frame sync and clock (CLKG) signals. The SRGRs allow user to choose input clock source

(CLKSM), divide output clock via a divide counter (CLKGDV), and set the frame sync pulse width and

period. Every McBSP port has eight transmit channel enable registers and eight receive channel enable

registers. These registers are used only when the transmittmer and/or receiver are configured to allow

individual enabling and disabling of the channels; that is, TMCM = 0 and/or RMCM = 1.

In this experiment, we initialize the registers of the McBSP ports. Since the DSK uses McBSP1 in

master mode for AIC23 control channel, McBSP1 must be initialized before it can send configuration

commands and parameters to the control registers of the AIC23. The McBSP2 is used as data port for

AIC23, which can be configured by the function mcbsp2Init(). After the McBSP2 is reset, the

initialization sets the transmitter and receiver control registers. The pin control register is configured for

the proper clock polarities. Finally, the sample rate generator is enabled, and then McBSP transmitter

and receiver are enabled.

This experiment uses two functions: mcbsp1CtlTx() and mcbsp2DatTx(). The function

mcbsp1CtlTx() checks McBSP transmit data ready bit. When this bit is set, the control parame-

ter regValue will be written to the AIC23 control registers via the McBSP1. The lower 9 bits of the

regValue contain the control parameters for setting the AIC register, while the upper 6 bits are used to

identify the AIC23 control registers. Similarly, the function mcbsp2DatTx() checks if it is time to

write the data via the McBSP2 transmitter. If the XRDY bit is set, the data is copied to the McBSP transmit

buffer for transmission.

The process of using CCS to create a DSP library for the TMS32C55x processor is similar to create

a COFF executable program. First, we create a new project using library (.lib) as the target instead of

choosing the COFF executable file type. The library must use the same memory model as the application

program that will use the library. As an example, Figure 2.21 shows that the project type is the library

Figure 2.21 The project creation for McBSP library

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

108 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

Figure 2.22 The CCS project configuration for McBSP library, mcbsp.lib

when we create the new project. The building option in Figure 2.22 shows the project will create a library

mcbsp.lib. When creating libraries, only the library functions are included in the project. The application

program, test programs, and other functions that are not related to the library shall not be included. We

choose optimization option level-2 when building the library, so the library functions will be compiled

with optimization option turned on. We also disabled features of generating the debug information when

building the library. These settings give us an efficient library. As shown in Figure 2.22, we used two

copy statements in the Final build steps Window to copy the C header file and library to the working

directories.

In practice, the library functions are individually tested, debugged, and verified before being used to

create the library. The example mcbsp.lib is made with the large memory model and will be used by

the next experiment. In Figure 2.22, we also show how to add special commands in the CCS build option

to copy the mcbsp.lib from the current build directory to the destination. Table 2.31 lists the files used

to build the McBSP library for this experiment.

Table 2.31 File listing for experiment exp2.10.6_mcbsp

Files Description

mcbsp1CtlTx.c C function sends command and data via C55x McBSP1

mcbsp1Init.c C function initializes C55x McBSP1 registers

mcbsp2DatTx.c C function writes data to McBSP2

mcbsp2Init.c C function initializes C55x McBSP2 registers

mcbspReset.c C function resets C55x McBSP

mcbsp.h C header file for McBSP experiment

mcbsp.pjt DSP project file

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 109

Procedures of the experiment are listed as follows:

1. Create the project mcbsp.pjt, and add the following files to the project: mcbsp1CtlTx.c,

mcbsp1Init.c, mcbsp2DatTx.c, mcbsp2Init.c, and mcbspReset.c.

2. Set up the search path for Include File. Build the project to create the library.

3. The C55x DSP code generation tools are located in the directory ..\c5500\cgtools\bin. Open a

command window from the host computer by going to the Windows Start Menu and select Run.

In the Run dialogue window, type cmd and click OK.

4. When the command window appears on the computer, we will show how to use the archiver tool

ar55.exe located in ..\c5500\cgtools\bin directory. Assuming that the DSP tools are in-

stalled in the C:\ti directory, type C:\ti\c5500\cgtools\bin\ar55 -h from the command win-

dow to see the archiver’s help information. The following is an example of the archiver help menu:

Syntax: ar55 [arxdt][quvse] archive files ...

Commands: (only one may be selected)
a - Add file r - Replace file
x - Extract file d - Delete file
t - Print table of contents

Options:
q - Quiet mode - Normal status messages suppressed
u - Update with newer files (use with 'r' command)
s - Print symbol table contents
v - Verbose

5. The archiver ar55.exe allows us to view (-t) the file list of a library, remove (-d) files from the library,

add (-a) and replace (-r) files to existing library, and extract the library files. Use these commands to

view and extract the McBSP library that we built for this experiment.

2.10.7 AIC23 Configurations

The C5510 DSK analog inputs include a microphone and a stereo line-in; the analog outputs include a

stereo line-out and a stereo headphone. The AIC23 uses McBSP1 for control channel with 16-bit control

signal. The lower 9 bits contain the command value that will be written to the specified register, while

the upper 7 bits specify the AIC23 control register. The McBSP2 is set as the bidirectional data channel

for passing audio samples in and out of the DSK. The AIC23 supports several data formats and can be

configured for different sampling frequencies as described in its data manual [12]. In this experiment,

we will configure the C55x McBSP to interface with the AIC23 for real-time audio playback.

The experiment program AIC23Demo() configures the AIC23 for stereo output. The digital samples

stored in the DSK flash memory will be played at 8 kHz rate. The AIC23 has 11 control registers that

must be initialized to satisfy different application requirements. The initialization values are listed in the

C header file aic23.h.

The AIC23 uses the sigma–delta technologies with built-in headphone amplifier to provide up to

30 mW output level for 32� impedance and 40 mW for 16 � impedance. It supports sampling rate from

8 to 96 kHz, and data wordlength of 16, 20, 24, and 32 bits. The AIC23 also includes flexible gain and

volume controls. Figure 2.23 shows the functional block diagram of AIC23. The serial clock is connected

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

110 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

McBSP1

CS
SDIN
SCL
MODE

McBSP2

LRCIN
DIN
LRCOUT
DOUT
BCLK

LHPOUT

RHPOUT

LLINEOUT

RLINEOUT

MICIN

LLINE IN

RLINE IN
A/D

D/A

CONTROL
0 LEFT INPUT VOL

1 RIGHT INPUT VOL

2 LEFT HEADPHONE VOL
3 RIGHT HEADPHONE VOL

4 ANALOG AUDIO PATH CTL
5 DIGITAL AUDIO PATH CTL

6 POWERDOWN CTL

7 DIGITAL AUDIO IF FMT
8 SAMPLERATE CTL

9 DIGITAL IF ACTIVATIO

15 RESET

Figure 2.23 Block diagram of connecting AIC23 using McBSPs

to SCLK. The data word is latched by CS signal. The 16-bit control word is latched on the rising edge of

CS with the MSB first.

The AIC23 supports stereo audio channels. The left and right channels can be simultaneously locked

together or individually controlled. The program listed in Table 2.32 initializes the DSK and AIC23,

reads in the data sample from flash memory, and plays this audio signal at 8-kHz sampling rate via the

DSK headphone output.

The files used for this AIC23 experiment are listed in Table 2.33. Procedures of the experiment are

listed as follows:

1. Use the flash program experiment in Section 2.10.5 to initialize the flash memory with the data file,

dtmf18005551234.dat. You can also use the same data file from SRAM as shown inaic23Test.c.

In this case, the data file is included as a header file.

2. Create the mcbsp.lib using the experiment from previous experiment given in Section 2.10.6.

3. Create the project aic23.pjt, add all the source files listed in Table 2.33 and the mcbsp.lib to the

project, and build the project (pay attention to memory mode).

4. Connect a headphone (or loudspeaker) to the DSK headphone output and run the DSK experiment

to listen to the playback.

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 111

Table 2.32 Program of audio playback, aic23Test.c

#include <stdio.h>
#include "mcbsp.h"
#include "aic23.h"

#define DATASIZE 12320
#if 1

// Flash memory data
#define flashData 0x200000 // Data has been programmed by flash example
#else

// Local memory data
short flashData[DATASIZE]={ // Data is in SRAM
#include "dtmf18005551234.dat"
};
#endif

#pragma CODE_SECTION(main, ".text:example:main");

void main()
{

short i,data;
unsigned short *flashPtr;

// Initialize McBSP1 as AIC23 control channel
mcbsp1Init();

// Initialize the AIC23
aic23Init();

// Initialize McBSP2 as AIC23 data channel
mcbsp2Init();
flashPtr = (unsigned short *)flashData;
// Playback data via AIC23
for (i=0; i<DATASIZE; i++)
{

data = *flashPtr++;
while (!aic23Tx(data)); // Send data to left channel
while (!aic23Tx(data)); // Send data to right channel

}

// Power down the AIC23 and reset McBSP
aic23Powerdown();
mcbspReset(1);
mcbspReset(2);

}

2.10.8 Direct Memory Access

In this experiment, we will use the C55x DMA controller, which allows data transfers among internal

memory, external memory, peripherals, as well as the enhanced host-port interface without intervention

by the processor. The DMA controller consists of four standard ports for DARAM, SARAM, external

memory, and peripherals. The channel reads data from the given source and writes data to the destination.

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

112 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

Table 2.33 File listing for experiment exp2.10.7_aic23

Files Description

aic23Test.c C function for testing AIC23 experiment

aic23Init.c C function initializes AIC23

aic23Powerdown.c C function powers down AIC23

aic23Tx.c C function sends data to AIC23

mcbsp.h C header file for use McBSP library

aic23.h C header file for AIC23 experiment

aic23.pjt DSP project file

aic23.cmd DSP linker command file

mcbsp.lib McBSP library for AIC23 experiment

dtmf18005551234.dat Data file in ASCII format

The DMA controller uses different channels to perform independent block transfers among the standard

ports. There are six channels and each channel can send an interrupt to the processor on the completion

of given operations. The DMA data transfers at each channel can be dependent on or be synchronized

with occurrences of selected events.

For DMA data transfer, the basic data (in byte unit) is called element, and a group of elements is called

frame. An element can have one or more bytes of data, and the frame can have one or more elements.

The block is formed by one or more frames. The frame or block transfer can be interrupted, while the

element transfer cannot be interrupted.

There are six DMA channels and each channel has 12 DMA registers for DMA control. These registers

start from I/O memory address 0x0C00. Each channel is separated by 32 words. The DMA can have

many combinations to satisfy different application requirements. In this experiment, we use a simple

example to initialize and set up DMA for data transfer.

The program listed in Table 2.34 configures the DMA controller to transfer N elements using M frames

through DMA_CHANNEL. The source is a pre-initialized DARAM and the destination is an SDRAM. The

demonstration program initializes the DMA channel 3. Because the DMA controller uses only byte

addresses, the source and destination address registers must be initialized in byte addresses. If the data

type to be transferred is 32-bit, the source and destination must be aligned to the 32-bit boundary in

memory using the DATA_ALIGN pragma.

Table 2.34 Program of DMA demo, dmaTest.c

#include <stdio.h>
#include "dma.h"
#include "emif.h"

#define N 128 // Transfer data elements
#define M 16 // Transfer data frames
#define DMA_CHANNEL 3 // DMA channel

// SRC is in DARAM and DST is in SDRAM
// Force SRC and DST to align at 32-bit boundary
#pragma DATA_SECTION(src, ".daram:example:dmaDemo")
#pragma DATA_SECTION(dst, ".sdram:example:dmaDemo")
#pragma DATA_ALIGN(src, 2);
#pragma DATA_ALIGN(dst, 2);
unsigned short src[N*M];
unsigned short dst[N*M];

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 113

Table 2.34 (continued)

#pragma CODE_SECTION(main, ".text:example:main");

void main(void)
{

unsigned short i,frame,err;
short dmaInitParm[DMA_REGS];
unsigned long srcAddr,dstAddr;

// Initialize EMIF
emifInit();

// Initialize source and destination memory for testing
for (i = 0; i < (N*M); i++) {

dst[i] = 0;
src[i] = i + 1;

}

// Convert word address to byte address, DMA uses byte address
srcAddr = (unsigned long)src;
dstAddr = (unsigned long)dst;
srcAddr <<= 1;
dstAddr <<= 1;

// Setup DMA initialization values
dmaInitParm[0] = DMACSDP_INIT_VAL;
dmaInitParm[1] = DMACCR_INIT_VAL;
dmaInitParm[2] = DMACICR_INIT_VAL;
dmaInitParm[3] = DMACSR_INIT_VAL;
dmaInitParm[4] = (short)(srcAddr & 0xFFFF);
dmaInitParm[5] = (short)(srcAddr >> 16);
dmaInitParm[6] = (short)(dstAddr & 0xFFFF);
dmaInitParm[7] = (short)(dstAddr >> 16);
dmaInitParm[8] = N;
dmaInitParm[9] = M;
dmaInitParm[10] = DMACSFI_INIT_VAL;
dmaInitParm[11] = DMACSEI_INIT_VAL;
dmaInitParm[12] = 0;
dmaInitParm[13] = 0;
dmaInitParm[14] = DMACDEI_INIT_VAL;
dmaInitParm[15] = DMACDFI_INIT_VAL;

// Initialize DMA channel
dmaInit(DMA_CHANNEL, dmaInitParm);

// Enable DMA channel and begin data transfer
dmaEnable(DMA_CHANNEL);

// DMA transfer data at background
frame = M;
while (frame>0)
{

if (dmaFrameStat(DMA_CHANNEL) != 0)

continues overleaf

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

114 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

Table 2.34 (continued)

{
frame--;

}
}
// Close DMA channel
dmaReset(DMA_CHANNEL);

// Check data transfer is correct or not
err = 0;
for (i = 0; i <(N*M); i++)
{

if (dst[i] != src[i])
{

err++;
}

}
printf("DMA Demo: error found = %d\ n", err);

}

The DMA initialization function dmaInit() uses the argument dmaNum to select a DMA channel

and initialize all 16 registers with the context passed in via dmaInitParm[]. The DMA channel is

disabled by the initialization function. To begin a DMA transfer, the DMA channel must be enabled.

The DMA status register bits indicate the DMA status for the given channel. The DMA demo program

sets a frame-synchronization-based DMA transfer. After each frame of data has been transferred, the

frame sync status bit of the DMA CSR register will be set. The program checks the frame sync status

bit to monitor the data transfer.

It is a good practice to disable the DMA channel when data transfer has been completed and the DMA

channel will no longer be needed. This can prevent unpredictable behavior. The function dmaReset()

will disable the given DMA channel and reset the DMA registers.

Table 2.35 lists the files used for this DMA experiment. Procedures of the experiment are listed as

follows:

1. Create the project dma.pjt, and add all the files listed in Table 2.35 and the run-time support library

rts55x.lib to the project.

2. Build the project and run the program. What memory mode should be used for this experiment?

Table 2.35 File listing for experiment exp2.10.8_dma

Files Description

dmaTest.c C function for testing DMA experiment

dmaEnable.c C function enables DMA

dmaFrameStat.c C function checks DMA status bit

dmaInit.c C function initializes DMA

dmaReset.c C function resets DMA

emifInit.c C function initializes EMIF for DMA experiment

emif.h C header file for using EMIF initialization function

dma.h C header file for DMA experiment

dma.pjt DSP project file

dma.cmd DSP linker command file

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

EXERCISES 115

References

[1] Texas Instruments, Inc., TMS320C55x DSP CPU Reference Guide, Literature no. SPRU371F, 2004.

[2] Texas Instruments, Inc., TMS320C55x Assembly Language Tools User’s Guide, Literature no. SPRU280G, 2003.

[3] Texas Instruments, Inc., TMS320C55x Optimizing C Compiler User’s Guide, Literature no. SPRU281E, 2003.

[4] Texas Instruments, Inc., TMS320C55x DSP Mnemonic Instruction Set Reference Guide, Literature no.

SPRU374G, 2002.

[5] Texas Instruments, Inc., TMS320C55x DSP Algebraic Instruction Set Reference Guide, Literature no. SPRU375G,

2002.

[6] Texas Instruments, Inc., TMS320C55x Programmer’s Reference Guide, Literature no. SPRU376A, 2001.

[7] Texas Instruments, Inc., TMS320C55x DSP Peripherals Reference Guide, Literature no. SPRU317G, 2004.

[8] ITU Recommendation G.711, ‘Pulse code modulation (PCM) of voice frequencies,’ CCITT Series G Recom-
mendations, 1988.

[9] Texas Instruments, Inc., TMS320VC5510 DSP External Memory Interface (EMIF) Reference Guide, Literature

no. SPRU590, Aug. 2004.

[10] Micron, Technology, Inc., Synchronous DRAM MT48LC2M32B2 – 512K x 32 x 4 Banks, Specification, Literature

no. Advanced Micro Devices, Inc.

[11] Advance Micro Devices, Inc., Am29LV400B 4 Megabit (512k x 8-Bit/256K x 16-Bit) COMS 3.0 Volt-only Boot
Sector FLASH Memory Data Sheet, July 2003.

[12] Texas Instruments, Inc., TLV320AIC23B Stereo Audio Codec, 8-96 kHz, With Integrated Headphone Amplifier
Data Manual, Literature no. SLWS106F, 2004.

Exercises

1. Check the following examples to determine if these are correct parallel instructions. If not, correct the

problems:

(a) mov *AR1+,AC1
:: add @x,AR2

(b) mov AC0,dbl(*AR2+)
:: mov dbl(*AR1+T0),AC2

(c) mpy *AR1+,*AR2+,AC0
:: mpy *AR3+,*AR2+,AC1
| | rpt #127

2. Given a memory block, XAR0, XDP, and T0 as shown in Figure 2.24. Determine the contents of AC0, AR0,

and T0 after the execution of the following instructions:

(a) mov *(#x+2),AC0

(b) mov @(x-x+1),AC0

(c) mov @(x-x+0x80),AC0

(d) mov *AR0+,AC0

(e) mov *(AR0+T0),AC0

(f) mov *AR0(T0),AC0

(g) mov *AR0+T0,AC0

(h) mov *AR0(#-1),AC0

(i) mov *AR0(#2),AC0

(j) mov *AR0(#0x80),AC0

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

116 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

0xFFFF

0x0000

0x1111

0x2222

0x3333

0x4444

0x00FFFF

x=0x010000

0x010001

0x010002

0x010003

0x010004

Data
memory

Address:

0x80800x010080

:

:

:

:

0x0004

0x010000XDP

T0

0x010000XAR0

Figure 2.24 Contents of data memory and registers

3. Use Table 2.36 to show how the C compiler passes parameters for the following C functions:

(a) short func_a(long, short, short, short, short, short,
short *, short *, short *, short *);

var = func_a(0xD32E0E1D, 0, 1, 2, 3, 4,pa, pb, pc, pd);

(b) short func_b(long, long, long, short, short, short,
short *, short *, short *, short *);

var = func_b(0x12344321, 0, 1, 2, 3, 4,pa, pb, pc, pd);

(c) long func_c(short, short *, short *, short, short, long,
short *, short *, long, long);

var = func_c(0x2468ABCD, p0, p1, 1, 2, 0x1001,
p2, p3, 0x98765432, 0x0);

Table 2.36 List of parameters passed by the C55x C compiler

T0 T1 T2 T3 AC0 AC1 AC2 AC3

XAR0 XAR1 XAR2 XAR3 XAR4 XAR6 XAR6 XAR7

SP(−3) SP(−2) SP(−1) SP(0) SP(1) SP(2) SP(3) var

4. The complex vector multiplication can be represented as z = x · y = (a + jb) · (c + jd). The following

C-callable assembly routine is written to compute the complex vector multiplication. Identify potential pro-

gramming errors (bugs) in this assembly routine. Correct the errors and test it using CCS.

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

EXERCISES 117

.data
x .word 1,2 ; Complex vector x = a+jb = 1+2j
y .word 7,8 ; Complex vector y = c+jd = 7+8j

.bss z,2,1,1 ; For storing complex vector multiplication

.global complexVectMult

.text
complexVectMult

mov #x, AR0
mov #Y, CDP
mov #Z, AR1
mov #1, T0
mpy *AR0,*CDP+,AC0 ; AC0 = a*c

:: mpy *AR0(T0),*CDP+,AC1 ; AC1 = b*c
mas *AR0(T0),*CDP+,AC0 ; AC0 = a*c-b*d

:: mac *AR0,*CDP+,AC1 ; AC1 = b*c+a*d
mov pair(LO(AC0)),*AR1+ ; Store the result (a+jb)(c+jd)=-9+22j
.end

5. Some applications require the use of extended precision arithmetic. For example, the 32-bit by 32-bit integer

multiplication will have a 64-bit result. The implementation of the double-precision multiplication can be

described by the following figure:

YH YL

XH XL

x

XL YL

XH YL

XL YH

XH YH+

Z4 Z3 Z2 Z1=

The following assembly routine is written for computing the 32-bit by 32-bit integer multiplication. Identify

potential programming errors (bugs) within this assembly routine. Correct the errors and test it using CCS.

.data
x .long 0x13579bdf ; 32-bit data
y .long 0x2468ace0 ; 32-bit data

.bss z,4,1,1 ; 64-bit result

.global _mult32x32

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

118 INTRODUCTION TO TMS320C55X DIGITAL SIGNAL PROCESSOR

.text
_mult32x32

amov #x, XAR0
amov #y, XAR1
amov #z, XAR2
amar *AR0+

|| amar *AR1+
add #3,AR2

|| mpym *AR0-, *AR1,AC0 ; AC0 = XL*YL
mov AC0,*AR2- ; Save Z1
macm *AR0+,*AR1-,AC0>>16,AC0 ; AC0 = (XH*YL) + (XL*YL)>>16
macm *AR0-,*AR1,AC0 ; AC0 += (XL*YH)
mov AC0,*AR2- ; Save Z2
macm *AR0,*AR1,AC0>>16,AC0 ; AC0 = (XH*YH) + (AC0)>>16
mov AC0,*AR2- ; Save Z3
mov HI(AC0),*AR2 ; Save Z4
ret
.end

6. Based on the previous experiment on interfacing C with assembly code, write a C-callable assembly function

to compute d = a · b · c, where a = 0x400, b = 0x600, and c = 0x4000. The assembly function should pass

three variables a, b, and c into the assembly routine, and return the result to the C function. Check the result and

explain why.

7. Refer to the previous experiment on addressing modes using assembly programming to write an assembly routine

that uses indirect addressing mode to compute an 8 × 8 matrix of B = A′ · X .

8. Write an assembly routine computing the following matrix operation to obtain Y, Cr, and Cb from given R, G,

and B data. The values of the R, G, and B are 8-bit integers.

⎡⎣ 65 129 25

−38 −74 112

112 −94 −18

⎤⎦ ⎡⎣ R
G
B

⎤⎦ +
⎡⎣ 16

128

128

⎤⎦ =
⎡⎣ Y

Cr
Cb

⎤⎦ ·

9. Write a C-callable assembly function that performs the following functions:

(a) Find the maximum and minimum values of the data file ‘dtmf18005551234.dat’, which is used by

previous experiment on programming flash memory devices.

(b) Calculate the average (mean) value of the data file ‘dtmf18005551234.dat’.

10. Write a C-callable assembly function that sorts the data file ‘dtmf18005551234.dat’ and write the sorting

result into a memory location starting from the maximum in a decent order. Using the CCS graphic feature, plot

both the ‘dtmf18005551234.dat’ and the sorted result.

11. Based on the experiment program examples given in Sections 2.10.5 and 2.10.7, write a program that writes

the data file ‘dtmf18005551234.dat’ into flash memory and playback the data from flash memory using

C5510 DSK. Add a timer that generates interrupt every 10 s. Using this timer automatically plays back the data

file stored in flash memory every 10 s. In this experiment, we will learn how to set up C55x timers and create a

timer interrupt for a given rate.

12. We introduced flash memory programming in Section 2.10.5. The flash erase and programming are done for

whole chip. Refer to the flash memory datasheet to develop a flash program that can erase sections instead of

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

EXERCISES 119

the whole chip and program memory in selected sections. This experiment is intended to create a flash memory

update utility.

13. Based on the AIC23 experiment given in Section 2.10.7, develop an audio loopback program. The sampling rate

of the AIC23 is 8 kHz in 16-bit data format. The DSK audio input is the stereo line-in and the DSK output is the

stereo headphone output. Connect an audio source such as a CD player to the DSK audio input and playback

the audio output through the DSK headphone output. Adjust the AIC23 control registers to set proper gain of

the input and output signal levels. In this experiment, we will learn the detailed control register settings for the

AIC23, and will be able to adjust the AIC23 to meet the application requirements.

14. Modify above real-time DSP program to make the audio loopback using McBSP interrupt event and ISR instead of

polling the McBSP status bit. From this experiment, we will learn how the interrupt and ISR work in conjunction

with McBSP.

15. Modify the audio loopback program to use DMA channels, so the audio samples will be buffered into 80 samples

for the transmitter and receiver. The interrupt to the transmitter and receiver should occur every 80 samples. In

this experiment, the audio is processed in blocks of 80 samples. This is a challenging experiment that requires

the knowledge of DMA, McBSP, flash memory, AIC23, and the DSK system. The DMA event and McBSP

interrupt along with audio sample management are all involved.

16. Create an experiment that configures the DSK for multichannel DMA data transfer. For the first DMA data

transfer, the data source is in SRAM and the destination is SDRAM. The transfer data size is 8192 bytes. For

the second DMA data transfer, the data source is in SDRAM and the destination is DARAM. The transfer data

size is 4096 bytes. Write the program such that the data transfers will be performed at the same time for both

DMA paths.

JWBK080-02 JWBK080-Kuo March 9, 2006 20:47 Char Count= 0

120

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

3
DSP Fundamentals and
Implementation
Considerations

This chapter presents fundamental DSP concepts and practical implementation considerations for the

digital filters and algorithms. DSP implementations, especially using fixed-point processors, require

special attention due to the quantization and arithmetic errors.

3.1 Digital Signals and Systems

In this section, we will introduce some widely used digital signals and simple DSP systems.

3.1.1 Elementary Digital Signals

Signals can be classified as deterministic or random. Deterministic signals are used for test purposes

and can be described mathematically. Random signals are information-bearing signals such as speech.

Some deterministic signals will be introduced in this section, while random signals will be discussed in

Section 3.3.

A digital signal is a sequence of numbers x(n), −∞ < n < ∞, where n is the time index. The unit-

impulse sequence, with only one nonzero value at n = 0, is defined as

δ(n) =
{

1, n = 0

0, n �= 0
, (3.1)

where δ(n) is also called the Kronecker delta function. This unit-impulse sequence is very useful for

testing and analyzing the characteristics of DSP systems.

The unit-step sequence is defined as

u(n) =
{

1, n ≥ 0

0, n < 0
. (3.2)

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

121

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

122 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

This function is very convenient for describing causal signals, which are the most commonly encountered

signals in real-time DSP systems.

Sinusoidal signals (sinusoids, tones, or sinewaves) can be expressed in a simple mathematical formula.

An analog sinewave can be expressed as

x(t) = A sin (�t + φ) = A sin (2π f t + φ) , (3.3)

where A is the amplitude of the sinewave.

� = 2π f (3.4)

is the frequency in radians per second (rad/s), f is the frequency in cycles per second (Hz), and φ is the

phase in radians.

The digital signal corresponding to the analog sinewave defined in Equation (3.3) can be expressed as

x(n) = A sin (�nT + φ) = A sin (2π fnT + φ) , (3.5)

where T is the sampling period in seconds. This digital sequence can also be expressed as

x(n) = A sin (ωn + φ) = A sin (πFn + φ) , (3.6)

where

ω = �T = 2π f

fs

(3.7)

is the digital frequency in radians per sample, and

F = ω

π
= f

(fs/2)
(3.8)

is the normalized digital frequency in cycles per sample.

The units, relationships, and ranges of these analog and digital frequency variables are summarized

in Table 3.1. Sampling of analog signals implies a mapping of an infinite range of analog frequency

variable f (or �) into a finite range of digital frequency variable F (or ω). The highest frequency in a

digital signal is F = 1 (or ω = π) based on the sampling theorem defined in Equation (1.3). Therefore,

the spectrum of digital signals is restricted to a limited range as shown in Table 3.1.

Example 3.1: Generate 32 samples of a sinewave with A = 2, f = 1000 Hz, and fs = 8 kHz

using MATLAB program.

Since F = f
(fs/2)

= 0.25, we have ω = π F = 0.25π . From Equation (3.6), we can express the

generated sinewave as x(n) = 2 sin (ωn), n = 0, 1, . . . , 31. The generated sinewave samples are

Table 3.1 Units, relationships, and ranges of four frequency variables

Variables Unit Relationship Range

� Radians per second � = 2π f −∞ < � < ∞
f Cycles per second (Hz) f = F fs

2 = ω
2πT −∞ < f < ∞

ω Radians per sample ω = �T = π F −π ≤ ω ≤ π

F Cycles per sample F = f
(fs/2) −1 ≤ F ≤ 1

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

DIGITAL SIGNALS AND SYSTEMS 123

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2
0 5 10 15 20 25 30

A
m

p
li

tu
d
e

Time index, n

Figure 3.1 An example of sinewave with A = 2 and ω = 0.25 π

plotted (shown in Figure 3.1) and saved in a data file (sine.dat) using ASCII format using the

following MATLAB script (example3_1.m):

n = [0:31]; % Time index n
omega = 0.25*pi; % Digital frequency
xn = 2*sin(omega*n); % Sinewave generation
plot(n, xn, '-o'); % Samples are marked by 'o'
xlabel('Time index, n');
ylabel('Amplitude');
axis([0 31 -2 2]);
save sine.dat xn -ascii ;

Note that F = 0.25 means there are four samples from 0 to π , resulting in eight samples per period

of sinewave, which is clearly indicated in Figure 3.1.

3.1.2 Block Diagram Representation of Digital Systems

A DSP system performs prescribed operations on signals. The processing of digital signals can be

described as combinations of certain basic operations including addition (or subtraction), multiplication,

and time shift (or delay). Thus, a DSP system consists of the interconnection of three basic elements:

adders, multipliers, and delay units.

Two signals, x1(n) and x2(n), can be added as illustrated in Figure 3.2, where the adder output is

expressed as

y(n) = x1(n) + x2(n). (3.9)

The adder could be drawn as a multi-input adder with more than two inputs, but the additions are typically

performed with two inputs at a time. The addition operation of Equation (3.9) can be implemented as the

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

124 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

x2 (n)

x1 (n)

y(n)

Σ
++ x2 (n)

x1 (n)

or
y(n)

Figure 3.2 Block diagram of an adder

following C55x code using direct addressing mode:

mov @x1n,AC0 ; AC0 = x1(n)
add @x2n,AC0 ; AC0 = x1(n)+x2(n)
mov AC0,@yn ; y = x1(n)+x2(n)

A given signal can be multiplied by a scalar, α, as illustrated in Figure 3.3, where x(n) is the multiplier

input and the multiplier’s output is

y(n) = αx(n). (3.10)

Multiplication of a sequence by a scalar, α, results in a sequence that is scaled by α. The output sig-

nal is amplified if |α| > 1, or attenuated if |α| < 1. The multiply operation of Equation (3.10) can be

implemented as the following C55x code using indirect addressing mode:

amov #alpha,XAR1 ; AR1 points to alpha (α)
amov #xn,XAR2 ; AR2 points to x(n)
amov #yn,XAR3 ; AR3 points to y(n)
mpy *AR1,*AR2,AC0 ; AC0 = α *x(n)
mov AC0,*AR3 ; y = α *x(n)

The sequence x(n) can be delayed in time by one sampling period, T , as illustrated in Figure 3.4,

where the box labeled z−1 represents the unit delay, x(n) is the input signal, and the output signal

y(n) = x(n − 1). (3.11)

In fact, the signal x(n − 1) is actually the previously stored signal in memory before the current time

n. Therefore, the delay unit is very easy to realize in a digital system with memory, but is difficult to

implement in an analog system. A delay by more than one unit can be implemented by cascading several

delay units in a row. Therefore, an L-unit delay requires L memory locations configured as a first-in

first-out buffer (tapped-delay line or simply delay line) in memory.

There are several methods to implement delay operations on the TMS320C55x. The following code

uses a delay instruction to move the contents of the addressed data memory location into the next higher

address location:

amov #xn,XAR1 ; AR1 points to x(n)
delay *AR1 ; Contents of x(n) is copied to x(n-1)

x(n) x(n)y(n) y(n)α α
or

Figure 3.3 Block diagram of a multiplier

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

DIGITAL SIGNALS AND SYSTEMS 125

x(n) y(n) = x(n − 1)

z−1

Figure 3.4 Block diagram of a unit delay

Example 3.2: Consider a simple DSP system described by the difference equation

y(n) = αx(n) + αx(n − 1). (3.12)

The block diagram of the system using the three basic building blocks is sketched in Figure 3.5(a),

which shows that the output signal y(n) is computed using two multiplications and one addition. A

simple algebraic simplification may be used to reduce computational requirements. For example,

Equation (3.12) can be rewritten as

y(n) = α [x(n) + x(n − 1)] . (3.13)

The implementation of this difference equation is illustrated in Figure 3.5(b), where only one

multiplication is required. This example shows that with careful design (or optimization), the

complexity of the system (or algorithm) can be further reduced.

Example 3.3: In practice, the complexity of algorithm also depends on the architecture and

instruction set of the DSP processor. For example, the C55x implementation of Equation (3.13)

can be written as

amov #alpha,XAR1 ; AR1 points to α

amov #temp,XAR2 ; AR2 points to temp
amov #yn,XAR4 ; AR4 points to yn
mov *(x1n),AC0 ; AC0 = x1(n)
add *(x2n),AC0 ; AC0 = x1(n)+x2(n)

x(n)

x(n)

x(n − 1)

x(n − 1)

z−1

y(n)

y(n)

z−1

α α

α

++
Σ

++
Σ

(b)

(a)

Figure 3.5 Block diagrams of DSP systems: (a) direct realization described in (3.12); (b) simplified implementation

given in (3.13)

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

126 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

mov AC0,*AR2 ; temp = x1(n)+x2(n), pointed by AR2
mpy *AR1,*AR2,AC1 ; AC1 = α *[x1(n)+x2(n)]
mov AC1,*AR4 ; yn = α *[x1(n)+x2(n)]

Equation (3.12) can be implemented as

amov #x1n,XAR1 ; AR1 points to x1(n)
amov #x2n,XAR2 ; AR2 points to x2(n)
amov #alpha,XAR3 ; AR3 points to α

amov #yn,XAR4 ; AR4 points to yn
mpy *AR1,*AR3,AC1 ; AC1 = α *x1(n)
mac *AR2,*AR3,AC1 ; AC1 = α *x1(n)+ α *x2(n)
mov AC1,*AR4 ; yn = α *x1(n)+ α *x2(n)

This example shows Equation (3.12) is more efficient for implementation on the TMS320C55x

because its architecture is optimized for the sum of products operation. Therefore, the complexity

of DSP algorithm cannot be simply measured by the number of required multiplications.

When the multiplier coefficient α is a number with a base of 2 such as 0.25 (1/4), we can use shift

operation instead of multiplication. The following example uses the absolute addressing mode:

mov *(x1n)<<#-2,AC0 ; AC0 = 0.25*x1(n)
add *(x2n)<<#-2,AC0 ; AC0 = 0.25*x1(n)+0.25*x2(n)

where the right-shift option, <<#-2, shifts the contents of x1n and x2n to the right by 2 bits. This is

equivalent to dividing the number by 4.

3.2 System Concepts

In this section, we introduce several techniques for describing and analyzing the linear time-invariant

(LTI) digital systems.

3.2.1 Linear Time-Invariant Systems

If the input signal to an LTI system is the unit-impulse sequence δ(n) defined in Equation (3.1), then the

output signal is called the impulse response of the system, h(n).

Example 3.4: Consider a digital system with the I/O equation

y(n) = b0x(n) + b1x(n − 1) + b2x(n − 2). (3.14)

Applying the unit-impulse sequence δ(n) to the input of the system, the outputs are the impulse

response coefficients and can be computed as follows:

h(0) = y(0) = b0 · 1 + b1 · 0 + b2 · 0 = b0

h(1) = y(1) = b0 · 0 + b1 · 1 + b2 · 0 = b1

h(2) = y(2) = b0 · 0 + b1 · 0 + b2 · 1 = b2

h(3) = y(3) = b0 · 0 + b1 · 0 + b2 · 0 = 0
...

Therefore, the impulse response of the system defined in Equation (3.14) is {b0, b1, b2, 0, 0, . . . }.

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

SYSTEM CONCEPTS 127

x(n) x(n − 1) x(n − L + 1)

bL−1b1b0

y(n)

z−1 z−1

+

+ +
Σ

Figure 3.6 Detailed signal-flow diagram of an FIR filter

The I/O equation given in (3.14) can be generalized with L coefficients, expressed as

y(n) = b0x(n) + b1x(n − 1) + · · · + bL−1x(n − L + 1)

=
L−1∑
l=0

bl x(n − l). (3.15)

Substituting x(n) = δ(n) into Equation (3.15), the output is the impulse response expressed as

h(n) =
L−1∑
l=0

blδ(n − l)

=
{

bn n = 0, 1, . . . , L − 1

0 otherwise
. (3.16)

Therefore, the length of the impulse response is L for the system defined in Equation (3.15). Such a

system is called a finite impulse response (FIR) filter. The coefficients, bl , l = 0, 1, . . . , L − 1, are called

filter coefficients (also called as weights or taps). For FIR filters, the filter coefficients are identical to the

impulse response coefficients.

The signal-flow diagram of the system described by the I/O equation (3.15) is illustrated in Figure 3.6.

The string of z−1 units is called a tapped-delay line. The parameter, L , is the length of the FIR filter. Note

that the order of filter is L − 1 for the FIR filter with length L since they are L − 1 zeros. The design

and implementation of FIR filters will be further discussed in Chapter 4.

The moving (running) average filter is a simple example of FIR filter. Consider an L-point

moving-average filter defined as

y(n) = 1

L
[x(n) + x(n − 1) + · · · + x(n − L + 1)]

= 1

L

L−1∑
l=0

x(n − l), (3.17)

where each output signal is the average of L consecutive input samples. Implementation of Equation

(3.17) requires L − 1 additions and L memory locations for storing signal samples x(n), x(n − 1), . . . ,

x(n − L + 1) in a memory buffer. Note that the division by a constant L can be implemented by multi-

plication of constant α, where α = 1/L .

As illustrated in Figure 3.6, the signal samples used to compute the output signal are L samples included

in the window at time n. These samples are almost the same as those samples used for the previous window

at time n− 1 to compute y(n− 1), except that the oldest sample x(n − L) of the window at time n − 1 is

replaced by the newest sample x(n) of the window at time n. The concept of moving window is illustrated

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

128 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Window at time n

Window at time n − 1

n − 1

n − L + 1

n − L
Time

n

Figure 3.7 Time windows at current time n and previous time n − 1

in Figure 3.7. Therefore, the averaged signal, y(n), can be computed recursively as

y(n) = y(n − 1) + 1

L
[x(n) − x(n − L)] . (3.18)

This recursive equation can be realized by using only two additions. However, we still need L + 1 memory

locations for keeping L + 1 signal samples [x(n)x(n − 1) . . . x(n − L)].

Example 3.5: The following C55x assembly code illustrates the implementation of the moving-

average filter of L = 8 based on Equation (3.18):

L .set 8 ; Length of filter
xin .usect "indata",1
xbuffer .usect "indata",L ; Length of buffer
y .usect "outdata",2,1,1 ; Long-word format

amov #xbuffer+L-1,XAR3 ; AR3 points to end of x buffer
amov #xbuffer+L-2,XAR2 ; AR2 points to next sample
mov dbl(*(y)),AC1 ; AC1 = y(n-1) in long format
mov *(xin),AC0 ; AC0 = x(n)
sub *AR3,AC0 ; AC0 = x(n)-x(n-L)
add AC0,#-3,AC1 ; AC0 = y(n-1)+1/L[x(n)-x(n-L)]
mov AC1,dbl(*(y)) ; AC1 = y(n)
rpt #(L-2) ; Update the tapped-delay-line
mov *AR2-,*AR3- ; x(n-1) = x(n)
mov *(xin),AC0 ; Update the newest sample x(n)
mov AC0,*AR3 ; x(n) = input xin

Consider an LTI system illustrated in Figure 3.8, the output of the system can be expressed as

y(n) = x(n) ∗ h(n) = h(n) ∗ x(n)

=
∞∑

l=−∞
x(l)h(n − l) =

∞∑
l=−∞

h(l)x(n − l), (3.19)

where * denotes the linear convolution. The exact internal structure of the system is either unknown or

ignored. The only way to interact with the system is by using its input and output terminals as shown in

Figure 3.8. This ‘black box’ representation is a very effective way to depict complicated DSP systems.

h(n)
y(n) = x(n)*h(n)x(n)

Figure 3.8 An LTI system expressed in time domain

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

SYSTEM CONCEPTS 129

A digital system is called the causal system if and only if

h(n) = 0, n < 0. (3.20)

A causal system does not provide a zero-state response prior to input application; that is, the output

depends only on the present and previous samples of the input. This is an obvious property for real-time

DSP systems since we simply do not have future data. However, if the data is recorded and processed

later, the algorithm operating on this data set does not need to be causal. For a causal system, the limits

on the summation of Equation (3.19) can be modified to reflect this restriction as

y(n) =
∞∑

l=0

h(l)x(n − l). (3.21)

Example 3.6: Consider the I/O equation of the digital system expressed as

y(n) = bx(n) − ay(n − 1), (3.22)

where each output signal y(n) is dependent on the current input signal x(n) and the previous output

signal y(n − 1). Assuming that the system is causal, i.e., y(n) = 0 for n < 0 and let x(n) = δ(n).

The output signals are computed as

y(0) = bx(0) − ay(−1) = b
y(1) = bx(1) − ay(0) = −ay(0) = −ab
y(2) = bx(2) − ay(1) = −ay(1) = a2b
...

In general, we have

y(n) = (−1)nanb, n = 0, 1, 2, . . . ,∞.

This system has infinite impulse response h(n) if the coefficients a and b are nonzero.

A digital filter can be classified as either an FIR filter or an infinite impulse response (IIR) filter,

depending on whether or not the impulse response of the filter is of finite or infinite duration. The system

defined in Equation (3.22) is an IIR system (or filter) since it has infinite impulse response as shown in

Example 3.6. The I/O equation of the IIR system can be generalized as

y(n) = b0x(n) + b1x(n − 1) + · · · + bL−1x(n − L + 1) − a1 y(n − 1) − · · · − aM y(n − M)

=
L−1∑
l=0

bl x(n − l) −
M∑

m=1

am y(n − m). (3.23)

This IIR system is represented by a set of feedforward coefficients {bl , l = 0, 1, . . . , L − 1} and a set

of feedback coefficients {am, m = 1, 2, . . . , M}. Since the outputs are fed back and combined with the

weighted inputs, IIR systems are feedback systems. Note that when all am are zero, Equation (3.23) is

identical to Equation (3.15). Therefore, an FIR filter is a special case of an IIR filter without feedback

coefficients.

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

130 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Example 3.7: The IIR filters given in Equation (3.23) can be implemented using the MATLAB

function filter as follows:

yn = filter(b, a, xn);

The vector b contains feedforward coefficients {bl , l = 0, 1, . . . , L − 1} and the vector a contains

feedback coefficients {am, m = 0, 1, 2, . . . , M , where a0 = 1}. The signal vectors xn and yn are

the input and output buffers of the system, respectively. The FIR filter defined in Equation (3.15)

can be implemented as follows:

yn = filter(b, 1, xn);

This is because all am are zero except a0 = 1 for an FIR filter.

Example 3.8: Assume that L is large enough so that the oldest sample x(n − L) can be ap-

proximated by its average y(n − 1). The moving-average filter defined in Equation (3.18) can be

approximated as

y(n) ∼=
(

1 − 1

L

)
y(n − 1) + 1

L
x(n)

= (1 − α) y(n − 1) + αx(n), (3.24)

where α = 1/L . This is a simple first-order IIR filter. Compared with Equation (3.18), we need

two multiplications instead of one, but only need two memory locations instead of L + 1. Thus,

Equation (3.24) is the most efficient way of approximating a moving-average filtering.

3.2.2 The z-Transform

Continuous-time systems are commonly analyzed using the Laplace transform. For discrete-time systems,

the transform corresponding to the Laplace transform is the z-transform. The z-transform (ZT[.]) of a

digital signal, x(n), −∞ < n < ∞, is defined as the power series:

X (z) =
∞∑

n=−∞
x(n)z−n, (3.25)

where X (z) represents the z-transform of x(n). The variable z is a complex variable, and can be expressed

in polar form as

z = re jθ , (3.26)

where r is the magnitude (radius) of z and θ is the angle of z. When r = 1, |z| = 1 is called the unit circle

on the z-plane. Since the z-transform involves an infinite power series, it exists only for those values of

z where the power series defined in Equation (3.25) converges. The region on the complex z-plane in

which the power series converges is called the region of convergence.

For causal signals, the two-sided z-transform defined in Equation (3.25) becomes a one-sided

z-transform expressed as

X (z) =
∞∑

n=0

x(n)z−n . (3.27)

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

SYSTEM CONCEPTS 131

Example 3.9: Consider the exponential function

x(n) = anu(n).

The z-transform can be computed as

X (z) =
∞∑

n=−∞
anz−nu(n) =

∞∑
n=0

(
az−1

)n
.

Using the infinite geometric series given in Appendix A, we have

X (z) = 1

1 − az−1
= z

z − a
if

∣∣az−1
∣∣ < 1.

The equivalent condition for convergence is

|z| > |a| ,

which is the region outside the circle with radius a.

The properties of the z-transform are extremely useful for the analysis of discrete-time LTI systems.

These properties are summarized as follows:

1. Linearity (superposition): The z-transform of the sum of two sequences is the sum of the z-transforms

of the individual sequences. That is,

ZT [a1x1(n) + a2x2(n)] = a1 ZT [x1(n)] + a2 ZT [x2(n)]

= a1 X1(z) + a2 X2(z), (3.28)

where a1 and a2 are constants.

2. Time shifting: The z-transform of the shifted (delayed) signal y(n) = x(n − k) is

Y (z) = ZT [x(n − k)] = z−k X (z). (3.29)

Thus, the effect of delaying a signal by k samples is equivalent to multiplying its z-transform by a

factor of z−k . For example, ZT [x(n − 1)] = z−1 X (z). The unit delay z−1 corresponds to a time shift

of one sample in the time domain.

3. Convolution: Consider the signal

x(n) = x1(n) ∗ x2(n), (3.30)

we have

X (z) = X1(z)X2(z). (3.31)

The z-transform converts the convolution in time domain to the multiplication in z domain.

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

132 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

The inverse z-transform is defined as

x(n) = ZT−1[X (z)] = 1

2π j

∮
C

X (z)zn−1dz, (3.32)

where C denotes the closed contour of X (z) taken in a counterclockwise direction. Several methods

are available for finding the inverse z-transform: long division, partial-fraction expansion, and residue

method. A limitation of the long-division method is that it does not lead to a closed form solution.

However, it is simple and lends itself to software implementation. Both the partial-fraction-expansion

and the residue methods lead to closed form solutions. The main disadvantage is the need to factorize

the denominator polynomial, which is difficult if the order of X (z) is high.

3.2.3 Transfer Functions

Consider the LTI system illustrated in Figure 3.8. Using the convolution property, we have

Y (z) = X (z)H (z), (3.33)

where X (z) = ZT[x(n)], Y (z) = ZT[y(n)], and H (z) = ZT[h(n)]. The combination of time- and

frequency-domain representations of LTI system is illustrated in Figure 3.9. This diagram shows that we

can replace the time-domain convolution by the z-domain multiplication.

The transfer function of an LTI system is defined in terms of the system’s input and output. From

Equation (3.33), we have

H (z) = Y (z)

X (z)
. (3.34)

The z-transform can be used in creating alternative filters that have exactly the same input–output behavior.

An important example is the cascade or parallel connection of two or more systems, as illustrated in

Figure 3.10. In the cascade (series) interconnection shown in Figure 3.10(a), we have

Y1(z) = X (z)H1(z) and Y (z) = Y1(z)H2(z).

Thus,

Y (z) = X (z)H1(z)H2(z).

h(n) y(n) = x(n)*h(n)x(n)

H(z) Y(z) = X(z)H(z)X(z)

ZT ZT ZT−1

Figure 3.9 A block diagram of LTI system in both time domain and z domain

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

SYSTEM CONCEPTS 133

H(z)

H1(z)

H2(z)

x(n) y (n)

y2(n)

y1(n)

H(z)

H1(z) H2(z)
x(n)

X(z)

y(n)

Y(z)

y1(n)

Y1(z)

(a)

(b)

Figure 3.10 Interconnect of digital systems: (a) cascade form; (b) parallel form

Therefore, the overall transfer function of the cascade of the two systems is

H (z) = H1(z)H2(z) = H2(z)H1(z). (3.35)

Since multiplication is commutative, the two systems can be cascaded in either order to obtain the same

overall system. The overall impulse response of the system is

h(n) = h1(n) ∗ h2(n) = h2(n) ∗ h1(n). (3.36)

Similarly, the overall impulse response and transfer function of the parallel connection of two LTI

systems shown in Figure 3.10(b) are given by

h(n) = h1(n) + h2(n) (3.37)

and

H (z) = H1(z) + H2(z). (3.38)

If we can multiply several transfer functions to get a higher-order system, we can also factor polynomials

to break down a large system into smaller sections. The concept of parallel and cascade implementation

will be further discussed in the realization of IIR filters in Chapter 5.

Example 3.10: The LTI system with transfer function

H (z) = 1 − 2z−1 + z−3

can be factored as

H (z) = (
1 − z−1

) (
1 − z−1 − z−2

) = H1(z)H2(z).

Thus, the overall system H (z) can be realized as the cascade of the first-order system H1(z) =
1 − z−1 and the second-order system H2(z) = 1 − z−1 − z−2.

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

134 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

The I/O equation of an FIR filter is given in Equation (3.15). Taking the z-transform of both sides, we

have

Y (z) = b0 X (z) + b1z−1 X (z) + · · · + bL−1z−(L−1) X (z)

= (
b0 + b1z−1 + · · · + bL−1z−(L−1)

)
X (z). (3.39)

Therefore, the transfer function of the FIR filter is expressed as

H (z) = b0 + b1z−1 + · · · + bL−1z−(L−1) =
L−1∑
l=0

bl z
−l . (3.40)

Similarly, taking the z-transform of both sides of the IIR filter defined in Equation (3.23) yields

Y (z) = b0 X (z) + b1z−1 X (z) + · · · + bL−1z−L+1 X (z) − a1z−1Y (z) − · · · − aM z−M Y (z)

=
(

L−1∑
l=0

bl z
−l

)
X (z) −

(
M∑

m=1

am z−m

)
Y (z). (3.41)

By rearranging the terms, we can derive the transfer function of the IIR filter as

H (z) =

L−1∑
l=0

bl z−l

1 +
M∑

m=1

am z−m

=

L−1∑
l=0

bl z−l

M∑
m=0

am z−m

, (3.42)

where a0 = 1. A detailed block diagram of an IIR filter is illustrated in Figure 3.11 for M = L − 1.

Example 3.11: Consider the moving-average filter given in Equation (3.17). Taking the

z-transform of both sides, we have

Y (z) = 1

L

L−1∑
l=0

z−l X (z).

y(n)

z−1z−1

z−1 z−1

y(n − 1)

y(n − 2)

y(n − M)

−a1

−a2

−aMbL − 1

b2

b1

b0x(n)

x(n−L+1)

Figure 3.11 Detailed signal-flow diagram of an IIR filter

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

SYSTEM CONCEPTS 135

Using the geometric series defined in Appendix A, the transfer function of the filter can be expressed

as

H (z) = 1

L

L−1∑
l=0

z−l = 1

L

(
1 − z−L

1 − z−1

)
= Y (z)

X (z)
. (3.43)

This equation can be rearranged as

Y (z) = z−1Y (z) + 1

L

[
X (z) − z−L X (z)

]
.

Taking the inverse z-transform of both sides, we obtain

y(n) = y(n − 1) + 1

L
[x(n) − x(n − L)] .

This is an effective way of deriving Equation (3.18) from (3.17).

3.2.4 Poles and Zeros

Factoring the numerator and denominator polynomials of H (z), Equation (3.42) can be expressed as the

following rational function:

H (z) = b0

L−1∏
l=1

(z − zl)

M∏
m=1

(z − pm)

= b0(z − z1)(z − z2) · · · (z − zL−1)

(z − p1)(z − p2) · · · (z − pM)
. (3.44)

The roots of the numerator polynomial are the zeros of the transfer function H (z) since they are the values

of z for which H (z) = 0. Thus, H (z) given in Equation (3.44) has (L − 1) zeros at z = z1, z2, . . . , zL−1.

The roots of the denominator polynomial are the poles since they are the values of z such that H (z) = ∞,

and there are M poles at z = p1, p2, . . . , pM . The LTI system described in Equation (3.44) is a pole-zero

system, while the system described in Equation (3.40) is an all-zero system.

Example 3.12: The roots of the numerator polynomial defined in Equation (3.43) determine the

zeros of H (z), i.e., zL − 1 = 0. Using the complex arithmetic given in Appendix A, we have

zl = e j(2π/L)l , l = 0, 1, . . . , L − 1. (3.45)

Therefore, there are L equally spaced zeros on the unit circle |z| = 1.

Similarly, the poles of H (z) are determined by the roots of the denominator zL−1(z − 1). Thus,

there are L − 1 poles at the origin z = 0 and one pole at z = 1. A pole-zero diagram of H (z) for

L = 8 on the complex z-plane is illustrated in Figure 3.12.

The pole-zero diagram provides an insight into the properties of an LTI system. To find poles and

zeros of a rational function H (z), we can use the MATLAB function roots on both the numerator

and denominator polynomials. Another useful MATLAB function for analyzing transfer function is

zplane(b,a), which displays the pole-zero diagram of H (z).

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

136 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Zero

Re[z]

Pole

|z| =1

Im[z]

7

Figure 3.12 Pole-zero diagram of the moving-average filter, L = 8

Example 3.13: Consider the IIR filter with the transfer function

H (z) = 1

1 − z−1 + 0.9z−2
.

We can plot the pole-zero diagrams using the following MATLAB script (example3_13a.m):

b=[1];
a=[1, -1, 0.9];
zplane(b,a);

Similarly, we can plot (Figure 3.13) the pole-zero diagram of moving-average filter using the

following MATLAB script (example3_13b.m) for L = 8:

b=[1, 0, 0, 0, 0, 0, 0, 0, -1];
a=[1, -1];
zplane(b,a);

As shown in Figure 3.13, the moving-average filter has a single pole at z = 1, which is canceled by

the zero at z = 1. In this case, the pole-zero cancellation occurs in the system transfer function itself. The

portion of the output y(n) that is due to the poles of X (z) is called the forced response of the system. The

portion of the output that is due to the poles of H (z) is called the natural response. If a system has all its

poles within the unit circle, its natural response decays to zero as n → ∞, and this is called the transient

response. If the input to such a system is a sinusoidal signal, the corresponding forced response is called

the sinusoidal steady-state response.

Example 3.14: Consider the recursive moving-window filter given in Equation (3.24). Taking the

z-transform of both sides and rearranging terms, we obtain the transfer function

H (z) = α

1 − (1 − α) z−1
. (3.46)

This is a simple first-order IIR filter with a zero at the origin and a pole at z = 1 − α. A pole-zero

plot of H (z) given in Equation (3.46) is illustrated in Figure 3.14. Note that α = 1
/

L results in

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

SYSTEM CONCEPTS 137

−1

−1

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8

0.1

0

−0.5 0

7

10.5
Real part

Im
ag

in
ar

y
 p

ar
t

Figure 3.13 A pole-zero diagram generated by MATLAB

1 − α = (L − 1)
/

L , which is slightly less than 1. For a longer window, L is large; the value of

1 − α closes to 1, and the pole is closer to the unit circle.

An LTI system H (z) is stable if and only if all the poles are inside the unit circle. That is,

|pm | < 1, for all m. (3.47)

In this case, lim
n→∞

{h(n)} = 0. A system is unstable if H (z) has pole(s) outside the unit circle or multiple-

order pole(s) on the unit circle. For example, if H (z) = z/(z − 1)2, then h(n) = n, which is unstable.

A system is marginally stable, or oscillatory bounded, if H (z) has first-order pole(s) that lie on the unit

circle. For example, if H (z) = z/(z + 1), then h(n) = (−1)n , n ≥ 0.

Zero

Re[z]

Pole

z = 1

Im[z]

Figure 3.14 Pole-zero diagram of the recursive first-order IIR filter

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

138 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Example 3.15: Given an LTI system with transfer function

H (z) = z

z − a
.

There is a zero at the origin z = 0 and a pole at z = a. From Example 3.9, we have

h(n) = an, n ≥ 0.

When |a| > 1, i.e., the pole at z = a is outside the unit circle, we have

lim
n→∞

h(n) → ∞,

that is an unstable system. However, when |a| < 1, i.e., the pole is inside the unit circle, we have

lim
n→∞

h(n) → 0,

which is a stable system.

3.2.5 Frequency Responses

The frequency response of a digital system can be readily obtained from its transfer function H (z) by

setting z = e jω and obtain

H (ω) = H (z) |z=e jω =
∞∑

n=−∞
h(n)z−n |z=e jω =

∞∑
n=−∞

h(n)e− jωn . (3.48)

Thus, the frequency response H (ω) of the system is obtained by evaluating the transfer function on

the unit circle |z| = ∣∣e jω
∣∣ = 1. As summarized in Table 3.1, the digital frequency is in the range of

−π ≤ ω ≤ π .

The characteristics of the system can be described using the frequency response. In general, H (ω) is

a complex-valued function expressed in polar form as

H (ω) = |H (ω)| e jφ(ω), (3.49)

where |H (ω)| is the magnitude (or amplitude) response and φ(ω) is the phase response. The magnitude

response |H (ω)| is an even function of ω, and the phase response φ(ω) is an odd function. Thus, we only

need to evaluate these functions in the frequency region 0 ≤ ω ≤ π . |H (ω)|2 is the squared-magnitude

response, and |H (ω0)| is the system gain at frequency ω0.

Example 3.16: The moving-average filter expressed as

y(n) = 1

2
[x(n) + x(n − 1)] , n ≥ 0

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

SYSTEM CONCEPTS 139

is a simple first-order FIR filter. Taking the z-transform of both sides and rearranging the terms,

we obtain

H (z) = 1

2

(
1 + z−1

)
.

From Equation (3.48), we have

H (ω) = 1

2

(
1 + e− jω

) = 1

2
(1 + cos ω − j sin ω) ,

|H (ω)|2 = {Re [H (ω)]}2 + {Im [H (ω)]}2 = 1

2
(1 + cos ω) ,

φ(ω) = tan−1

{
I m [H (ω)]

Re [H (ω)]

}
= tan−1

(− sin ω

1 + cos ω

)
.

From Appendix A,

sin ω = 2 sin
(ω

2

)
cos

(ω

2

)
and cos ω = 2 cos2

(ω

2

)
− 1.

Therefore, the phase response is

φ(ω) = tan−1
[
− tan

(ω

2

)]
= −ω

2
.

For a given transfer function H (z) expressed in Equation (3.42), the frequency response can be analyzed

using the MATLAB function

[H,w]=freqz(b,a,N);

which returns the N-point frequency vector w and the complex frequency response vector H.

Example 3.17: Consider the IIR filter defined as

y(n) = x(n) + y(n − 1) − 0.9y(n − 2).

The transfer function is

H (z) = 1

1 − z−1 + 0.9z−2
.

The MATLAB script (example3_17a.m) for analyzing the magnitude and phase responses of

this IIR filter is listed as follows:

b=[1]; a=[1, -1, 0.9];
freqz(b,a);

Similarly, we can plot the magnitude and phase responses (shown in Figure 3.15) of the moving-

average filter for L = 8 using the following script (example3_17b.m):

b=[1, 0, 0, 0, 0, 0, 0, 0, -1]; a=[1, -1];
freqz(b,a);

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

140 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

0
−40

−20

20

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
−200

−100

100

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency (xπ rad/sample)

Normalized frequency (xπ rad/sample)

M
ag

n
it

u
d
e

(d
B

)
P

h
as

e
(d

eg
re

es
)

Figure 3.15 Magnitude (top) and phase responses of a moving-average filter, L = 8

A useful method of obtaining the brief frequency response of an LTI system is based on the geometric

evaluation of its poles and zeros. For example, consider a second-order IIR filter expressed as

H (z) = b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2
. (3.50)

The roots of the characteristic equation

z2 + a1z + a2 = 0 (3.51)

are the poles of the filter, which may be either real or complex. Complex poles can be expressed as

p1 = re jθ and p2 = re− jθ , (3.52)

where r is radius of the pole and θ is the angle of the pole. Therefore, (3.51) becomes(
z − re jθ

) (
z − re− jθ

) = z2 − 2r cos θ + r 2 = 0. (3.53)

Comparing this equation with (3.51), we have

r = √
a2 and θ = cos−1

(−a1
/
2r

)
. (3.54)

The system with a pair of complex-conjugated poles as given in Equation (3.52) is illustrated in

Figure 3.16. The filter behaves as a digital resonator for r close to unity. The digital resonator is a

bandpass filter with its passband centered at the resonant frequency θ .

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

SYSTEM CONCEPTS 141

Re[z]

z = 1

Im[z]

r

r

θ

θ

Figure 3.16 A second-order IIR filter with complex-conjugated poles

Similarly, we can obtain two zeros, z1 and z2, by evaluating b0z2 + b1z + b2 = 0. Thus, the transfer

function defined in Equation (3.50) can be expressed as

H (z) = b0 (z − z1) (z − z2)

(z − p1) (z − p2)
. (3.55)

In this case, the frequency response is given by

H (ω) = b0

(
e jω − z1

) (
e jω − z2

)(
e jω − p1

) (
e jω − p2

) . (3.56)

The magnitude response can be obtained by evaluating |H (ω)| as the point z moves in counterclockwise

direction from z = 0 to z = −1 (π) on the unit circle. As the point z moves closer to the pole p1, the

magnitude response increases. The closer r is to the unity, the sharper the peak. On the other hand, as the

point z moves closer to the zero z1, the magnitude response decreases. The magnitude response exhibits

a peak at the pole angle (or frequency), whereas the magnitude response falls to the valley at the angle

of zero.

3.2.6 Discrete Fourier Transform

To perform frequency analysis of x(n), we can convert the time-domain signal into frequency domain using

the z-transform defined in Equation (3.27), and the frequency analysis can be performed by substituting

z = e jω as shown in Equation (3.48). However, X (ω) is a continuous function of continuous frequency

ω, and it also requires an infinite number of x(n) samples for calculation. Therefore, it is difficult to

compute X (ω) using digital hardware.

The discrete Fourier transform (DFT) of N -point signals {x(0), x(1), x(2), . . . , x(N−1)} can be

obtained by sampling X (ω) on the unit circle at N equally-spaced samples at frequencies ωk = 2πk/N ,

k = 0, 1, . . . , N − 1. From Equation (3.48), we have

X (k) = X (ω)|ω=2πk/N =
N−1∑
n=0

x(n)e− j
(

2πk
N

)
n
, k = 0, 1, . . . , N − 1, (3.57)

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

142 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

where n is the time index, k is the frequency index, and X (k) is the kth DFT coefficient. The DFT

can be manipulated to obtain a very efficient computing algorithm called the fast Fourier transform

(FFT). The derivation, implementation, and application of DFT and FFT will be further discussed in

Chapter 6.

MATLAB provides the function fft(x) to compute the DFT of the signal vector x. The function

fft(x,N) performs N -point FFT. If the length of x is less than N, then x is padded with zeros at the end.

If the length of x is greater than N, function fft(x,N) truncates the sequence x and performs DFT of

the first N samples only.

DFT generates N coefficients X (k) for k = 0, 1,. . . N − 1. The frequency resolution of the N -point

DFT is

	 = fs

N
. (3.58)

The frequency fk (in Hz) corresponding to the index k can be computed by

fk = k	 = k fs

N
, k = 0, 1, . . . , N − 1. (3.59)

The Nyquist frequency (fs/2) corresponds to the frequency index k = N/2. Since the magnitude |X (k)|
is an even function of k, we only need to display the spectrum for 0 ≤ k ≤ N/2 (or 0 ≤ ωk ≤ π).

Example 3.18: Similar to Example 3.1, we can generate 100 samples of sinewave with A = 1,

f = 1 kHz, and sampling rate of 10 kHz. The magnitude response of signal can be computed and

plotted (Figure 3.17) using the following MATLAB script (example3_18.m):

N=100; f = 1000; fs = 10000;
n=[0:N-1]; k=[0:N-1];
omega=2*pi*f/fs;
xn=sin(omega*n);
Xk=fft(xn,N); % Perform DFT
magXk=20*log10(abs(Xk)); % Compute magnitude spectrum
plot(k, magXk);
axis([0, N/2, -inf, inf]); % Plot from 0 to pi
xlabel('Frequency index, k');
ylabel('Magnitude in dB');

From Equation (3.58), frequency resolution is 100 Hz. The peak spectrum shown in Figure 3.17

is located at the frequency index k = 10, which corresponds to 1000 Hz as indicated by Equa-

tion (3.59).

3.3 Introduction to Random Variables

The signals encountered in practice are often random signals such as speech and music. In this section,

we will briefly introduce the basic concepts of random variables.

3.3.1 Review of Random Variables

An experiment that has at least two possible outcomes is fundamental to the concept of probability. The

set of all possible outcomes in any given experiment is called the sample space S. A random variable, x ,

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

INTRODUCTION TO RANDOM VARIABLES 143

0
−300

−250

−200

−150

−100

−50

0

5 10 15 20 25 30 35 40 45 50

Frequency index, k

M
ag

n
it

u
d
e,

 d
B

Figure 3.17 Magnitude spectrum of sinewave

is defined as a function that maps all elements from the sample space S into points on the real line. Thus,

a random variable is a number whose value depends on the outcome of an experiment. For example,

considering the outcomes of rolling of a fair die N times, we obtain a discrete random variable that can

be any one of the discrete values from 1 through 6.

The cumulative probability distribution function of a random variable x is defined as

F(X) = P(x ≤ X), (3.60)

where X is a real number ranging from −∞ to ∞, and P(x ≤ X) is the probability of {x ≤ X}.

The probability density function of a random variable x is defined as

f (X) = dF (X)

dX
(3.61)

if the derivative exists. Two important properties of f (X) are summarized as follows:

∫ ∞

−∞
f (X) dX = 1 (3.62)

P (X1 < x ≤ X2) = F (X2) − F (X1) =
∫ X2

X1

f (X) dX . (3.63)

If x is a discrete random variable that can take on any one of the discrete values Xi , i = 1, 2, . . . as

the result of an experiment, we define

pi = P (x = Xi) . (3.64)

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

144 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Example 3.19: Consider a random variable x that has a probability density function

f (X) =
{

0,

a,

x < X1 or x > X2

X1 ≤ x ≤ X2
,

which is uniformly distributed between X1 and X2. The constant value a can be computed using

Equation (3.62). That is,

∫ ∞

−∞
f (X) dX =

∫ X2

X1

a · dX = a (X2 − X1) = 1.

Thus,

a = 1

X2 − X1

.

If a random variable x is equally likely to take on any value between the two limits X1 and X2, and

cannot assume any value outside that range, it is uniformly distributed in the range [X1, X2]. As shown

in Figure 3.18, a uniform density function is defined as

f (X) =
{

1
X2−X1

, X1 ≤ x ≤ X2

0, otherwise
. (3.65)

3.3.2 Operations of Random Variables

The statistics associated with random variables is often more meaningful from a physical viewpoint than

the probability density function. The mean (expected value) of a random variable x is defined as

mx = E [x] =
∫ ∞

−∞
X f (X) dX , continuous-time case

=
∑

i

Xi pi , discrete-time case, (3.66)

where E[.] denotes the expectation operation (or ensemble averaging). The mean mx defines the level

about which the random process x fluctuates.

The expectation is a linear operation. Two useful properties of the expectation operation are E [α] = α

and E [αx] = αE [x], where α is a constant. If E[x] = 0, x is the zero-mean random variable. The

X
X2X1

X2 − X1

0

1

f (X)

Figure 3.18 A uniform density function

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

INTRODUCTION TO RANDOM VARIABLES 145

MATLAB function mean calculates the mean value. For example, the statement mx = mean(x) com-

putes the mean mx of the elements in the vector x.

Example 3.20: Considering the rolling of a fair die N times (N → ∞), the probability of out-

comes is listed as follows:

Xi 1 2 3 4 5 6

pi 1/6 1/6 1/6 1/6 1/6 1/6

The mean of outcomes can be computed as

mx =
6∑

i=1

pi Xi = 1

6
(1 + 2 + 3 + 4 + 5 + 6) = 3.5.

The variance is a measure of the spread about the mean, and is defined as

σ 2
x = E

[
(x − mx)2

]
=

∫ ∞

−∞
(X − mx)2 f (X) dX , continuous-time case

=
∑

i

pi (Xi − mx)2, discrete-time case, (3.67)

where (x − mx) is the deviation of x from the mean value mx . The positive square root of variance

is called the standard deviation σx . The MATLAB function std calculates standard deviation of

the elements in the vector.

The variance defined in Equation (3.67) can be expressed as

σ 2
x = E

[
(x − mx)2

] = E
(
x2 − 2xmx + m2

x

) = E
(
x2

) − 2mx E (x) + m2
x

= E
(
x2

) − m2
x . (3.68)

We call E
(
x2

)
the mean-square value of x . Thus, the variance is the difference between the mean-square

value and the square of the mean value.

If the mean value is equal to zero, then the variance is equal to the mean-square value. For a zero-mean

random variable x , i.e., mx = 0, we have

σ 2
x = E

(
x2

) = Px , (3.69)

which is the power of x .

Consider the uniform density function defined in Equation (3.65). The mean of the function can be

computed by

mx = E [x] =
∫ ∞

−∞
X f (X) dX = 1

X2 − X1

∫ X2

X1

XdX

= X2 − X1

2
. (3.70)

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

146 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

The variance of the function is

σ 2
x = E

(
x2

) − m2
x =

∫ ∞

−∞
X 2 f (X) dX − m2

x

= 1

X2 − X1

∫ X2

X1

X 2 dX − m2
x = 1

X2 − X1

· X 3
2 − X 3

1

3
− m2

x

= (X2 − X1)2

12
. (3.71)

In general, if x is a uniformly distributed random variable in the interval (−	,), we have

mx = 0 and σ 2
x = 	2/

3. (3.72)

Example 3.21: The MATLAB function rand generates pseudo-random numbers uniformly dis-

tributed in the interval [0, 1]. From Equation (3.70), the mean of the generated pseudo-random

numbers is 0.5. From Equation (3.71), the variance is 1/12.

To generate zero-mean random numbers, we subtract 0.5 from every generated random number.

The numbers are now distributed in the interval [−0.5, 0.5]. To make these pseudo-random numbers

with unit variance, i.e., σ 2
x = 	2/

3 = 1, the generated numbers must be equally distributed in the

interval [−√
3,

√
3]. Therefore, we have to multiply 2

√
3 to every generated number that was

subtracted by 0.5.

The following MATLAB statement can be used to generate the uniformly distributed random

numbers with mean 0 and variance 1:

xn = 2*sqrt(3)*(rand-0.5);

The waveform of zero-mean, unit-variance (σ 2
x = 1) white noise generated by MATLAB code

(example3_21.m) is shown in Figure 3.19.

A sinewave corrupted by white noise v(n) can be expressed as

x(n) = A sin(ωn) + v(n). (3.73)

When a signal s(n) with power Ps is corrupted by a noise v(n) with power Pv, the signal-to-noise ratio

(SNR) in dB is defined as

SNR = 10 log10

(
Ps

Pv

)
. (3.74)

From Equation (3.69), the power of sinewave defined in Equation (3.6) can be computed as

Ps = E
[
A2 sin2(ωn)

] = A2/2. (3.75)

Example 3.22: If we want to generate signal x(n) expressed in Equation (3.73), where v(n) is

a zero-mean, unit-variance white noise. As shown in Equation (3.74), SNR is determined by the

power of sinewave. As shown in Equation (3.75), when the sinewave amplitude A = √
2, the

power is equal to 1. From Equation (3.74), the SNR is 0 dB.

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

FIXED-POINT REPRESENTATIONS AND QUANTIZATION EFFECTS 147

2

1.5

1

0.5

0

A
m

p
li

tu
d
e

−0.5

−1

−1.5

−2
0 50 100 150

Time index, n

200 250

Figure 3.19 A zero-mean, unit-variance white noise

We can generate a sinewave corrupted by the zero-mean, unit-variance white noise with

SNR = 0 dB using MATLAB script example3_22.m.

Example 3.23: We can compute the DFT of signal x(n) to obtain X (k). The magnitude spectrum in

dB scale can be calculate as 20 log10 |X (k)| for k = 0, 1, . . . , N /2. Using the signal x(n) generated

in Example 3.22, magnitude spectrum can be computed and displayed using the MATLAB code

example3_23.m. The noisy spectrum is shown in Figure 3.20. Comparing this figure with Figure

3.17, we show that the power of white noise is uniformly distributed from 0 to π , while the power

of sinewave is concentrated at its frequency 0.2π .

3.4 Fixed-Point Representations and Quantization Effects

The basic element in digital hardware is the binary device that contains one bit of information. A register

(or memory unit) containing B bits of information is called a B-bit word. There are several different

methods for representing numbers and carrying out arithmetic operations. In this book, we focus on

widely used fixed-point implementations.

3.4.1 Fixed-Point Formats

The most commonly used fixed-point representation of a fractional number x is illustrated in Figure 3.21.

The wordlength is B(= M + 1) bits, i.e., M magnitude bits and one sign bit. The most significant bit

(MSB) is the sign bit, which represents the sign of the number as follows:

b0 =
{

0,

1,

x ≥ 0

x < 0

(positive number)

(negative number)
. (3.76)

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

148 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

40

Spectrum of noisy sinewave

35

30

25

M
ag

n
it

u
d
e,

 d
B

20

15

10

5

0 20 40 60

Frequency index, k

80 100 120

Figure 3.20 Spectrum of sinewave corrupted by white noise, SNR = 0 dB

The remaining M bits give the magnitude of the number. The rightmost bit bM is called the least

significant bit (LSB), which represents precision of the number.

As shown in Figure 3.21, the decimal value of a positive (b0 = 0) binary fractional number x can be

expressed as

(x)10 = b1 · 2−1 + b2 · 2−2 + · · · + bM · 2−M

=
M∑

m=1

bm2−m . (3.77)

Example 3.24: The largest (positive) 16-bit fractional number in binary format is x = 0111 1111

1111 1111b (the letter ‘b’ denotes that the number is in binary representation). The decimal value

of this number can be obtained as

(x)10 =
15∑

m=1

2−m = 2−1 + 2−2 + · · · + 2−15

= 1 − 2−15 ≈ 0.999969.

Binary point
Sign bit

x = b0 . b1 b2
... bM−1 bM

Figure 3.21 Fixed-point representation of binary fractional numbers

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

FIXED-POINT REPRESENTATIONS AND QUANTIZATION EFFECTS 149

The smallest nonzero positive number is x = 0000 0000 0000 0001b. The decimal value of this

number is

(x)10 = 2−15 = 0.000030518.

The negative numbers (b0 = 1) can be represented using three different formats: the sign-magnitude,

the 1’s complement, and the 2’s complement. Fixed-point DSP processors usually use the 2’s com-

plement format to represent negative numbers because it allows the processor to perform addition and

subtraction using the same hardware. With the 2’s complement format, a negative number is obtained by

complementing all the bits of the positive binary number and then adding 1 to the LSB.

In general, the decimal value of a B-bit binary fractional number can be calculated as

(x)10 = −b0 +
15∑

m=1

bm2−m . (3.78)

For example, the smallest (negative) 16-bit fractional number in binary format is x = 1000 0000 0000

0000b. From Equation (3.78), its decimal value is −1. Therefore, the range of fractional binary numbers is

−1 ≤ x ≤ (
1 − 2−M

)
. (3.79)

For a 16-bit fractional number x , the decimal value range is −1 ≤ x ≤ 1 − 2−15.

Example 3.25: 4-bit binary numbers represent both integers and fractional numbers using the 2’s

complement format and their corresponding decimal values are listed in Table 3.2.

Example 3.26: If we want to initialize a 16-bit data x with the constant decimal value 0.625, we

can use the binary form x = 0101 0000 0000 0000b, the hexidecimal form x = 0x5000, or the

decimal integer x = 214 + 212 = 20480.

Table 3.2 4-bit binary numbers in 2’s complement

format and their corresponding decimal values

Binary numbers Integers (sxxx.) Fractions (s.xxx)

0000 0 0.000

0001 1 0.125

0010 2 0.250

0011 3 0.375

0100 4 0.500

0101 5 0.675

0110 6 0.750

0111 7 0.875

1000 −8 −1.000

1001 −7 −0.875

1010 −6 −0.750

1011 −5 −0.675

1100 −4 −0.500

1101 −3 −0.375

1110 −2 −0.250

1111 −1 −0.125

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

150 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

As shown in Figure 3.21, the easiest way to convert a normalized 16-bit fractional number into

the integer that can be used by the C55x assembler is to move the binary point to the right by

15 bits (at the right of bM). Since shifting the binary point 1 bit right is equivalent to multiply the

fractional number by 2, this can be done by multiplying the decimal value by 215 = 32768. For

example, 0.625 × 32 768 = 20 480.

It is important to note that we use an implied binary point to represent the binary fractional number.

It will affect the accuracy (dynamic range and precision) of the number. The binary point is purely a

programmer’s convention and has no relationship with the hardware. The programmer needs to keep

track of the binary point when manipulating fractional numbers in assembly language programming.

Different notations can be used to represent different fractional formats. Similar to Figure 3.21, a more

general fractional format Qnm is illustrated in Figure 3.22 where n + m = M = B − 1. There are n bits

at the left of binary point that represent integer portion, while m bits at the right represent fractional

values. The most popular used fractional number representation shown in Figure 3.21 is called the Q0.15

format (n = 0 and m = 15), which is simply also called Q15 format since there are 15 fractional bits.

Note that the Qnm format is represented in MATLAB as [B m]. For example, Q15 format is represented as

[16 15].

Example 3.27: The decimal value of a 16-bit binary number x = 0100 1000 0001 1000b depends

on which Q format is used by the programmer. Some examples are given as follows:

Q0.15, x = 2−1 + 2−4 + 2−11 + 2−12 = 0.56323

Q2.13, x = 21 + 2−2 + 2−9 + 2−10 = 2.25293

Q5.10, x = 24 + 21 + 2−6 + 2−7 = 18.02344

Example 3.28: As introduced in Chapter 2, the TMS320 assembly directives .set and .equ

assign a value to a symbolic name. The directives .word and .short (or .int) initialize memory

locations with particular data values represented in binary, hexidecimal, or integer format. Each

data is treated as a 16-bit value and is separated by a comma. Some examples of the Q15 format

data used for C55x are given as follows:

ONE .set 32767 ; 1-2−15 ≈ 0.999969 in integer
ONE_HALF .set 0x4000 ; 0.5 in hexadecimal
ONE_EIGHTH .equ 1000h ; 1/8 in hexadecimal
MINUS_ONE .equ 0xffff ; -1.0 in hexadecimal
COEFF .short 0ff00h ; -2−7 = -0.0078125 in hexadecimal
ARRAY .word 2048,-2048 ; ARRAY[0.0625, -0.625]

As discussed in Chapter 1, fixed-point arithmetic is often used with DSP hardware for real-time

processing because it offers fast operation and relatively economical implementation. Its drawbacks

Integer

Binary point

Fraction

Sing bit

x = b0b1b2 ... bn b1b2 ...bm

Figure 3.22 A general binary fractional numbers

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

FIXED-POINT REPRESENTATIONS AND QUANTIZATION EFFECTS 151

include a small dynamic range and low resolution. These problems will be discussed in details in the

following sections.

3.4.2 Quantization Errors

As discussed in Section 3.4.1, numbers are represented by a finite number of bits. The errors between

the desired and actual values are called the finite-wordlength (finite-precision, or numerical) effects. In

general, finite-precision effects can be broadly categorized into the following classes.

1. Quantization errors:

(a) signal quantization

(b) coefficient quantization

2. Arithmetic errors:

(a) roundoff (or truncation)

(b) overflow

The limit cycle oscillation is another phenomenon that may occur when implementing a feedback

system such as an IIR filter with finite-precision arithmetic. The output of the system may continue to

oscillate indefinitely while the input remains zero.

3.4.3 Signal Quantization

The analog-to-digital converter (ADC) converts an analog signal x(t) into a digital signal x(n). The input

signal is first sampled to obtain the discrete-time signal x(nT) with infinite precision. Each x(nT) value

is then encoded using B-bit wordlength to obtain the digital signal x(n). We assume that the signal x(n)

is interpreted as the Q15 fractional number shown in Figure 3.21 such that −1 ≤ x(n) < 1. Thus, the

dynamic range of fractional numbers is 2. Since the quantizer employs B bits, the number of quantization

levels available is 2B . The spacing between two successive quantization levels is

	 = 2

2B
= 2−B+1 = 2−M , (3.80)

which is called the quantization step (interval, width, or resolution). For example, the output of a 4-bit

converter with quantization interval 	 = 2−3 = 0.125 is summarized in Table 3.2.

As discussed in Chapter 1, we use rounding (instead of truncating) for quantization in this book. The

input value x(nT) is rounded to the nearest level as illustrated in Figure 3.23 for a 3-bit ADC. We assume

there is a line exactly between two quantization levels. The signal value above this line will be assigned

to the higher quantization level, while the signal value below this line is assigned to the lower level. For

example, the discrete-time signal x(T) in Figure 3.23 is rounded to 010b since the real value is below the

middle line between 010b and 011b, while x(2T) is rounded to 011b since the value is above the middle

line.

The quantization error (or noise) e(n) is the difference between the discrete-time signal x(nT) and the

quantized digital signal x(n), and is be expressed as

e(n) = x(n) − x(nT). (3.81)

Figure 3.23 clearly shows that

|e(n)| ≤ 	

2
. (3.82)

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

152 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Quantization level

Time, t

011

010

001

000
0 T 2T

e(n)

Δ/2
Δ

x(t)

Figure 3.23 Quantization process related to a 3-bit ADC

Thus, the quantization noise generated by an ADC depends on the quantization interval. The presence

of more bits results in a smaller quantization step, a lower quantization noise.

From Equation (3.81), we can express the ADC output as the sum of the quantizer input x(nT) and the

error e(n). That is,

x(n) = Q [x(nT)] = x(nT) + e(n), (3.83)

where Q[.] denotes the quantization operation. Therefore, the nonlinear operation of the quantizer is

modeled as a linear process that introduces an additive noise e(n) to the digital signal x(n).

For an arbitrary signal with fine quantization (B is large), the quantization error e(n) is assumed to

be uncorrelated with x(n), and is a random noise that is uniformly distributed in the interval [−	/2, 	/2].

From Equation (3.70), we have

E[e(n)] = −	/2 + 	/2

2
= 0. (3.84)

Thus, the quantization noise e(n) has zero mean. From Equation (3.72), the variance

σ 2
e = 	2

12
= 2−2B

3
. (3.85)

Therefore, the larger wordlength results in smaller input quantization error.

The SQNR can be expressed as

SQNR = σ 2
x

σ 2
e

= 3 · 22Bσ 2
x , (3.86)

where σ 2
x denotes the variance of the signal, x(n). Usually, the SQNR is expressed in dB as

SQNR = 10 log10

(
σ 2

x

σ 2
e

)
= 10 log10

(
3 · 22Bσ 2

x

)
= 10 log10 3 + 20B log10 2 + 10 log10 σ 2

x

= 4.77 + 6.02B + 10 log10 σ 2
x . (3.87)

This equation indicates that for each additional bit used in the ADC, the converter provides about 6-dB

gain. When using a 16-bit ADC (B = 16), the maximum SQNR is about 98.1 dB if the input signal is a

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

FIXED-POINT REPRESENTATIONS AND QUANTIZATION EFFECTS 153

sinewave. This is because the maximum sinewave having amplitude 1.0 in decimal makes 10 log10(σ 2
x) =

10 log10(1/2) = −3, and Equation (3.87) becomes 4.77 + 6.02 × 16 − 3.0 = 98.09. Another important

fact about Equation (3.87) is that the SQNR is proportional to σ 2
x . Therefore, we want to keep the power of

signal as large as possible. This is an important consideration when we discuss scaling issues in Section 3.5.

Example 3.29: Effects of signal quantization may be subjectively evaluated by observing and

listening to the quantized speech. The speech file timit1.asc was digitized with fs = 8 kHz and

B = 16. This speech file can be viewed and played using the MATLAB script (example3_29.m):

load timit1.asc;
plot(timit1);
soundsc(timit1, 8000, 16);

where the MATLAB function soundsc autoscales and plays the vector as sound. We can simulate

the quantization of data with 8-bit wordlength by

qx = round(timit1/256);

where the function (round) rounds the real number to the nearest integer. We then evaluate the

quantization effects by

plot(qx);
soundsc(qx, 8000, 16);

By comparing the graph and sound of timit1 and qx, the signal quantization effects may be

understood.

3.4.4 Coefficient Quantization

The filter coefficients, bl and am , of the digital filter determined by a filter design package such as

MATLAB are usually represented using the floating-point format. When implementing a digital filter,

the filter coefficients have to be quantized for a given fixed-point processor. Therefore, the performance

of the fixed-point digital filter will be different from its design specification.

The coefficient quantization effects become more significant when tighter specifications are used,

especially for IIR filters. Coefficient quantization can cause serious problems if the poles of designed IIR

filters are too close to the unit circle. This is because those poles may move outside the unit circle due to

coefficient quantization, resulting in an unstable implementation. Such undesirable effects are far more

pronounced in high-order systems.

The coefficient quantization is also affected by the structures used for the implementation of dig-

ital filters. For example, the direct-form implementation of IIR filters is more sensitive to coefficient

quantization than the cascade structure consisting of sections of first- or second-order IIR filters.

3.4.5 Roundoff Noise

As shown in Equation (3.10), we may need to compute the product y(n) = αx(n) in a DSP system.

Assuming the wordlength associated with α and x(n) is B bits, the multiplication yields 2B-bit prod-

uct y(n). In most applications, this product may have to be stored in memory or output as a B-bit

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

154 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

word. The 2B-bit product can be either truncated or rounded to B bits. Since truncation causes an

undesired bias effect, we should restrict our attention to the rounding.

Example 3.30: In C programming, rounding a real number to an integer number can be imple-

mented by adding 0.5 to the real number and then truncating the fractional part. The following C

statement

y = (short)(x + 0.5);

rounds the real number x to the nearest integer y. As shown in Example 3.29, MATLAB provides

the function round for rounding a real number.

In TMS320C55x implementation, the CPU rounds the operands enclosed by the rnd() expres-

sion qualifier as

mov rnd(HI(AC0)),*AR1

This instruction will round the content of the high portion of AC0(31:16) and the rounded 16-bit

value is stored in the memory location pointed at by AR1. Another key word R (or r) also performs

rounding operation on the operands. The following instruction

mpyr AC0,AC1

multiplies and stores the rounded product in the upper portion of the accumulator AC1(31:16)

and clears the lower portion of the accumulator AC1(15:0).

The process of rounding a 2B-bit product to B bits is similar to that of quantizing discrete-time signal

using a B-bit quantizer. Similar to Equation (3.83), the nonlinear roundoff operation can be modeled as

the linear process expressed as

y(n) = Q [αx(n)] = αx(n) + e(n), (3.88)

where αx(n) is the 2B-bit product and e(n) is the roundoff noise due to rounding 2B-bit product to B-bit

product. The roundoff noise is a uniformly distributed random process defined in Equation (3.82). Thus,

it has a zero mean and its power is defined in Equation (3.85).

It is important to note that most commercially available fixed-point DSP processors, such as the

TMS320C55x, have double-precision accumulator(s). As long as the program is carefully written, it is

possible to ensure that rounding occurs only at the final stage of calculation. For example, consider the

computation of FIR filter output given in Equation (3.15). We can keep the sum of all temporary products,

bl x(n − l), in the double-precision accumulator. Rounding is performed only when the final sum is saved

to memory with B-bit wordlength.

3.4.6 Fixed-Point Toolbox

The MATLAB Fixed-Point Toolbox provides fixed-point data types and arithmetic for enabling fixed-point

algorithm development. This toolbox has the following features:� defining fixed-point data types, scaling, rounding, and overflow methods in the MATLAB workspace;� bit-true real and complex simulation;

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

FIXED-POINT REPRESENTATIONS AND QUANTIZATION EFFECTS 155� fixed-point arithmetic;� relational, logical, and bitwise operators; and� conversions between binary, hex, double, and built-in integers.

This toolbox provides the function quantizer to construct a quantizer object. For example,

q = quantizer('PropertyName1',PropertyValue1,...)

creates a quantizer object q that uses property name/property value pairs that are summarized in Table

3.3. We also can use the following syntax

q = quantizer

to create a quantizer object q with properties set to the following default values:

mode = 'fixed';
roundmode = 'floor';
overflowmode = 'saturate';
format = [16 15];

Note that [16 15] is equivalent to Q15 format.

After we have constructed a quantizer object, we can apply it to data using the quantize function

with the following syntax:

y = quantize(q, x)

The command y = quantize(q, x) uses the quantizer object q to quantize x. When x is a numeric

array, each element of x is quantized.

Table 3.3 List of quantizer property name/property value pairs

Property name Property value Description

mode 'double' Double-precision mode

'float' Custom-precision floating-point mode

'fixed' Signed fixed-point mode

'single' Single-precision mode

'ufixed' Unsigned fixed-point mode

roundmode 'ceil' Round toward negative infinity

'convergent' Convergent rounding

'fix' Round toward zero

'floor' Round toward positive infinity

'round' Round toward nearest

overflowmode 'saturate' Saturate on overflow

'wrap' Wrap on overflow

format [B m] Format for fixed or ufixed mode, B is

wordlength, m is number of fractional bits

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

156 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Quantized samples, Q15 marked o, Q3 marked x

0.8

0.6

0.4

0.2

0

−0.2

−0.4

A
m

p
li

tu
d
e

0 5 10 15

Time index, n

e(n)

Figure 3.24 Quantization using Q15 and Q3 formats and the difference e(n)

Example 3.31: Similar to Example 3.21, we generate a zero-mean white noise using MATLAB

functionrand, which uses double-precision, floating-point format. We then construct two quantizer

objects and quantize the white noise to Q15 and Q3 (4-bit) representations. We plot the quantized

noise in Q15 and Q3 formats and the difference between these two is shown in Figure 3.24 using

the following MATLAB script (example3_31.m):

N=16;
n=[0:N-1];
xn = sqrt(3)*(rand(1,N)-0.5); % Generate zero-mean white noise
q15 = quantizer('fixed', 'convergent', 'wrap', [16 15]); % Q15
q3 = quantizer('fixed', 'convergent', 'wrap', [4 3]); % Q3
y15 = quantize(q15,xn); % Quantization using Q15 format
y3 = quantize(q3,xn); % Quantization using Q3 format
en = y15-y3, % Difference between Q15 and Q3
plot(n,y15,'-o',n,y3,'-x',n,en);

MATLAB Fixed-Point Toolbox also provides several radix conversion functions which are summarized

in Table 3.4. For example,

y = num2int(q,x)

uses q.format to convert a number x to an integer y.

Example 3.32: For testing some programs using fixed-point C programs with CCS and DSK, we

may need to generate input data files for simulations. As shown in Example 3.31, we use MATLAB

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

OVERFLOW AND SOLUTIONS 157

Table 3.4 List of radix conversion functions using a quantizer object

Function Description

bin2num Convert a 2’s complement binary string to a number

hex2num Convert hexadecimal string to a number

num2bin Convert a number to a binary string

num2hex Convert a number to its hexadecimal equivalent

num2int Convert a number to a signed integer

to generate signal and construct a quantizer object. In order to save the Q15 data in integer format,

we use the function num2int in the following MATLAB script (example3_32.m):

N=16; n=[0:N-1];
xn = sqrt(3)*(rand(1,N)-0.5); % Generate zero-mean white noise
q15 = quantizer('fixed', 'convergent', 'wrap', [16 15]); % Q15
Q15int = num2int(q15,xn);

3.5 Overflow and Solutions

Assuming that the signals and filter coefficients have been properly normalized in the range of −1 to 1

for fixed-point arithmetic, the sum of two B-bit numbers may fall outside the range of −1 to 1. The term

overflow is a condition in which the result of an arithmetic operation exceeds the capacity of the register

used to hold that result. When using a fixed-point processor, the range of numbers must be carefully

examined and adjusted in order to avoid overflow. This may be achieved by using different Qn.m formats

with desired dynamic ranges.

Example 3.33: Assume that a 4-bit fixed-point hardware uses the fractional 2’s complement

format (see Table 3.2). If x1 = 0.875 (0111b) and x2 = 0.125 (0001b), the binary sum of x1 + x2

is 1000b. The decimal value of this signed binary number is −1, not the correct answer +1. That

is, when the result exceeds the dynamic range of the register, overflow occurs and unacceptable

error is produced.

Similarly, if x3 = −0.5 (1100b) and x4 = 0.625(0101b). x3 − x4 = 0110b, which is +0.875,

and not the correct answer −1.125. Therefore, subtraction may also result in underflow.

For the FIR filter defined in Equation (3.15), this overflow will result in the severe distortion of the

output y(n). For the IIR filter defined in Equation (3.23), the overflow effect is much more serious because

the errors are fed back. The problem of overflow may be eliminated using saturation arithmetic and proper

scaling (or constraining) signals at each node within the filter to maintain the magnitude of the signal.

3.5.1 Saturation Arithmetic

Most commercially available DSP processors have mechanisms that protect against overflow and auto-

matically indicate the overflow if it occurs. Saturation arithmetic prevents overflow by keeping the result

at a maximum value. Saturation logic is illustrated in Figure 3.25 and can be expressed as

y =
⎧⎨⎩

1 − 2−M , x ≥ 1 − 2−M

x, −1 ≤ x < 1

−1, x < −1

, (3.89)

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

158 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

x

y

1 − 2−M

1 − 2−M

−1

−1

Figure 3.25 Characteristics of saturation arithmetic

where x is the original addition result and y is the saturated adder output. If the adder is under saturation

mode, the undesired overflow can be avoided since the 32-bit accumulator fills to its maximum (or

minimum) value, but does not roll over. Similar to Example 3.31, when 4-bit hardware with saturation

arithmetic is used, the addition result of x1 + x2 is 0111b, or 0.875 in decimal value. Compared with

the correct answer 1, there is an error of 0.125. This result is much better than the hardware without

saturation arithmetic.

Saturation arithmetic has a similar effect of ‘clipping’ the desired waveform. This is a nonlinear

operation that will add undesired nonlinear components into the signal. Therefore, saturation arithmetic

can only be used to guarantee that overflow will not occur. It should not be the only solution for solving

overflow problems.

3.5.2 Overflow Handling

As mentioned earlier, the C55x supports the saturation logic to prevent overflow. The logic is enabled

when the overflow mode bit (SATD) in status register ST1 is set (SATD = 1). When this mode is set, the

accumulators are loaded with either the largest positive 32-bit value (0x00 7FFF FFFF) or the smallest

negative 32-bit value (0xFF 8000 0000) if the result overflows. The C55x overflow mode bit can be set

with the instruction

bset SATD

and reset (disabled) with the instruction

bclr SATD

The TMS320C55x provides overflow flags that indicate whether or not an arithmetic operation has

overflowed. The overflow flag ACOVn, (n = 0, 1, 2, or 3) is set to 1 when an overflow occurs in the

corresponding accumulator ACn. This flag will remain set until a reset is performed or when a status bit

clear instruction is implemented. If a conditional instruction (such as a branch, return, call, or conditional

execution) that tests overflow status is executed, the overflow flag will be cleared.

3.5.3 Scaling of Signals

The most effective technique in preventing overflow is by scaling down the signal. For example, consider

the simple FIR filter illustrated in Figure 3.26 without the scaling factor β (or β = 1). Let x(n) = 0.8

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 159

0.8

z−1

0.9
β

y(n)

x(n − 1)x(n)

∑
+ +

Figure 3.26 Block diagram of simple FIR filters with scaling factor β

and x(n − 1) = 0.6, the filter output y(n) = 1.2. When this filter is implemented on a fixed-point DSP

processor using Q15 format without saturation arithmetic, undesired overflow occurs. As illustrated in

Figure 3.26, the scaling factor β < 1 can be used to scale down the input signal. For example, when

β = 0.5, we have x(n) = 0.4 and x(n − 1) = 0.3, and the result y(n) = 0.6 without overflow.

If the signal x(n) is scaled by β, the corresponding signal variance changes to β2σ 2
x . Thus, the SQNR

in dB given in Equation (3.87) changes to

SQNR = 10 log10

(
β2σ 2

x

σ 2
e

)
= 4.77 + 6.02B + 10 log10 σ 2

x + 20 log10 β. (3.90)

Since we perform fractional arithmetic, β < 1 is used to scale down the input signal. The last term

20 log10 β has negative value. Thus, scaling down the signal reduces the SQNR. For example, when

β = 0.5, 20 log10 β = −6.02 dB, thus reducing the SQNR of the input signal by about 6 dB. This is

equivalent to losing 1 bit in representing the signal.

3.5.4 Guard Bits

The TMS320C55x provides four 40-bit accumulators as introduced in Chapter 2. Each accumulator is

split into three parts as illustrated in Figure 3.27. These guard bits are used as a head-margin for preventing

overflow in iterative computations such as the FIR filtering defined in Equation (3.15).

Because of the potential overflow in a fixed-point implementation, engineers need to be concerned

with the dynamic range of numbers. This usually demands greater coding and testing efforts. In general,

the optimum solution is combining of scaling factors, guard bits, and saturation arithmetic. The scaling

factors (smaller than 1) are set as large as possible so that there maybe only some occasional overflows

which can be avoided by using guard bits and saturation arithmetic.

3.6 Experiments and Program Examples

In this section, the first half of the experiments is used to demonstrate quantization effects, overflow and

saturation arithmetic, and to determine the proper fixed-point representations. The rest of experiments

emphasize on the hands-on DSP programming and implementation using the C5510 DSK.

b39–b32 b31–b16 b15–b0

G

Guard bits High-order bits Low-order bits

H L

Figure 3.27 Configuration of the TMS320C55x accumulators

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

160 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Table 3.5 C program for quantizing a sinusoid, quantSine.c

#define BUF_SIZE 40
const short sineTable[BUF_SIZE]= {
0x0000,0x01E0,0x03C0,0x05A0,0x0740,0x08C0,0x0A00,0x0B20,
0x0BE0,0x0C40,0x0C60,0x0C40,0x0BE0,0x0B20,0x0A00,0x08C0,
0x0740,0x05A0,0x03C0,0x01E0,0x0000,0xFE20,0xFC40,0xFA60,
0xF8C0,0xF740,0xF600,0xF4E0,0xF420,0xF3C0,0xF3A0,0xF3C0,
0xF420,0xF4E0,0xF600,0xF740,0xF8C0,0xFA60,0xFC40,0x0000};

short out16[BUF_SIZE]; /* 16 bits output sample buffer */
short out12[BUF_SIZE]; /* 12 bits output sample buffer */
short out8[BUF_SIZE]; /* 8 bits output sample buffer */
short out6[BUF_SIZE]; /* 6 bits output sample buffer */

void main()
{

short i;

for (i = 0; i < BUF_SIZE; i++)
{

out16[i] = sineTable[i]; /* 16-bit data */
out12[i] = sineTable[i]&0xfff0; /* Mask off 4-bit */
out8[i] = sineTable[i]&0xff00; /* Mask off 8-bit */
out6[i] = sineTable[i]&0xfc00; /* Mask off 10-bit */

}
}

3.6.1 Quantization of Sinusoidal Signals

The C program listed in Table 3.5 simulates an ADC with different wordlengths. Instead of shifting off

the bits, we mask out the least significant 4, 8, or 10 bits of each sample, resulting in the 12, 8, or 6 bits

of data samples that have the comparable amplitude to the original 16-bit data. Table 3.6 lists the files

used for this experiment.

Procedures of the experiment are listed as follows:

1. Load the project quantSine.pjt, rebuild, and load the program to the DSK or C55x simulator.

2. Use the CCS graphic display to plot four output buffers: out16, out12, out8, and out6, as shown

in Figure 3.28. Compare and describe the graphical results of each output waveforms represented by

different wordlengths.

3. Find the mean and variance of quantization noise for the 12-, 8-, and 6-bit ADCs.

Table 3.6 File listing for experiment exp3.6.1_quantSine

Files Description

quantSine.c C function for implementing quantization

quantSine.pjt DSP project file

quantSine.cmd DSP linker command file

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 161

Figure 3.28 Quantizing 16-bit data (top-left) into 12-bit (bottom-left), 8-bit (top-right), and 6-bit (bottom-right)

3.6.2 Quantization of Audio Signals

To evaluate the quantization effects of audio signals, we use the DSK for real-time experiment. The

program that emulates the quantizer is listed in Table 3.7. During the real-time audio playback, the

masked variable quant will be changed to emulate the quantization effects.

Table 3.8 lists the files used for this experiment. This experiment uses the program given in Section

1.6.6, which is modified from the C5510 DSK audio example. The program reads audio samples, applies

quantizer to the samples, and plays the quantized samples using DSK headphone output.

Procedures of the experiment are listed as follows:

1. Load the project quantAudio.pjt, rebuild, and load the program to DSK.

2. Use an audio source (CD player or radio) as the audio input to the DSK. The included wave files can

be used with Windows media player as audio sources.

3. Listen to the quantization effects of representing audio samples with different wordlengths using a

headphone (or loudspeaker) connected to the headphone output of the DSK.

4. Compare and describe the quantization effects of speech and music samples.

Table 3.7 Listing of audio signal quantization program, quantAudio.c

short quantAudio(short indata, short quant)
{

return(indata&quant); /* Quantization by masking the data sample */
}

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

162 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Table 3.8 File listing for experiment exp3.6.2_quantAudio

Files Description

quantAudioTest.c C function for testing experiment

quantAudio.c C function for audio quantization

quantAudio.pjt DSP project file

quantAudiocfg.cmd DSP linker command file

quantAudio.cdb DSP BIOS configuration file

desertSun.wav Wave file

fools8k.wav Wave file

3.6.3 Quantization of Coefficients

Since filter design and implementation will be discussed in Chapters 4 and 5, we will only briefly describe

the fourth-order IIR filter used in this experiment. Table 3.9 lists an assembly program that implements a

fourth-order IIR filter. This lowpass filter is designed as fc/ fs = 0.225, where fc is the cutoff frequency.

The signal components with frequencies below the cutoff frequency will pass through the lowpass filter,

Table 3.9 List of IIR filtering program, IIR4.asm

.def _IIR4

.def _initIIR4
;
; Original coefficients of 4th-order IIR lowpass filter
; with fc/fs = 0.225
;
; short b[5]={ 0.0072, 0.00287, 0.0431, 0.0287, 0.0072};
; short a[5]={ 1.0000, -2.16860,2.0097,-0.8766, 0.1505};
;

.data ; Q13 formatted coefficients
iirCoeff

.word 0x003B, 0x00EB ; b0, b1,

.word 0x0161, 0x00EB, 0x003B ; b2, b3, b4

.word 0x4564, -0x404F ; -a1, -a2,

.word 0x1C0D, -0x04D1 ; -a3, -a4

.bss x,5 ; x buffer

.bss y,4 ; y buffer

.bss coeff,9 ; Filter coefficients

.text
;
; 4th-order IIR filter initialization routine
; Entry T0 = mask for filter coefficients
;
_initIIR4

amov #x,XAR0 ; Zero x buffer
rpt #4
mov #0,*AR0+
amov #y,XAR0 ; Zero y buffer
rpt #3
mov #0,*AR0+
mov #8,BRC0 ; Mask off bits of coefficients

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 163

Table 3.9 (continued)

amov #iirCoeff,XAR0
amov #coeff,XAR1
rptb maskCoefLoop-1
mov *AR0+,AC0
and T0,AC0
mov AC0,*AR1+

maskCoefLoop
ret

;
; 4-th-order IIR filtering
; Entry T0 = sample
; Exit T0 = filtered sample
;
_IIR4

bset SATD
bset SXM
amov #x,XAR0
amov #y,XAR1
amov #coeff,XCDP
bset FRCT

| | mov T0,*AR0 ; x[0] = indata
;
; Perform IIR filtering
;

mpym *AR0+,*CDP+,AC0 ; AC0=x[0]*bn[0]
| | rpt #3 ; i=1,2,3,4

macm *AR0+,*CDP+,AC0 ; AC0+=x[i]*bn[i]
rpt #3 ; i=0,1,2,3
macm *AR1+,*CDP+,AC0 ; AC0+=y[i]*an[i]
amov #y+2,XAR0
amov #y+3,XAR1
sfts AC0,#2 ; Scale to Q15 format

| | rpt #2
mov *AR0-,*AR1- ; Update y[]
mov hi(AC0),*AR1

| | mov hi(AC0),T0 ; Return y[0] in T0
amov #x+3,XAR0
amov #x+4,XAR1
bclr FRCT

| | rpt #3
mov *AR0-,*AR1- ; Update x[]
bclr SXM
bclr SATD
ret
.end

while the higher frequency components will be attenuated. The assembly routine, _initIIR4, initializes

the memory locations of x and y buffers to zero. In our experiment, the coefficients are masked during

the initialization to 16, 12, 8, and 4 bits. The IIR filter assembly routine, _IIR4, performs the filtering

operation to the input data samples. The initialization is performed only once, while the IIR routine will

be called to perform the filter operation for every incoming sample. The coefficient data pointer (CDP) is

used to address the filter coefficients. The auxiliary registers, AR0 and AR1, are pointing to the x and y

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

164 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Table 3.10 List of files used for experiment exp3.6.3_quantFiltCoef

Files Description

quantFiltCoefTest.c C function for testing filter quantization

quantFiltCoef.asm Assembly IIR function for quantized filter

quantFiltCoef.pjt DSP project file

quantFiltCoefcfg.cmd DSP linker command file

quantFiltCoef.cdb DSP BIOS configuration file

desertSun.wav Wave file

fools8k.wav Wave file

data buffers, respectively. After each sample is processed, both the x and y buffers are updated by shifting

the data in the buffers, which will be further discused in Chapter 4.

The files used for this experiment are listed in Table 3.10. The experiment program reads audio samples,

applies an IIR filter to the samples, and plays the filter results via DSK headphone jack.

Procedures of the experiment are listed as follows:

1. Load the project quantFiltCoef.pjt, rebuild, and load the program to the DSK.

2. Connect an audio source to the line-in of the DSK and connect a headphone to the headphone output

of the DSK and play the audio signals. The included wave files can be used as audio sources for

Windows media player.

3. Listen to the audio output and compare the left channel with the right channel. In this experiment, the

left-channel audio input samples are sent directly to the output while the right-channel input samples

are filtered by the IIR filter. Describe the quantization effects due to the use of limited wordlength

for representing filter coefficients.

3.6.4 Overflow and Saturation Arithmetic

As discussed in Section 3.5, overflow may occur when DSP processors perform fixed-point accumulation

such as FIR filtering. Overflow may occur when data is transferred to memory because the C55x accu-

mulators (AC0–AC3) have 40 bits, while the memory space is usually defined as a 16-bit word. In this

experiment, we use an assembly routine ovf_sat.asm to evaluate the results with and without overflow

protection. Table 3.11 lists a portion of the assembly code used for this experiment.

In the assembly program, the following code repeatedly adds the constant 0x140 to AC0:

rptblocal add_loop_end-1
add #0x140<<#16,AC0
mov hi(AC0),*AR2+

add_loop_end

The updated value is stored at the buffer pointed at by AR2. The content of AC0 will grow larger and

larger and eventually this accumulator will overflow. When the overflow occurs, a positive number in AC0

suddenly turns into negative. However, when the C55x saturation mode is set, the overflowed positive

number will be limited to 0x7FFFFFFF. The second half of the code stores the left-shifted sinewave

values to data memory locations. Without saturation protection, this shift will cause some of the shifted

values to overflow.

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 165

Table 3.11 Program for experiment of overflow and saturation

.def _ovftest

.def _buff,_buff1

.bss _buff,(0x100)

.bss _buff1,(0x100)
;
; Code start
;
_ovftest

bclr SATD ; Clear saturation bit if set
xcc start,T0!=#0 ; If T0!=0, set saturation bit
bset SATD

start
mov #0,AC0
amov #_buff,XAR2 ; Set buffer pointer
rpt #0x100-1 ; Clear buffer
mov AC0,*AR2+
amov #_buff1,XAR2 ; Set buffer pointer
rpt #0x100-1 ; Clear buffer1
mov AC0,*AR2+

mov #0x80-1,BRC0 ; Initialize loop counts for addition
amov #_buff+0x80,XAR2 ; Initialize buffer pointer
rptblocal add_loop_end-1
add #0x140<<#16,AC0 ; Use upper AC0 as a ramp up counter
mov hi(AC0),*AR2+ ; Save the counter to buffer

add_loop_end
mov #0x80-1,BRC0 ; Initialize loop counts for subtraction
mov #0,AC0
amov #_buff+0x7f,XAR2 ; Initialize buffer pointer
rptblocal sub_loop_end-1
sub #0x140<<#16,AC0 ; Use upper AC0 as a ramp down counter
mov hi(AC0),*AR2- ; Save the counter to buffer

sub_loop_end
mov #0x100-1,BRC0 ; Initialize loop counts for sinewave
amov #_buff1,XAR2 ; Initialize buffer pointer
mov mmap(@AR0),BSA01 ; Initialize base register
mov #40,BK03 ; Set buffer as size 40
mov #20,AR0 ; Start with an offset of 20 samples
bset AR0LC ; Active circular buffer
rptblocal sine_loop_end-1
mov *ar0+<<#16,AC0 ; Get sine value into high AC0
sfts AC0,#9 ; Scale the sine value
mov hi(AC0),*AR2+ ; Save scaled value

sine_loop_end
mov #0,T0 ; Return 0 if no overflow
xcc set_ovf_flag,overflow(AC0)
mov #1,T0 ; Return 1 if overflow detected

set_ovf_flag
bclr AR0LC ; Reset circular buffer bit
bclr SATD ; Reset saturation bit
ret
.end

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

166 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Table 3.12 List of files for experiment exp3.6.4_overflow

Files Description

overflowTest.c C function for testing overflow experiment

ovf_sat.asm Assembly function showing overflow

overflow.pjt DSP project file

overflow.cmd DSP linker command file

The following segment of code sets up and uses the circular addressing mode:

mov #sineTable,BSA01 ; Initialize base register
mov #40,BK03 ; Set buffer size to 40
mov #20,AR0 ; Start with an offset of 20
bset AR0LC ; Activate circular buffer

The first instruction sets up the circular buffer base register (BSA01). The second instruction initializes

the size of the circular buffer. The third instruction initializes the offset from the base as the starting point.

In this case, the offset is set to 20 words from the base of sineTable[]. The last instruction enables

AR0 as the circular pointer. Table 3.12 lists the files used for this experiment.

Procedures of the experiment are listed as follows:

1. Load the project overflow.pjt, rebuild, and load the program to DSK or CCS.

2. Use the graphic function to display the results buff1 (top) and the buff (bottom) as shown in Figure

3.29.

3. Turn off overflow protection and repeat the experiment. Display and compare the results as shown

in Figure 3.29(a) without saturation protection, and Figure 3.29(b) with saturation protection.

Figure 3.29 Fixed-point implementation showing overflow and saturation: (a) without saturation protection;

(b) with saturation protection

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 167

3.6.5 Function Approximations

This experiment uses polynomial approximation of sinusoidal functions to show a typical DSP algorithm

design and implementation process. The DSP algorithm development usually starts with MATLAB or a

floating-point C simulation, changes to fixed-point C, optimizes the code to improve its efficiency, and

uses assembly language if necessary.

The cosine and sine functions can be expressed as the infinite power (Taylor) series expansion as

follows:

cos(θ) = 1 − 1

2!
θ 2 + 1

4!
θ 4 − 1

6!
θ 6 + · · · , (3.91a)

sin(θ) = θ − 1

3!
θ 3 + 1

5!
θ 5 − 1

7!
θ 7 + · · · , (3.91b)

where θ is in radians and ‘!’ represents the factorial operation. The accuracy of the approximation depends

on the number of terms used in the series. Usually more terms are needed for larger values of θ . However,

only a limited number of terms can be used in real-time DSP applications.

Floating-point C implementation

In this experiment, we implement the cosine function approximation in Equation (3.91a) using the C

program listed in Table 3.13. In the function fCos1(), 12 multiplications are required. The C55x

compiler has a built-in run-time support library for floating-point arithmetic operations. These floating-

point functions are very inefficient for real-time applications. For example, the program fCos1() needs

over 2300 clock cycles to compute one sine value.

We can improve the computation efficiency by reducing the multiplication from 14 to 4. The modified

program is listed in Table 3.14. This improved program reduces the clock cycles from 2300 to less than

1100. To further improve the efficiency, we will use the fixed-point C and assembly language programs.

The files used for this experiment are listed in Table 3.15. This experiment can be run on a DSK or a

simulator.

Table 3.13 Floating-point C Program for cosine approximation

// Coefficients for cosine function approximation
double fcosCoef[4]={

1.0, -(1.0/2.0), (1.0/(2.0*3.0*4.0)), -(1.0/(2.0*3.0*4.0*5.0*6.0))
};

// Direct implementation of function approximation
double fCos1(double x)
{

double cosine;

cosine = fcosCoef[0];
cosine += fcosCoef[1]*x*x;
cosine += fcosCoef[2]*x*x*x*x;
cosine += fcosCoef[3]*x*x*x*x*x*x;
return(cosine);

}

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

168 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Table 3.14 Improved floating-point C program for cosine approximation

// More efficient implementation of function approximation
double fCos2(double x)
{

double cosine,x2;

x2 = x * x;
cosine = fcosCoef[3] * x2;
cosine = (cosine+fcosCoef[2]) * x2;
cosine = (cosine+fcosCoef[1]) * x2;
cosine = cosine + fcosCoef[0];
return(cosine);

}

Procedures of the experiment are listed as follows:

1. Load the project floatingPointC.pjt, rebuild, and load the program to the C5510 DSK or C55x

simulator.

2. Run the program and verify the results.

3. Profile and record the cycles needed for approximating the function cos(x).

Fixed-point C implementation

Since the values of a cosine function are between +1.0 and −1.0, the fixed-point C uses Q15 format as

shown in Table 3.16. This fixed-point C requires only 80 cycles, a significant improvement as compared

with the floating-point C that requires 1100 cycles.

The fixed-point C implementation has effectively reduced the computation to 80 clock cycles per

function call. This performance can be further improved by examining the program carefully. The CCS

in mixed mode shows that the C multiplication uses the run-time support library function I$$LMPY and

MPYM instruction as follows:

cosine = (long)icosCoef[3] * x2;
cosine = cosine >> 13; // Scale back to Q15

010013 D3B706 mpym *AR5(short(#3)),T2,AC0
010016 100533 sfts AC0,#-13,AC0

cosine = (cosine + (long)icosCoef[2]) * x2;
cosine = cosine >> 13; // Scale back to Q15

010019 D6B500 add *AR5(short(#2)),AC0,AC0
01001C 6C010542 call I$$LMPY
010020 100533 sfts AC0,#-13,AC0

Table 3.15 List of files for experiment exp3.6.5.1_using floating-pointC

Files Description

fcos.c Floating-point C function approximation

floatingPointC.pjt DSP project file

funcAppro.cmd DSP linker command file

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 169

Table 3.16 Fixed-point C program for function approximation

#define UNITQ15 0x7FFF

// Coefficients for cosine function approximation
short icosCoef[4]={

(short)(UNITQ15),
(short)(-(UNITQ15/2.0)),
(short)(UNITQ15/(2.0*3.0*4.0)),
(short)(-(UNITQ15/(2.0*3.0*4.0*5.0*6.0)))

};

// Fixed-point implementation of function approximation
short iCos1(short x)
{

long cosine,z;
short x2;

z = (long)x * x;
x2 = (short)(z>>15); // x2 has x(Q14)*x(Q14)
cosine = (long)icosCoef[3] * x2;
cosine = cosine >> 13; // Scale back to Q15
cosine = (cosine + (long)icosCoef[2]) * x2;
cosine = cosine >> 13; // Scale back to Q15
cosine = (cosine + (long)icosCoef[1]) * x2;
cosine = cosine >> 13; // Scale back to Q15
cosine = cosine + icosCoef[0];
return((short)cosine);

}

As introduced in Chapter 2, the correct way of writing fixed-point C multiplication is

short b,c;
long a;
a = (long)b * (long)c;

The following changes ensure that the C55x compiler will generate the efficient instructions:

cosine = (short)(cosine + (long)icosCoef[2]) * (long)x2;
cosine = cosine >> 13; // Scale back to Q15

010015 D67590 add *AR3(short(#2)),AC0,AR1
010018 2251 mov T1,AC1
01001A 5290 mov AR1,HI(AC0)
01001C 5804 mpy T1,AC0,AC0
01001E 100533 sfts AC0,#-13,AC0

The modified program (listed in Table 3.17) needs only 33 cycles. We write the fixed-point C code to

mimic the instructions of DSP processor. Thus, this stage produces a ‘practical’ DSP program that can

be run on the target DSP system, and used as reference for assembly programming. Table 3.18 briefly

describes the files used for this experiment.

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

170 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Table 3.17 Improved fixed-point C implementation

// Fixed-point C implementation that simulates assembly programming
short iCos(short T0)
{

long AC0;
short *ptr;

ptr = &icosCoef[3];
AC0 = (long)T0 * T0;
T0 = (short)(AC0>>15); // AC0 has T0(Q14)*T0(Q14)

AC0 = (long)T0 * *ptr--;
AC0 = AC0 >> 13; // Scale back to Q15
AC0 = (short)(AC0 + *ptr--) * (long)T0;
AC0 = AC0 >> 13; // Scale back to Q15
AC0 = (short)(AC0 + *ptr--) * (long)T0;
AC0 = AC0 >> 13; // Scale back to Q15
AC0 = AC0 + *ptr;
return((short)AC0);

}

Procedures of the experiment are listed as follows:

1. Load the project fixedPointC.pjt, rebuild, and load the program to the DSK.

2. Run the program and compare the results of cos(x) function with that obtained by floating-point C

implementation.

3. Profile the cycles needed for running the function cos(x).

C55x assembly implementation

In many real-world applications, the DSP algorithms are written in assembly language or mixed C-

and-assembly programs. The assembly implementation can be verified by comparing the output of the

assembly program against the fixed-point C code. In this experiment, we write the cosine program in

assembly language as shown in Table 3.19. This assembly function needs 19 cycles to compute a cosine

value. With the overhead of function call setup and return in the mixed C-and-assembly environment,

this program requires 30 cycles to generate a cosine value.

Table 3.18 List of files for experiment exp3.6.5.2_using fixed-pointC

Files Description

icos.c Fixed-point C function approximation

fixedPointC.pjt DSP project file

funcAppro.cmd DSP linker command file

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 171

Table 3.19 C55x assembly program for cosine function approximation

.data
_icosCoef ; [1 (-1/2!) (1/4!) (-1/6!)]

.word 32767,-16383,1365,-45

.sect ".text"

.def _cosine

_cosine:
amov #(_icosCoef+3),XAR3 ; ptr = &icosCoef[3];
amov #AR1,AR2 ; AR1 is used as temp register

|| mov T0,HI(AC0)
sqr AC0 ; AC0 = (long)T0 * T0;
sfts AC0,#-15 ; T0 = (short)(AC0>>15);
mov AC0,T0
mpym *AR3-,T0,AC0 ; AC0 = (long)T0 * *ptr--;
sfts AC0,#-13 ; AC0 = AC0 >> 13;
add *AR3-,AC0,AR1 ; AC0 = (short)(AC0 + *ptr--) * (long)T0;
mpym *AR2,T0,AC0
sfts AC0,#-13 ; AC0 = AC0 >> 13;
add *AR3-,AC0,AR1 ; AC0 = (short)(AC0 + *ptr--) * (long)T0;
mpym *AR2,T0,AC0
sfts AC0,#-13 ; AC0 = AC0 >> 13;

|| mov *AR3,T0
add AC0,T0 ; AC0 = AC0 + *ptr;
ret ; Return((short)AC0);

.end

The real-time evaluation and test can be done using the hardware such as a DSK. The real-time

experiments can verify system control and interrupt handling issues. To summarize the software design

approach used in this experiment, we list the profile results of different implementations in Table 3.20.

The files used for this experiment are listed in Table 3.21.

Procedures of the experiment are listed as follows:

1. Load the project c55xCos.pjt, rebuild, and load the program to the DSK.

2. Run the program and compare the results of assembly routine with those obtained by floating-point

C implementation.

3. Profile the clock cycles needed for the assembly routine and compare with C implementations.

Table 3.20 Profile results of cosine approximation for different implementations

Arithmetic Function Implementation details Profile (cycles/call)

Floating-point C fCos1() Direct implementation, 12 multiplications 2315

fCos2() Reduced multiplications, 4 multiplications 1097

Fixed-point C iCos1() Using fixed-point arithmetic 88

iCos() Using single multiplication instruction 33

Assembly language cosine() Hand-code assembly routine 30

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

172 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Table 3.21 List of files for experiment exp3.6.5.3_using c55x assembly language

Files Description

c55CosineTest.c C function for testing function approximation

cos.asm Assembly routine for cosine approximation

c55xCos.pjt DSP project file

funcAppro.cmd DSP linker command file

Practical applications

Since the input arguments to cosine function are in the range of −π to π , we must map the data range

of −π to π to the linear 16-bit data variables as shown in Figure 3.30. Using 16-bit wordlength, we

map 0 to 0x0000, π to 0x7FFF, and −π to 0x8000 for representing the radius arguments. Therefore,

the function approximation given in Equation (3.91) is no longer the best choice, and different function

approximation should be considered.

Using the Chebyshev approximation, cos(θ) and sin(θ) can be computed as

cos(θ) = 1 − 0.001922θ − 4.9001474θ2 − 0.264892θ 3 + 5.04541θ 4 + 1.800293θ 5, (3.92a)

sin(θ) = 3.140625θ + 0.02026367θ2 − 5.325196θ 3 + 0.5446788θ 4 + 1.800293θ 5, (3.92b)

where the value of θ is defined in the first quadrant, 0 ≤θ < π /2. For other quadrants, the following

properties can be used to transfer it to the first quadrant:

sin(180◦ − θ) = sin(θ), cos(180◦ − θ) = − cos(θ) (3.93)

sin(−180◦ + θ) = − sin(θ), cos(−180◦ + θ) = − cos(θ) (3.94)

and

sin(−θ) = − sin(θ), cos(−θ) = cos(θ). (3.95)

The C55x assembly routine (listed in Table 3.22) synthesizes the sine and cosine functions, which can

be used to calculate the angle θ from −180◦ to 180◦.

0x3FFF = 90°

0xBFFF = −90°

0x7FFF = 180°
0x8000 = −180° 0xFFFF = 360°

0x0000 = 0°

(b)

s.xxxxxxxxxxxxxxx

siii.xxxxxxxxxxxx

Q12 format

(a)

Q15 format

Figure 3.30 Scaled fixed-point number representation: (a) Q formats; (b) map angle value to 16-bit signed integer

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 173

Table 3.22 The C55x program for approximation of sine and cosine functions

.def _sine_cos
;
; Approximation coefficients in Q12 (4096) format
;

.data
coeff ; Sine approximation coefficients

.word 0x3240 ; c1 = 3.140625

.word 0x0053 ; c2 = 0.02026367

.word 0xaacc ; c3 = -5.325196

.word 0x08b7 ; c4 = 0.54467780

.word 0x1cce ; c5 = 1.80029300
; Cosine approximation coefficients
.word 0x1000 ; d0 = 1.0000
.word 0xfff8 ; d1 = -0.001922133
.word 0xb199 ; d2 = -4.90014738
.word 0xfbc3 ; d3 = -0.2648921
.word 0x50ba ; d4 = 5.0454103
.word 0xe332 ; d5 = -1.800293

;
; Function starts
;

.text
_sine_cos

amov #14,AR2
btstp AR2,T0 ; Test bit 15 and 14
nop

;
; Start cos(x)
;

amov #coeff+10,XAR2 ; Pointer to the end of coefficients
xcc _neg_x,TC1
neg T0 ; Negate if bit 14 is set

_neg_x
and #0x7fff,T0 ; Mask out sign bit
mov *AR2-<<#16,AC0 ; AC0 = d5

|| bset SATD ; Set Saturate bit
mov *AR2-<<#16,AC1 ; AC1 = d4

|| bset FRCT ; Set up fractional bit
mac AC0,T0,AC1 ; AC1 = (d5*x+d4)

|| mov *AR2-<<#16,AC0 ; AC0 = d3
mac AC1,T0,AC0 ; AC0 = (d5*x^2+d4*x+d3)

|| mov *AR2-<<#16,AC1 ; AC1 = d2
mac AC0,T0,AC1 ; AC1 = (d5*x^3+d4*x^2+d3*x+d2)

|| mov *AR2-<<#16,AC0 ; AC0 = d1
mac AC1,T0,AC0 ; AC0 = (d5*x^4+d4*x^3+d3*x^2+d2*x+d1)

|| mov *AR2-<<#16,AC1 ; AC1 = d0
macr AC0,T0,AC1 ; AC1 = (d5*x^4+d4*x^3+d3*x^2+d2*x+d1)*x+d0

|| xcc _neg_result1,TC2
neg AC1

_neg_result1
mov *AR2-<<#16,AC0 ; AC0 = c5

continues overleaf

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

174 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Table 3.22 (continued)

|| xcc _neg_result2,TC1
neg AC1

_neg_result2
mov hi(saturate(AC1<<#3)),*AR0+ ; Return cos(x) in Q15

;
; Start sin(x) computation
;

mov *AR2-<<#16,AC1 ; AC1 = c4
mac AC0,T0,AC1 ; AC1 = (c5*x+c4)

|| mov *AR2-<<#16,AC0 ; AC0 = c3
mac AC1,T0,AC0 ; AC0 = (c5*x^2+c4*x+c3)

|| mov *AR2-<<#16,AC1 ; AC1 = c2
mac AC0,T0,AC1 ; AC1 = (c5*x^3+c4*x^2+c3*x+c2)

|| mov *AR2-<<#16,AC0 ; AC0 = c1
mac AC1,T0,AC0 ; AC0 = (c5*x^4+c4*x^3+c3*x^2+c2*x+c1)
mpyr T0,AC0,AC1 ; AC1 = (c5*x^4+c4*x^3+c3*x^2+c2*x+c1)*x

|| xcc _neg_result3,TC2
neg AC1

_neg_result3
mov hi(saturate(AC1<<#3)),*AR0- ; Return sin(x) in Q15

|| bclr FRCT ; Reset fractional bit
bclr SATD ; Reset saturate bit
ret
.end

Since the absolute value of the largest coefficient given in this experiment is 5.325196, we must scale

the coefficients or use a different Q format as shown in Figure 3.22. We can achieve this by using the

Q3.12 format, which has one sign bit, three integer bits, and 12 fraction bits to cover the range (−8, 8),

as illustrated in Figure 3.30(a). In the example, we use Q3.12 format for all the coefficients, and map the

angle −π ≤ θ ≤ π to a signed 16-bit number (0x8000 ≤ x ≤ 0x7FFF) as shown in Figure 3.30(b).

When the assembly subroutine sine_cos is called, a 16-bit mapped angle (function argument) is

passed to the assembly routine using register T0 (see C calling conversion described in Chapter 2). The

quadrant information is tested and stored in TC1 and TC2. If TC1 (bit 14) is set, the angle is located in

either quadrant II or quadrant IV. We use the 2’s complement to convert the angle to the first or third

quadrant. We mask out the sign bit to calculate the third quadrant angle in the first quadrant, and the

negation changes the fourth quadrant angle to the first quadrant. Therefore, the angle to be calculated is

always located in the first quadrant. Because we use Q3.12 format for coefficients, the computed result

needs to be left-shifted 3 bits to scale back to Q15 format. The files used for this experiment are listed in

Table 3.23.

Table 3.23 List of files for experiment exp3.6.5.4_using assembly routine

Files Description

sinCosTest.c C function for testing function approximation

sine_cos.asm Assembly routine for sine and cosine approximation

sin_cos.pjt DSP project file

funcAppro.cmd DSP linker command file

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 175

Procedures of the experiment are listed as follows:

1. Load the project sine_cos.pjt, rebuild, and load the program to the DSK or CCS simulator.

2. Calculate the angles in the following table, and run the experiment to read the approximation results

and compare the differences.

θ 30◦ 45◦ 60◦ 90◦ 120◦ 135◦ 150◦ 180◦

cos(θ)

sin(θ)

θ −150◦ −135◦ −120◦ −90◦ −60◦ −45◦ −30◦ 0◦

cos(θ)

sin(θ)

3. Explain the tasks of following C55x instructions:

(a) bset FRCT, (b) bset SATD, (c) bset SMUL

4. Remove the assembly instruction bset SATD and rerun the experiment. Observe the difference of

approximation results.

3.6.6 Real-Time Digital Signal Generation Using DSK

In this section, we will generate tones and random numbers using C5510 DSK. The generated signals

will be played back in real time via AIC23 on the C5510 DSK.

Tone generation using floating-point C

In this experiment, we will generate and play a tone embedded in random noise using the C5510 DSK.

Table 3.24 shows the functions that are used to generate a tone and random noise. The function cos(x)

uses 4682 cycles per call and the function rand() uses only 87 cycles. Table 3.25 lists the files used for

this experiment.

Procedures of the experiment are listed as follows:

1. Load the project floatPointSigGen.pjt, rebuild, and load the program to the DSK.

2. Connect a headphone to the headphone output of the DSK and start audio payback.

3. Listen to the audio output. Use a scope to observe the generated waveform.

Tone generation using fixed-point C

Refer to the experiment given above in section 3.6.5, we write a cosine function in C55x assembly

language similar to Table 3.22. This assembly routine uses only 58 cycles per function call. Table 3.26

lists the files used for this experiment.

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

176 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Table 3.24 Floating-point C program for tone and noise generation

#define UINTQ14 0x3FFF
#define PI 3.1415926

// Variable definition
static unsigned short n;
static float twoPI_f_Fs;

void initFTone(unsigned short f, unsigned short Fs)
{

n = 0;
twoPI_f_Fs = 2.0*PI*(float)f/(float)Fs;

}

short fTone(unsigned short Fs)
{

n++;
if (n >= Fs)

n=0;

return((short)(cos(twoPI_f_Fs*(float)n)*UINTQ14));
}

void initRand(unsigned short seed)
{

srand(seed);
}

short randNoise(void)
{

return((rand()-RAND_MAX/2)>>1);
}

Table 3.25 List of files for experiment exp3.6.6.1_using floating-PointC

Files Description

floatSigGenTest.c C function for testing experiment

ftone.c Floating-point C function for tone generation

randNoise.c C function for generating random numbers

floatPointSigGen.pjt DSP project file

floatPointSigGencfg.cmd DSP linker command file

floatPointSigGen.cdb DSP BIOS configuration file

Table 3.26 List of files for experiment exp3.6.6.2_of tone generation

Files Description

toneTest.c C function for testing experiment

tone.c C function controls tone generation

cos.asm Assembly routine computes cosine values

toneGen.pjt DSP project file

toneGencfg.cmd DSP linker command file

toneGen.cdb DSP BIOS configuration file

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 177

Procedures of the experiment are listed as follows:

1. Load the project toneGen.pjt, rebuild, and load the program to the DSK.

2. Connect a headphone to the headphone output of the DSK and start playback of the tone.

3. Listen to the DSK output. Use a scope to observe the generated waveform.

Random number generation using fixed-point C

The linear congruential sequence method (will be further discussed in Chapter 8) is widely used because

of its simplicity. The random number generation can be expressed as

x(n) = [ax(n − 1) + b]mod M , (3.96)

where the modulo operation (mod) returns the remainder after division by M . For this experiment,

we select M = 220 = 0x100000, a = 2045, and x(0) = 12 357. The C program for the random number

generation is given in Table 3.27, where seed=x(0)=12357.

Floating-point multiplication and division are very slow on fixed-point DSP processors. We have

learned in Chapter 2 that we can use a mask instead of modulo operation for a power-of-2 number. We

improve the run-time efficiency by rewriting the program as listed in Table 3.28. The profile shows that

the function randNumber2() needs only 48 cycles while the original function randNumber1() uses

427 cycles. The files used for this experiment are listed in Table 3.29.

Procedures of the experiment are listed as follows:

1. Load the project randGenC.pjt, rebuild, and load the program to the DSK.

2. Connect a headphone to the headphone output of the DSK and start the random signal generation.

3. Listen to the DSK output. Use a scope to observe the generated waveform.

Table 3.27 C program for random number generation

// Variable definition
static volatile long n;
static short a;

void initRand(long seed)
{

n = (long)seed;
a = 2045;

}

short randNumber1(void)
{

short ran;

n = a*n + 1;
n = n - (long)((float)(n*0x100000)/(float)0x100000);
ran = (n+1)/0x100001;
return (ran);

}

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

178 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

Table 3.28 C program that uses mask for modulo operation

short randNumber2(void)
{

short ran;

n = a*n;
n = n&0xFFFFF000;
ran = (short)(n>>20);
return (ran);

}

Random number generation using C55x assembly language

To further improve the performance, we use assembly language for random number generation. The

assembly routine is listed in Table 3.30, which reduces the run-time clock cycles by 50%. Table 3.31 lists

the files used for this experiment.

Procedures of the experiment are listed as follows:

1. Load the project randGen.pjt, rebuild, and load the program to the DSK.

2. Connect a headphone to the headphone output of the DSK and start the random signal generation.

3. Listen to the DSK output. Use a scope to observe the generated waveform.

Signal generation using C55x assembly language

This experiment combines the tone and random number generators for generating random noise, tone,

and tone with additive random noise. The files used for this experiment are listed in Table 3.32.

Procedures of the experiment are listed as follows:

1. Load the project signalGen.pjt, rebuild, and load the program to the DSK.

2. Connect a headphone to the headphone output of the DSK and start signal generation.

3. Listen to the DSK output. Use a scope to observe the generated waveform.

Table 3.29 List of files for experiment exp3.6.6.3_of random number generation

Files Description

randTest.c C function for testing experiment

rand.c C function generates random numbers

randGenC.pjt DSP project file

randGencfg.cmd DSP linker command file

randGen.cdb DSP BIOS configuration file

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 179

Table 3.30 C55x assembly program of random number generator

.bss _n,2,0,2 ; long n

.bss _a,1,0,0 ; short a

.def _initRand

.def _randNumber

.sect ".text"
_initRand:

mov AC0,dbl(*(#_n)) ; n = (long)seed;
mov #2045,*(#_a) ; a = 2045;
ret

_randNumber:
amov #_n,XAR0
mov *(#_a),T0
mpym *AR0+,T0,AC0 ; n = a*n;
mpymu *AR0-,T0,AC1 ; This is an 32x16 integer multiply
sfts AC0,#16
add AC1,AC0

| | mov #0xFFFF<<#16,AC2 ; n = n&0xFFFFF000;
or #0xF000,AC2
and AC0,AC2
mov AC2,dbl(*AR0)

| | sfts AC2,#-20,AC0 ; ran = (short)(n>>20);
mov AC0,T0 ; Return (ran);
ret
.end

Table 3.31 List of files for experiment exp3.6.6.4_using assembly routine

Files Description

randTest.c C function for testing experiment

rand.asm Assembly routine generates random numbers

randGen.pjt DSP project file

randGencfg.cmd DSP linker command file

randGen.cdb DSP BIOS configuration file

Table 3.32 List of files for experiment exp3.6.6.5_of signal generation

Files Description

sigGenTest.c C function for testing experiment

tone.c C function controls tone generation

cos.asm Assembly routine computes cosine values

rand.asm Assembly routine generates random numbers

signalGen.pjt DSP project file

signalGencfg.cmd DSP linker command file

signalGen.cdb DSP BIOS configuration file

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

180 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

References

[1] N. Ahmed and T. Natarajan, Discrete-Time Signals and Systems, Englewood Cliffs, NJ: Prentice-Hall, 1983.

[2] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice Hall,

1989.

[3] S. J. Orfanidis, Introduction to Signal Processing, Englewood Cliffs, NJ: Prentice Hall, 1996.

[4] J. G. Proakis and D. G. Manolakis, Digital Signal Processing – Principles, Algorithms, and Applications, 3rd

Ed., Englewood Cliffs, NJ: Prentice Hall, 1996.

[5] P. Peebles, Probability, Random Variables, and Random Signal Principles, New York, NY: McGraw-Hill, 1980.

[6] A Bateman and W. Yates, Digital Signal Processing Design, New York: Computer Science Press, 1989.

[7] S. M. Kuo and D. R. Morgan, Active Noise Control Systems – Algorithms and DSP Implementations, New York,

NY: John Wiley & Sons, Inc., 1996.

[8] C. Marven and G. Ewers, A Simple Approach to Digital Signal Processing, New York: John Wiley & Sons, Inc.,

1996.

[9] J. H. McClellan, R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia Approach, 2nd Ed., Englewood Cliffs,

NJ: Prentice Hall, 1998.

[10] D. Grover and J. R. Deller, Digital Signal Processing and the Microcontroller, Upper Saddle River, NJ: Prentice

Hall, 1999.

[11] S. M. Kuo and W. S. Gan, Digital Signal Processors – Architectures, Implementations, and Applications, Upper

Saddle River, NJ: Prentice Hall, 2005.

[12] MathWorks, Inc.,Using MATLAB, Version 6, 2000.

[13] MathWorks, Inc., Signal Processing Toolbox User’s Guide, Version 6, 2004.

[14] MathWorks, Inc., Filter Design Toolbox User’s Guide, Version 3, 2004.

[15] MathWorks, Inc., Fixed-Point Toolbox User’s Guide, Version 1, 2004.

Exercises

1. The all-digital touch-tone phones use the sum of two sinewaves for signaling. Frequencies of these sinewaves are

defined as 697, 770, 852, 941, 1209, 1336, 1477, and 1633 Hz. The sampling rate used by the telecommunications

is 8 kHz, converts those 8 frequencies in terms of radians per sample and cycles per sample.

2. Compute the impulse response h(n) for n = 0, 1, 2, 3, 4 of the digital systems defined by the following I/O

equations:

(a) y(n) = x(n) = 0.75y(n − 1);

(b) y(n) − 0.3y(n − 1) − 0.4y(n − 2) = x(n) − 2x(n − 1); and

(c) y(n) = 2x(n) − 2x(n − 1) + 0.5x(n − 2).

3. Construct detailed signal-flow diagrams for the digital systems defined in Problem 2.

4. Similar to the signal-flow diagram for the IIR filter as shown in Figure 3.11, construct a general signal-flow

diagram for the IIR filter defined in Equation (3.42) for M �= L−1.

5. Find the transfer functions for the three digital systems defined in Problem 2.

6. Find the zero(s) and/or pole(s) of the digital systems given in Problem 2. Discuss the stability of these systems.

7. For a second-order IIR filter defined in Equation (3.42) with two complex poles defined in (3.52), the radius

r = 0.9 and the angle θ = 0.25π . Find the transfer function and I/O equation of this filter.

8. A 2 kHz sinewave is sampled with 10-kHz sampling rate, what is the sampling period? What is the digital

frequency in terms of ω and F? If we have 100 samples, how many cycles of sinewave are covered?

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

EXERCISES 181

9. For the digital sinewave given in Problem 8, if we compute the DFT with N = 100, what is the frequency

resolution? If we display the magnitude spectrum as shown in Figure 3.17, what is the value of k corresponding

to the peak spectrum? What happens if the frequencies of sinewave are 1.5 and 1.05 kHz?

10. Similar to Table 3.2, construct a new table for 5-bit binary numbers.

11. Find the fixed-point 2’s complement binary representation with B = 6 for the decimal numbers 0.5703125 and

−0.640625. Also, find the hexadecimal representation of these two numbers. Round the binary numbers to 6

bits and compute the corresponding roundoff errors.

12. Similar to Example 3.26, represent the two fractional numbers in Problem 11 in integer format for the C55x

assembly programs.

13. Represent the 16-bit number given in Example 3.27 in Q1.14, Q3.12, and Q15.0 formats.

14. If the quantization process uses truncating instead of rounding, show that the truncation error e(n) = x(n) −
x(nT) will be in the interval −	 < e(n) < 0. Assuming that the truncation error is uniformly distributed in the

interval (−	, 0), compute the mean and the variance of e(n).

15. Generate and plot (20 samples) the following sinusoidal signals using MATLAB:

(a) A = 1, f = 100 Hz, and fs = 1 kHz;

(b) A = 1, f = 400 Hz, and fs = 1 kHz’

(c) discuss the difference of results between (a) and (b);

(d) A = 1, f = 600 Hz, and fs = 1 kHz; and

(e) compare and explain the results obtained from (b) and (d).

16. Use MATLAB to show pole-zero diagram of three digital systems given in Problem 2.

17. Use MATLAB to display magnitude and phase responses of three digital systems given in Problem 2.

18. Generate 1024 samples of pseudo-random numbers with zero mean and unit variance using the MATLAB

function rand. Then use MATLAB functions mean, std, and hist to verify the results.

19. Generate 1024 samples of sinusoidal signal at frequency 1000 Hz, amplitude equal to unity, and the sampling

rate 8000 Hz. Mix the generated sinewave with the zero-mean pseudo-random number of variance 0.2. What is

the SNR? Calculate and display the magnitude spectrum using MATLAB script.

20. Write a MATLAB or C program to implement the moving-average filter defined in Equation (3.15). Test the

filter using the corrupted sinewave generated in Problem 18 as input for different L . Plot both the input and

output waveforms and magnitude spectra. Discuss the results related to the filter order L .

21. Given the difference equations in Problem 2, calculate and plot the impulse response h(n), n = 0, 1, . . . , 127,

using MATLAB.

22. Similar to Example 3.31, use MATLAB functions quantizer and quantize to convert the speech file

timit1.asc given in Example 3.29 to 4-, 8-, and 12-bit data, and use soundsc to playback the quantized

signals.

23. Select the proper radix conversion functions listed in Table 3.4 to convert the white noise generated in Example

3.32 to hex format.

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

182 DSP FUNDAMENTALS AND IMPLEMENTATION CONSIDERATIONS

24. Use DSK to conduct the quantization experiment in real-time.

(a) Generate an analog signal such as a sinewave using a signal generator for DSK input signal. Both the

input and output channels of the DSK are displayed on an oscilloscope. Assuming that the ADC has 16-bit

resolutions, adjust the amplitude of input signal to the full scale of ADC without clipping the waveform.

Vary the number of bits (by shifting out or masking) to 14, 12, 10, etc. to represent the signal and output the

signal to DAC. Observe the output waveform using the oscilloscope.

(b) Replace the input source with a microphone, radio line output, or CD player, and send the DSK output to a

loudspeaker for audio playback. Vary the number of bits (16, 12, 8, 4, etc.) for the output signal, and listen

to the output sound. Depending on the type of loudspeaker being used, we may need to use an amplifier to

drive the loudspeaker.

25. Implement the following square-root approximation equation in C55x assembly language:

√
x = 0.2075806 + 1.454895x − 1.34491x2 + 1.106812x3 − 0.536499x4 + 0.1121216x5

This equation approximates an input variable within the range of 0.5 ≤ x ≤ 1. Based on the values in the

following table, calculate
√

x :

x 0.5 0.6 0.7 0.8 0.9√
x

26. Write a C55x assembly function to implement the inverse square-root approximation equation as following:

1
/√

x = 1.84293985 − 2.57658958x + 2.11866164x2 − 0.67824984x3.

This equation approximates an input variable in the range of 0.5 ≤ x ≤ 1. Use this approximation equation to

compute 1/
√

x in the following table:

x 0.5 0.6 0.7 0.8 0.9

1/
√

x

Note that 1/
√

x will result a number greater than 1.0. Try to use Q14 data format. That is, use 0x3FFF for 1 and

0x2000 for 0.5, and scale back to Q15 after calculation.

27. Write a C55x assembly function to implement the arctangent function as following:

tan−1(x) = 0.318253x + 0.003314x2 − 0.130908x3 + 0.068542x4 − 0.009195x5.

This equation approximates an input variable in the range of x < 1. Use this approximation equation to compute

tan−1(x) in the following table:

x 0.1 0.3 0.5 0.7 0.9

tan−1(x)

28. Write a C55x assembly function to generate a sin(x) table with following requirements:

The input variable 0o ≤ x ≤ 45o with resolution 0.5o.

Output must over 0o ≤ x ≤ 359owith resolution 1.0o.

Hint: this program can be implemented with the following steps:

(a) implement sin(x)andcos(x) for 0o ≤ x ≤ 45o;

(b) use sin(2x) = sin(x) cos(x) for 0o ≤ x ≤ 90o; and

(c) use sin(180◦ − x) = sin(x) and sin(−180◦ + x) = − sin(x) to map the rest values for the table.

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

EXERCISES 183

29. If the random variables xi are independent of the mean mi and variance σ 2
i , and the random variable y is defined

as

y = x1 + x2 + · · · + xN =
N∑

i=1

xi ,

the probability density function becomes a Gaussian (normal) distribution function (normal curve) as N → ∞.

Write a DSP assembly routine to generate a Gaussian random noise with N = 12 in real time using the C55x

DSK.

30. Write a DSP program to generate a tone with an additive Gaussian random noise generated in Problem 29 with

SNR = 20 dB. Play this signal in real time at 32-kHz sampling rate by DSK. Modify the program such that

SNR = 10 dB. Play this signal again using DSK.

JWBK080-03 JWBK080-Kuo March 8, 2006 19:12 Char Count= 0

184

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

4
Design and Implementation
of FIR Filters

A digital filter is a mathematical algorithm implemented in hardware, firmware, and/or software for

achieving filtering objectives. Digital filters can be classified as linear or nonlinear filters. Linear filters

can be divided into FIR and IIR filters. This chapter focuses on the analysis, design, implementation, and

application of the digital FIR filters.

4.1 Introduction to FIR Filters

Some advantages of FIR filters are summarized as follows:

1. The FIR filters are always stable because there is no feedback from past outputs and the absence of

poles.

2. The design of linear-phase filters can be guaranteed.

3. The finite-precision errors are less severe in FIR filters than in IIR filters.

4. FIR filters can be efficiently implemented on most DSP processors with MAC units, circular buffers,

zero-overhead loops, and special instructions for FIR filtering.

The process of deriving filter coefficients that satisfies a given set of specifications is called filter

design. Even though a number of computer-aided design tools are widely available for designing digital

filters, we still need to understand the characteristics of filters and be familiar with techniques used for

implementing digital filters.

4.1.1 Filter Characteristics

Linear, time-invariant filters are characterized by magnitude response, phase response, stability, rising

time, settling time, and overshoot. Magnitude and phase responses determine the steady-state response

of the filter; while the rising time, settling time, and overshoot specify the transient response. For an

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

185

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

186 DESIGN AND IMPLEMENTATION OF FIR FILTERS

instantaneous input change, the rising time specifies its output-changing rate. The settling time describes

the amount of time for an output to settle down to a stable value, and the overshoot shows if the output

exceeds the desired value.

When a signal passes through a filter, its amplitude and phase are modified by the filter. The magnitude

response of the filter specifies the gains at certain frequencies, and the phase response affects phase and

time delay of frequency components. The group-delay function is defined as

Td(ω) = −dφ(ω)

dω
, (4.1)

where φ(ω) is the phase spectrum. A linear-phase filter has phase response that satisfies

φ(ω) = −αω or φ(ω) = π − αω. (4.2)

Therefore, for a filter with linear phase, the group delay Td(ω) given in Equation (4.1) is a constant

α for all frequencies. This filter avoids phase distortion because all frequency components in the input

are delayed by the same amount. Linear phase is important in many real-world applications where the

temporal relationships between different frequency components are critical.

Example 4.1: Considering a simple moving-average filter given in Example 3.16, the frequency

response is

H (ω) = 1

2

(
1 + e− jω

) = 1

2
e− jω/2

[
e jω/2 + e− jω/2

] = e− jω/2 cos (ω/2) .

Therefore, we have the squared-magnitude response

|H (ω)|2 = cos2
(ω

2

)
= 1

2
[1 + cos (ω)] .

Since the magnitude response falls off monotonically to zero at ω = π , this is a lowpass filter with

the phase response

φ (ω) = −ω

2
,

which is a linear phase as shown in Equation (4.2). Therefore, this filter has constant time delay

Td(ω) = −dφ(ω)

dω
= 0.5.

These characteristics can be verified using the following MATLAB script (example4_1.m):

b=[0.5, 0.5];
a = [1]; % Define filter coefficients
freqz(b,a); % Show magnitude and phase responses

The magnitude and phase responses of freqz(b,a) are illustrated in Figure 4.1. Group delay can

be computed and displayed using grpdelay(b,a).

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

INTRODUCTION TO FIR FILTERS 187

0 0.1 0.2 0.3 0.4

Normalized frequency (×π rad/sample)

0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4
Normalized frequency (×π rad/sample)

0.5 0.6 0.7 0.8 0.9 1

−60

−100

−50

0

−40

−20

0

M
ag

n
it

u
d
e

(d
B

)
P

h
as

e
(d

eg
re

es
)

Figure 4.1 Magnitude and phase responses of simple moving-average filter

4.1.2 Filter Types

If a filter is defined in terms of its magnitude response, there are four different types of filters: lowpass,

highpass, bandpass, and bandstop filters. Because the magnitude response of a digital filter with real

coefficients is an even function of ω, the filter specifications are defined in the range 0 ≤ ω ≤ π .

The magnitude response of an ideal lowpass filter is illustrated in Figure 4.2(a). The regions 0 ≤ ω ≤ ωc

and ω > ωc are referred to as the passband and stopband, respectively, and the frequency ωc that separates

H (w)

ω

1

0 π
ω

1

0 π

ω

1

0 π
ω

1

0 π

(a) Lowpass filter (b) Highpass filter

(c) Bandpass filter (d) Bandstop filter

wc

wa wb wa wb

wc

H (w)

H (w)H (w)

Figure 4.2 Magnitude response of ideal filters: (a) lowpass; (b) highpass; (c) bandpass; and (d) bandstop

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

188 DESIGN AND IMPLEMENTATION OF FIR FILTERS

the passband and stopband is called the cutoff frequency. An ideal lowpass filter has magnitude response

|H (ω)| = 1 in the frequency range 0 ≤ ω ≤ ωc, and |H (ω)| = 0 for ω > ωc. Thus, a lowpass filter passes

low-frequency components below the cutoff frequency and attenuates high-frequency components above

ωc.

The magnitude response of an ideal highpass filter is illustrated in Figure 4.2(b). A highpass filter passes

high-frequency components above the cutoff frequency ωc and attenuates low-frequency components

below ωc. In practice, highpass filters can be used to eliminate DC offset, 60 Hz hum, and other low-

frequency noises.

The magnitude response of an ideal bandpass filter is illustrated in Figure 4.2(c). The frequencies ωa

and ωb are called the lower cutoff frequency and the upper cutoff frequency, respectively. A bandpass filter

passes frequency components between the two cutoff frequencies ωa and ωb, and attenuates frequency

components below the frequency ωa and above the frequency ωb.

The magnitude response of an ideal bandstop (or band-reject) filter is illustrated in Figure 4.2(d). A

filter with a very narrow stopband is also called a notch filter. For example, a power line generates a

60 Hz sinusoidal noise called 60 Hz hum, which can be removed by a notch filter with notch frequency

at 60 Hz.

In addition to these frequency-selective filters, an allpass filter provides frequency response |H (ω)| = 1

for all ω. The principal use of allpass filters is to correct the phase distortion introduced by physical systems

and/or other filters. A very special case of the allpass filter is the ideal Hilbert transformer, which produces

a 90◦ phase shift to input signals.

A multiband filter has more than one passband and stopband. A special case of the multiband filter

is the comb filter. A comb filter has equally spaced zeros with the shape of the magnitude response

resembling a comb. The difference equation of the comb filter is given as

y(n) = x(n) − x(n − L), (4.3)

where the number of delay L is an integer. The transfer function of this FIR filter is

H (z) = 1 − z−L = zL − 1

zL
. (4.4)

Thus, the comb filter has L poles at the origin and L zeros equally spaced on the unit circle at

zl = e j(2π/L)l , l = 0, 1, . . . , L − 1. (4.5)

Example 4.2: A comb filter with L = 8 has eight zeros at

zl = 1, eπ/4, eπ/2, e3π/4, eπ = −1, e5π/4, e3π/2, e7π/4.

The frequency response can be computed and plotted in Figure 4.3 using the following MATLAB

script (example4_2.m) for L = 8:

b=[1 0 0 0 0 0 0 0 -1]; a=[1];
freqz(b, a);

Figure 4.3 shows that the comb filter can be used as a crude bandstop filter to remove harmonics

at frequencies

ωl = 2πl/L , l = 0, 1, . . . , L/2 − 1. (4.6)

The center of the passband lies halfway between the zeros of the response; that is, at frequencies
(2l+1)π

L , l = 0, 1, . . . , L/2 − 1.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

INTRODUCTION TO FIR FILTERS 189

0

10

5

−5

−10

−15

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency (xπ rad/sample)

M
ag

n
it

u
d
e

(d
B

)

0

100

50

−50

−100

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency (xπ rad/sample)

P
h
as

e
(d

eg
re

es
)

Figure 4.3 Magnitude and phase responses of a comb filter

Comb filters are useful for passing or eliminating specific frequencies and their harmonics. Using comb

filters for attenuating periodic signals with harmonic related components is more efficient than having

individual filters for each harmonic. For example, the humming sound produced by large transformers

located in electric utility substations is composed with even-numbered harmonics (120, 240, 360 Hz,

etc.) of the 60 Hz power-line frequency. When a desired signal is corrupted by the transformer noise, the

comb filter with notches at the multiples of 120 Hz can be used to eliminate those undesired harmonic

components.

Example 4.3: We can selectively cancel zeros in a comb filter with corresponding poles. Canceling

the zero provides a passband, while the remaining zeros provide attenuation for stopband. If we

add a pole at z = 1, the transfer function given in Equation (4.4) changes to

H (z) = 1 − z−L

1 − z−1
. (4.7)

The pole at z = 1 is canceled by the zero at z = 1, resulting in a lowpass filter with passband

centered at z = 1. The system defined by Equation (4.7) is still an FIR filter because the pole is

canceled. Applying the scaling factor 1/L to Equation (4.7), the transfer function becomes

H (z) = 1

L

(
1 − z−L

1 − z−1

)
. (4.8)

This is the moving-average filter introduced in Chapter 3. Note that canceling the zero at z = 1

produces a lowpass filter and canceling the zero at z = −1 produces a highpass filter. This is

because that z = 1 is corresponding to ω = 0 and z = −1 is corresponding to ω = π .

4.1.3 Filter Specifications

The characteristics of digital filters are often specified in the frequency domain, and thus the design is

based on magnitude-response specifications. In practice, we cannot achieve the infinitely sharp cutoff as

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

190 DESIGN AND IMPLEMENTATION OF FIR FILTERS

H (w)

1 + dP

1 − dP

1

As

AP

Passband Stopband

0

Transition
band

Ideal filter

Actual filter

ds

wp wc ws p w

Figure 4.4 Magnitude response and performance measurement of a lowpass filter

the ideal filters given in Figure 4.2. We must accept a more gradual cutoff with a transition band between

the passband and the stopband. The specifications are often given in the form of tolerance (or ripple)

schemes, and a transition band is specified to permit the smooth magnitude roll-off. A typical magnitude

response of lowpass filter is illustrated in Figure 4.4. The dotted horizontal lines in the figure indicate

the tolerance limits. The magnitude response has a peak deviation δp in the passband, and a maximum

deviation δs in the stopband. The frequencies ωp and ωs are the passband edge (cutoff) frequency and the

stopband edge frequency, respectively.

As shown in Figure 4.4, the magnitude of passband (0 ≤ ω ≤ ωp) approximates unity with an error of

±δp. That is,

1 − δp ≤ |H (ω)| ≤ 1 + δp, 0 ≤ ω ≤ ωp. (4.9)

The passband ripple δp is the allowed variation in magnitude response in the passband. Note that the gain

of the magnitude response is normalized to 1 (0 dB).

In the stopband, the magnitude response approximates zero with an error δs. That is,

|H (ω)| ≤ δs, ωs ≤ ω ≤ π. (4.10)

The stopband ripple (or attenuation) δs describes the minimum attenuation for signal components above

the ωs.

Passband and stopband deviations are usually expressed in decibels. The peak passband ripple and the

minimum stopband attenuation in decibels are defined as

Ap = 20 log10

(
1 + δp

1 − δp

)
dB (4.11)

and

As = −20 log10 δs dB. (4.12)

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

INTRODUCTION TO FIR FILTERS 191

Example 4.4: Consider a filter has passband ripples within ±0.01; that is, δp = 0.01. From

Equation (4.11), we have

Ap = 20 log10

(
1.01

0.99

)
= 0.1737 dB.

When the minimum stopband attenuation is given as δs = 0.01, we have

As = −20 log10(0.01) = 40 dB.

The transition band is the area between the passband edge frequency ωp and the stopband edge

frequency ωs. The magnitude response decreases monotonically from the passband to the stopband in

this region. The width of the transition band determines how sharp the filter is. Generally, a higher order

filter is needed for smaller δp and δs, and narrower transition band.

4.1.4 Linear-Phase FIR Filters

The signal-flow diagram of the FIR filter is shown in Figure 3.6, and the I/O equation is defined in

Equation (3.15). If L is an odd number, we define M = (L − 1)/2. Equation (3.15) can be written as

B(z) =
2M∑
l=0

bl z
−l =

M∑
l=−M

bl+M z−(l+M) = z−M

[
M∑

l=−M

hl z
−l

]
= z−M H (z), (4.13)

where

H (z) =
M∑

l=−M

hl z
−l . (4.14)

Let hl have the symmetry property as

hl = h−l , l = 0, 1, . . . , M. (4.15)

From Equation (4.13), the frequency response B(ω) can be written as

B (ω) = B(z)|z=e jω = e− jωM H (ω)

= e− jωM

[
M∑

l=−M

hle
− jωl

]
= e− jωM

[
h0 +

M∑
l=1

hl

(
e jωl + e− jωl

)]

= e− jωM

[
h0 + 2

M∑
l=1

hl cos (ωl)

]
. (4.16)

If L is an even integer and M = L/2, the derivation of Equation (4.16) has to be modified slightly.

If hl is real valued, H (ω) is a real function of ω. If H (ω) ≥ 0, then the phase of B(ω) is equal to

φ (ω) = −ωM, (4.17)

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

192 DESIGN AND IMPLEMENTATION OF FIR FILTERS

which is a linear function of ω. However, if H (ω) < 0, then the phase of B(ω) is equal to π − ωM . Thus,

there are sign changes in H (ω) corresponding to 180◦ phase shifts in B(ω), and B(ω) is only piecewise

linear as shown in Figure 4.3.

If hl has the antisymmetry property as

hl = −h−l , l = 0, 1, . . . , M, (4.18)

this implies h(0) = 0. Following the derivation of Equation (4.16), we can also show that the phase of

B(z) is a linear function of ω.

In conclusion, an FIR filter has linear phase if its coefficients satisfy the positive symmetric condition

bl = bL−1−l , l = 0, 1, . . . , L − 1, (4.19)

or the antisymmetric condition (negative symmetry)

bl = −bL−1−l , l = 0, 1, . . . , L − 1. (4.20)

The group delay of a symmetric (or antisymmetric) FIR filter is Td (ω) = (L − 1)/2, which corresponds

to the midpoint of the FIR filter. Depending on whether L is even or odd and whether bl has positive or

negative symmetry, there are four types of linear-phase FIR filters as illustrated in Figure 4.5.

The symmetry (or antisymmetry) property of a linear-phase FIR filter can be exploited to reduce the

total number of multiplications required by filtering. Consider the FIR filter with even length L and

positive symmetric as defined in Equation (4.19), Equation (3.40) can be combined as

H (z) = b0

(
1 + z−L+1

) + b1

(
z−1 + z−L+2

) + · · · + bL/2−1

(
z−L/2+1 + z−L/2

)
. (4.21)

A realization of H (z) defined in Equation (4.21) is illustrated in Figure 4.6 with the I/O equation expressed

as

y(n) = b0 [x(n) + x(n − L + 1)] + b1 [x(n − 1) + x(n − L + 2)]

+ · · · + bL/2−1 [x(n − L/2 + 1) + x(n − L/2)]

=
L/2−1∑

l=0

bl [x(n − l) + x(n − L + 1 + l)]. (4.22)

For an antisymmetric FIR filter, the addition of two signals is replaced by subtraction. That is,

y(n) =
L/2−1∑

l=0

bl [x(n − l) − x(n − L + 1 + l)]. (4.23)

As shown in Equation (4.22) and Figure 4.6, the number of multiplications is cut in half by adding

the pairs of samples, and then multiplying the sum by the corresponding coefficient. The trade-off is that

we need two address pointers that point at both x(n − l) and x(n − L + 1 + l) instead of accessing data

linearly through the same buffer with a single pointer. The TMS320C55x provides two special instructions

firsadd and firssub for implementing the symmetric and antisymmetric FIR filters, respectively. In

Section 4.5, we will demonstrate how to use the symmetric FIR instructions for experiments.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

INTRODUCTION TO FIR FILTERS 193

l

Center of
symmetry

Center of
symmetry

Center of
symmetry

Center of
symmetry

(a) Type I: L even (L = 8), positive symmetry.

l

(b) Type II: L odd (L = 7), positive symmetry.

l

(c) Type III: L even (L = 8), negative symmetry.

l

(d) Type IV: L odd (L = 7), negative symmetry.

Figure 4.5 Coefficients of the four types of linear-phase FIR filters: (a) type I: L even (L = 8), positive symmetry;

(b) type II: L odd (L = 7), positive symmetry; (c) type III: L even (L = 8), negative symmetry; and (d) type IV: L
odd (L = 7), negative symmetry

x(n)

x(n − L/2)

x(n − L/2 + 1)

x(n − L + 2)

x(n − L + 1)

x(n − 1)

bL/2−1b1b0

y(n)

z−1

z−1 z−1 z−1

z−1

z−1 z−1

+

+++

Figure 4.6 Signal-flow diagram of symmetric FIR filter, L is even

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

194 DESIGN AND IMPLEMENTATION OF FIR FILTERS

4.1.5 Realization of FIR Filters

An FIR filter can be operated on either a block basis or a sample-by-sample basis. In the block processing,

the input samples are segmented into multiple data blocks. Filtering is performed one block at a time, and

the resulting output blocks are recombined to form the overall output. The filtering of each data block can

be implemented using the linear convolution or fast convolution, which will be introduced in Chapter 6.

In the sample-by-sample processing, the input samples are processed at every sampling period after the

current input x(n) becomes available.

As discussed in Section 3.2.1, the output of an LTI system is the input samples convoluted with the

impulse response coefficients of the system. Assuming that the filter is casual, the output at time n is

given as

y(n) =
∞∑

l=0

h(l)x(n − l). (4.24)

The process of computing the linear convolution involves the following four steps:

1. Folding: Fold x(l) about l = 0 to obtain x(−l).

2. Shifting: Shift x(−l) by n samples to the right to obtain x(n − l).

3. Multiplication: Multiply h(l) by x(n − l) to obtain the products of h(l) × (n − l) for all l.

4. Summation: Sum all the products to obtain the output y(n) at time n.

Repeat Steps 2 through 4 in computing the output of the system at other time instants n. Note that the

convolution of the length M input signal with the length L impulse response results in length L + M−
1 output signal.

Example 4.5: Considering an FIR filter that consists of four coefficients b0, b1, b2, and b3, we

have

y(n) =
3∑

l=0

bl x(n − l), n ≥ 0.

The linear convolution yields

n = 0, y(0) = b0x(0)

n = 1, y(1) = b0x(1) + b1x(0)

n = 2, y(2) = b0x(2) + b1x(1) + b2x(0)

n = 3, y(3) = b0x(3) + b1x(2) + b2x(1) + b3x(0)

In general, we have

y(n) = b0x(n) + b1x(n − 1) + b2x(n − 2) + b3x(n − 3), n ≥ 3.

The graphical interpretation is illustrated in Figure 4.7.

As shown in Figure 4.7, the input sequence is flipped around (folded) and then shifted to the right

to overlap with the filter coefficients. At each time instant, the output value is the sum of products of

overlapped coefficients with the corresponding input data aligned below it. This flip-and-slide form of

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

INTRODUCTION TO FIR FILTERS 195

b0

x(0)
b0 x(0)

b0 x(1)

b0x(2)

b0x(n)
b1x(n − 1) b3x(n − 3)

b2x(n − 2)

b1x(1) b2x(0)

b1 x(0)
x(1)

x(0)

x(2)
x(1)

x(0)

x(n)
x(n − 3)

x(n − 2)x(n − 1)

b1

b2

b3

n = 0:

n = 1:

n = 2:

n ≥ 3:

Figure 4.7 Graphical interpretation of linear convolution, L = 4

linear convolution can be illustrated in Figure 4.8. Note that shifting x(−l) to the right is equivalent to

shifting bl to the left 1 unit at each sampling period.

At time n = 0, the input sequence is extended by padding L − 1 zeros to its right. The only nonzero

product comes from b0 multiplied with x(0), which is time aligned. It takes the filter L − 1 iterations

before it is completely overlapped with the input sequence. Therefore, the first L − 1 outputs correspond

to the transient of the FIR filtering. After n ≥ L − 1, the signal buffer of the FIR filter is full and the filter

is in the steady state.

In FIR filtering, the coefficients are constants, but the data in the signal buffer (or tapped delay line)

changes every sampling period, T . The signal buffer is refreshed in the fashion illustrated in Figure 4.9,

where the oldest sample x(n − L + 1) is discarded and the rest samples are shifted one location to the

right in the buffer. A new sample (from ADC in real-time applications) is inserted to the memory location

labeled as x(n). This x(n) at time n will become x(n − 1) in the next sampling period, then x(n − 2),

etc., until it simply drops out off the end of the delay chain. The process of refreshing the signal buffer

b1 b2 b3b0 b1 b2 b3b0

x(n − 3)x(n − 2) x(n − 1)x(n) x(0)

y(0)

0 0 0

y(n)

Figure 4.8 Flip-and-slide process of linear convolution

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

196 DESIGN AND IMPLEMENTATION OF FIR FILTERS

x(n) x(n − 1) x(n − 2) x(n − L + 2) x(n − L + 1)... Current
time, n

Next
time, n + 1

DiscardedNew data

x(n) x(n − 1) x(n − 2) x(n − L + 1)...

Figure 4.9 Signal buffer refreshing for FIR filtering

shown in Figure 4.9 requires intensive processing time if the data-move operations are not implemented

by hardware.

The most efficient method for refreshing a signal buffer is to arrange the signal samples in a circular

fashion as illustrated in Figure 4.10(a). Instead of shifting the data samples forward while holding the start

address of buffer fixed as shown in Figure 4.9, the data samples in the circular buffer do not move but the

buffer start address is updated backward (counterclockwise). The beginning of the signal sample, x(n), is

pointed by start-address pointer, and the previous samples are already loaded sequentially from that point

in a clockwise direction. As we receive a new sample, it is placed at the position x(n) and our filtering

operation is performed. After calculating the output y(n), the start pointer is moved counterclockwise one

position to x(n − L + 1) and we wait for the next input signal. The next input at time n + 1 is written to

the x(n − L + 1) position and is referred as x(n) for the next iteration. The circular buffer is very efficient

because the update is carried out by adjusting the start-address pointer without physically shifting any

data samples in memory.

Figure 4.10(b) shows a circular buffer for FIR filter coefficients. Circular buffer allows the coefficient

pointer to wrap around when it reaches to the end of the coefficient buffer. That is, the pointer moves

from bL−1 to b0 such that the filtering will always start at the first coefficient.

4.2 Design of FIR Filters

The objective of designing FIR filter is to determine a set of filter coefficients that satisfies the given

specifications. A variety of techniques have been developed for designing FIR filters. The Fourier series

(a) Circular buffer for signals (b) Circular buffer for coefficients

Signal buffer pointer
for next x(n)

Signal buffer pointer
at time n

Coefficient
buffer pointer

x(n)x(n − L + 1)

x(n − L + 2)
x(n − 1)

x(n − 2)

x(n − 3)

b0 b1

b3

b2

bL − 1
bL − 2

Figure 4.10 Circular buffers for FIR filter: (a) circular buffer for holding the signals. The start pointer to x(n) is

updated in the counterclockwise direction; (b) circular buffer for FIR filter coefficients, the pointer always pointing

to b0 at the beginning of filtering

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

DESIGN OF FIR FILTERS 197

method offers a simple way of computing FIR filter coefficients, thus can be used to explain the principles

of FIR filter design.

4.2.1 Fourier Series Method

Fourier series method designs an FIR filter by calculating the impulse response of a filter that approximates

the desired frequency response. Thus, it can be expanded in a Fourier series as

H (ω) =
∞∑

n=−∞
h(n)e− jωn, (4.25)

where

h(n) = 1

2π

∫ π

−π

H (ω)e jωn dω, −∞ ≤ n ≤ ∞. (4.26)

Equation (4.26) shows that the impulse response h(n) is double sided and has infinite length.

For a desired frequency response H (ω), the corresponding impulse response h(n) (same as filter

coefficients) can be calculated by evaluating the integral defined in Equation (4.26). A finite-duration

impulse response {h′(n)} can be simply obtained by truncating the ideal infinite-length impulse response

defined in Equation (4.26). That is,

h′(n) =
{

h(n), −M ≤ n ≤ M
0, otherwise

. (4.27)

Note that in this definition, we assume L to be an odd number.

A causal FIR filter can be derived by shifting the h′(n) sequence to the right by M samples and

reindexing the coefficients as

b′
l = h′(l − M), l = 0, 1, . . . , 2M. (4.28)

This FIR filter has L(= 2M + 1) coefficients b′
l , l = 0, 1, . . . , L − 1. The impulse response is symmetric

about b′
M due to the fact that h(−n) = h(n) is given in Equation (4.26). Therefore, the transfer function

B ′ (z) has a linear phase and a constant group delay.

Example 4.6: The ideal lowpass filter given in Figure 4.2(a) has frequency response

H (ω) =
{

1, |ω| ≤ ωc

0, otherwise
. (4.29)

The corresponding impulse response can be computed using Equation (4.26) as

h(n) = 1

2π

∫ π

−π

H (ω)e jωn dω = 1

2π

∫ ωc

−ωc

e jωn dω

= 1

2π

[
e jωn

jn

]ωc

−ωc

= 1

2π

[
e jωcn − e− jωcn

jn

]
= sin (ωcn)

πn
= ωc

π
sinc

(ωcn

π

)
, (4.30)

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

198 DESIGN AND IMPLEMENTATION OF FIR FILTERS

where the sinc function is defined as

sinc (x) = sin (πx)

πx
.

By setting all impulse response coefficients outside the range −M ≤ n ≤ M to zero, we obtain

an FIR filter with the symmetry property. By shifting M units to the right, we obtain a causal FIR

filter of finite length L with coefficients

b′
l =

{ ωc

π
sinc

[
ωc(l−M)

π

]
, 0 ≤ l ≤ L − 1

0, otherwise

}
. (4.31)

Example 4.7: Design a lowpass FIR filter with the frequency response

H (f) =
{

1,

0,

0 ≤ f ≤ 1 kHz

17 kHz < f ≤ 4 kHz
,

where the sampling rate is 8 kHz. The impulse response is limited to 2.5 ms.

Since 2MT = 0.0025 s and T = 0.000125 s, we need M = 10. Thus, the actual filter has 21

(L = 2M + 1) coefficients, and 1 kHz corresponds to ωc = 0.25π . From Equation (4.31), we have

b′
l = 0.25sinc [0.25 (l − 10)] , l = 0, 1, . . . , 20.

Example 4.8: Design a lowpass filter of cutoff frequency ωc = 0.4π with filter length L = 41

and L = 61.

When L = 41, M = (L − 1)/2 = 20. From Equation (4.31), the designed coefficients are

b′
l = 0.4sinc [0.4(l − 20)] , l = 0, 1, . . . , 20.

When L = 61, M = (L − 1)/2 = 30. The coefficients become

b′
l = 0.4sinc [0.4(l − 30)] , l = 0, 1, . . . , 30.

These coefficients are computed and plotted in Figure 4.11 using the MATLAB script example4_8.m.

4.2.2 Gibbs Phenomenon

As shown in Figure 4.11, the FIR filter obtained by simply truncating the impulse response of the desired

filter exhibits an oscillatory behavior (or ripples) in its magnitude response. As the length of the filter

increases, the number of ripples in both passband and stopband increases, and the width of the ripple de-

creases. The largest ripple occurs near the transition discontinuity and their amplitude is independent of L .

The truncation operation described in Equation (4.27) can be considered as multiplication of the

infinite-length sequence h(n) by the rectangular window w(n). That is,

h′(n) = h(n)w(n), −∞ ≤ n ≤ ∞, (4.32)

where the rectangular window w(n) is defined as

w(n) =
{

1,

0,

−M ≤ n ≤ M
otherwise

. (4.33)

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

DESIGN OF FIR FILTERS 199

1

0.8

0.6

0.4

0.2

0
0 1 2 3−3 −2 −1

Frequency

M
ag

n
it

u
d
e

Magnitude response

1

0.8

0.6

0.4

0.2

0
−3 −2 −1 0 1 2 3

Frequency

M
ag

n
it

u
d
e

Magnitude response

Figure 4.11 Magnitude responses of lowpass filters designed by Fourier series method: (top) L = 41;

(bottom) L = 61

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

200 DESIGN AND IMPLEMENTATION OF FIR FILTERS

40
Magnitude Response, M = 8

M
ag

n
it

u
d
e

(d
B

)

20

0

0 1 2 3

−20

−40
−3 −2 −1

40
Magnitude Response, M = 20

Frequency

M
ag

n
it

u
d
e

(d
B

)

20

0

0 1 2 3

−20

−40
−3 −2 −1

Figure 4.12 Magnitude responses of the rectangular window for M = 8 and 20

In order to approximate H (ω) very closely, we need the window function with infinite length.

Example 4.9: The oscillatory behavior of a truncated Fourier series representation of FIR filter,

observed in Figure 4.11, can be explained by the frequency response of the rectangular window

defined in Equation (4.33). It can be expressed as

W (ω) =
M∑

n=−M

e− jωn = sin [(2M + 1)ω/2]

sin(ω/2)
. (4.34)

Magnitude responses of W (ω) for M = 8 and 20 are generated by MATLAB script exam-

ple4_9.m. As illustrated in Figure 4.12, the magnitude response has a mainlobe centered at

ω = 0. All the other ripples are called the sidelobes. The magnitude response has the first zero at

ω = 2π/ (2M + 1). Therefore, the width of the mainlobe is 4π/ (2M + 1). From Equation (4.34),

it is easy to show that the magnitude of mainlobe is |W (0)| = 2M + 1. The first sidelobe is approxi-

mately located at frequency ω1 = 3π/ (2M + 1) with the magnitude of |W (ω1)| ≈ 2(2M + 1)/3π

for M>> 1. The ratio of the mainlobe magnitude to the first sidelobe magnitude is∣∣∣∣ W (0)

W (ω1)

∣∣∣∣ ≈ 3π

2
= 13.5 dB.

As ω increases toward π , the denominator grows larger. This results in a damped function shown

in Figure 4.12. As M increases, the width of the mainlobe decreases.

The rectangular window has an abrupt transition to zero outside the range −M ≤ n ≤ M , which

causes the Gibbs phenomenon in the magnitude response. The Gibbs phenomenon can be reduced either

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

DESIGN OF FIR FILTERS 201

by using a window that tapers smoothly to zero at each end or by providing a smooth transition from

the passband to the stopband. A tapered window will reduce the height of the sidelobes and increase

the width of the mainlobe, resulting in a wider transition at the discontinuity. This phenomenon is often

referred to as leakage or smearing.

4.2.3 Window Functions

A large number of tapered windows have been developed and optimized for different applications. In

this section, we restrict our discussion to four commonly used windows of length L = 2M + 1. That is,

w(n), where n = 0, 1, . . . , L − 1 and is symmetric about its middle, n = M . Two parameters that predict

the performance of the window in FIR filter design are its mainlobe width and the relative sidelobe level.

To ensure a fast transition from the passband to the stopband, the window should have a small mainlobe

width. On the other hand, to reduce the passband and stopband ripples, the area under the sidelobes

should be small. Unfortunately, there is a trade-off between these two requirements.

The Hann (Hanning) window function is one period of the raised cosine function defined as

w(n) = 0.5

[
1 − cos

(
2πn

L − 1

)]
, n = 0, 1, . . . , L − 1. (4.35)

The window coefficients can be generated by the MATLAB function

w = hanning(L);

which returns the L-point Hanning window function in array w. The MATLAB script hanWindow.m gen-

erates window coefficients w(n), n = 1, . . . , L . For a large L , the peak-to-sidelobe ratio is approximately

31 dB, an improvement of 17.5 dB over the rectangular window.

The Hamming window function is defined as

w(n) = 0.54 − 0.46 cos

(
2πn

L − 1

)
, n = 0, 1, . . . , L − 1, (4.36)

which also corresponds to a raised cosine, but with different weights for the constant and cosine terms.

The Hamming function tapers the end values to 0.08. MATLAB provides the Hamming window function

w = hamming(L);

The Hamming window function and its magnitude response generated by MATLAB script hamWin-

dow.m are shown in Figure 4.13. The mainlobe width is about the same as the Hanning window, but this

window has an additional 10 dB of stopband attenuation (41 dB). The Hamming window provides low

ripple over the passband and good stopband attenuation, and it is usually more appropriate for a lowpass

filter design.

Example 4.10: Design a lowpass FIR filter of cutoff frequency ωc = 0.4π and order L = 61

using the Hamming window. Using the MATLAB script (example4_10.m) similar to the one

used in Example 4.8, we plot the magnitude responses of designed filters in Figure 4.14 using

both rectangular and Hamming windows. We observe that the ripples produced by the rectangular

window design are virtually eliminated from the Hamming window design. The trade-off of

eliminating the ripples is increasing transition width.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

202 DESIGN AND IMPLEMENTATION OF FIR FILTERS

Hamming window, L = 41

1

0.8

0.6

0.4

0.2

0

40

20

0

0

0 5 10 15 20 25 30 35 40

1 2 3

−20

−40

−60

−80
−3 −2 −1

Magnitude response

Frequency

M
ag

n
it

u
d
e

(d
B

)
A

m
p
li

tu
d
e

Figure 4.13 Hamming window function (top) and its magnitude response (bottom), L = 41

Magnitude response

1

0.8

0.6

0.4

0.2

0

Frequency

0−1−2−3 1 2 3

M
ag

n
it

u
d
e

Rectangular window

Hamming window

Figure 4.14 Magnitude response of lowpass filter using Hamming window, L = 61

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

DESIGN OF FIR FILTERS 203

The Blackman window function is defined as

w(n) = 0.42 − 0.5 cos

(
2πn

L − 1

)
+ 0.08 cos

(
4πn

L − 1

)
, n = 0, 1, . . . , L − 1. (4.37)

This function is also supported by the MATLAB function

w = blackman(L);

This window can be generated and its magnitude response can be plotted by MATLAB script black-

manWindow.m. The addition of the second cosine term in Equation (4.37) has the effect of increasing the

width of the mainlobe (50%), but at the same time improving the peak-to-sidelobe ratio to about 57 dB.

The Blackman window provides 74 dB of stopband attenuation, but with a transition width six times that

of the rectangular window.

The Kaiser window is defined as

w(n) =
I0

(
β
√

1 − (n − M)2 /M2

)
I0(β)

, n = 0, 1, . . . , L − 1, (4.38)

where β is an adjustable (shape) parameter and

I0(β) =
∞∑

k=0

[
(β/2)k

k!

]2

(4.39)

is the zero-order modified Bessel function of the first kind. MATLAB provides Kaiser window

kaiser(L,beta);

The window function and its magnitude response for L = 41 and β = 8 can be displayed using the

MATLAB script kaiserWindow.m. The Kaiser window is nearly optimum in the sense of having

the largest energy in the mainlobe for a given peak sidelobe level. Providing a large mainlobe width

for the given stopband attenuation implies the sharpness transition width. This window can provide dif-

ferent transition widths for the same L by choosing the parameter β to determine the trade-off between

the mainlobe width and the peak sidelobe level.

The procedure of designing FIR filters using Fourier series and windows is summarized as follows:

1. Determine the window type that will satisfy the stopband attenuation requirements.

2. Determine the window size L based on the given transition width.

3. Calculate the window coefficients w(l), l = 0, 1, . . . , L− 1.

4. Generate the ideal impulse response h(n) using Equation (4.26) for the desired filter.

5. Truncate the ideal impulse response of infinite length using Equation (4.27) to obtain h′(n), −M ≤
n ≤ M .

6. Make the filter causal by shifting the result M units to the right using Equation (4.28) to obtain

b′
l , l = 0, 1, . . . , L − 1.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

204 DESIGN AND IMPLEMENTATION OF FIR FILTERS

7. Multiply the window coefficients obtained in Step 3 and the impulse response coefficients obtained

in Step 6. That is,

bl = b′
lw(l), l = 0, 1, . . . , L − 1. (4.40)

Applying a window to an FIR filter’s impulse response has the effect of smoothing the resulting filter’s

magnitude response. A symmetric window will preserve a symmetric FIR filter’s linear-phase response.

MATLAB provides a GUI tool called Window Design & Analysis Tool (WinTool) that allows users

to design and analyze windows. It can be activated by entering the following command in MATLAB

command window:

wintool

It opens with a default 64-point Hamming window as shown in Figure 4.15. WinTool has three pan-

els: Window Viewer, Window List, and Current Window Information. Window Viewer displays

the time-domain (left) and frequency-domain (right) representations of the selected window(s). Three

Figure 4.15 Default window for WinTool

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

DESIGN OF FIR FILTERS 205

measurements are displayed under the time-domain and frequency-domain plots: (1) Leakage factor
indicates the ratio of power in the sidelobes to the total window power. (2) Relative sidelobe attenuation
shows the difference in height from the mainlobe peak to the highest sidelobe peak. (3) Mainlobe width
(−3 dB) shows the width of the mainlobe at 3 dB below the mainlobe peak.

Window List panel lists the windows available for display in the Window Viewer. Highlight one

or more windows to display them. There are four Window List buttons: (1) Add a New Window, (2)

Copy Window, (3) Save to Workspace, and (4) Delete. Each window is defined by the parameters in the

Current Window Information panel. We can change the current window’s characteristics by changing

its parameters. From the Type pull-down menu, we can choose different windows available in the Signal
Processing Toolbox. From the Length box, we can specify number of samples.

With this tool, we can evaluate different windows. For example, we can click Add a New Window
button and then select a new window Hann in the Type pull-down menu. We repeat this process for

Blackman and Kaiser windows. We then highlight all four (including the default Hamming) windows

in the Select Windows to Display box. As shown in Figure 4.16, we have four window functions and

magnitude responses displayed in the same graph for comparison.

Figure 4.16 Comparison of Hamming, Hann, Blackman, and Kaiser windows

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

206 DESIGN AND IMPLEMENTATION OF FIR FILTERS

4.2.4 Design of FIR Filters Using MATLAB

Filter design algorithms use iterative optimization techniques to minimize the error between the desired

and actual frequency responses. The most widely used algorithm is the Parks–McClellan algorithm for

designing the optimum linear-phase FIR filter. This algorithm spreads out the error to produce equal-

magnitude ripples. In this section, we consider only the design methods and filter functions available

in MATLAB Signal Processing Toolbox, which are summarized in Table 4.1, and the MATLAB Filter
Design Toolbox provides more advanced FIR filter design methods.

As an example, fir1 and fir2 functions design FIR filters using windowed Fourier series method.

The function fir1 designs FIR filters using the Hamming window as

b = fir1(L, Wn);

where Wn is the normalized cutoff frequency between 0 and 1. The function fir2 designs an FIR filter

with arbitrarily shaped magnitude response as

b = fir2(L, f, m);

where the frequency response is specified by vectors f and m that contain the frequency and magnitude,

respectively. The frequencies in f must be between 0 < f <1 in increasing order.

A more efficient Remez algorithm designs the optimum linear-phase FIR filters based on the Parks–

McClellan algorithm. This algorithm uses the Remez exchange and Chebyshev approximation theory

to design a filter with an optimum fit between the desired and actual frequency responses. This remez

function has syntax as follows:

b = remez(L, f, m);

Example 4.11: Design a linear-phase FIR bandpass filter of length 18 with a passband from

normalized frequency 0.4–0.6. This filter can be designed and displayed using the following

MATLAB script (example4_11.m):

f = [0 0.3 0.4 0.6 0.7 1];
m = [0 0 1 1 0 0];
b = remez(17, f, m);
[h, omega] = freqz(b, 1, 512);
plot(f, m, omega/pi, abs(h));

The desired and obtained magnitude responses are shown in Figure 4.17.

Table 4.1 List of FIR filter design methods and functions available in MATLAB

Design method Filter function Description

Windowing fir1, fir2, kaiserord Truncated Fourier series with windowing

methods

Multiband with transition bands firls, firpm, firpmord Equiripple or least squares approach

Constrained least squares fircls, fircls1 Minimize squared integral error over entire

frequency range

Arbitrary response cfirpm Arbitrary responses

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

DESIGN OF FIR FILTERS 207

Magnitude response
1.4

1.2

1

0.8

0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

Normalized Frequency

M
ag

n
it

u
d

e

Actual filter

Ideal filter

Figure 4.17 Magnitude responses of the desired and actual FIR filters

4.2.5 Design of FIR Filters Using FDATool

The Filter Design and Analysis Tool (FDATool) is a graphical user interface (GUI) for designing, quan-

tizing, and analyzing digital filters. It includes a number of advanced filter design techniques and supports

all the filter design methods in the Signal Processing Toolbox. This tool has the following functions:

1. designing filters by setting filter specifications;

2. analyzing designed filters;

3. converting filters to different structures; and

4. quantizing and analyzing quantized filters.

Note that the last feature is available only with the Filter Design Toolbox. In this section, we introduce

the FDATool for designing and quantizing FIR filters.

We can open the FDATool by typing

fdatool

at the MATLAB command window. The Filter Design & Analysis Tool window is shown in Figure 4.18.

We can choose from several response types: Lowpass, Highpass, Bandpass, Bandstop, and Differen-
tiator. For example, to design a bandpass filter, select the Radio button next to Bandpass in the Response
Type region on the GUI. It has multiple options for Lowpass, Highpass, and Differentiator types. More

response types are available with the Filter Design Toolbox.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

208 DESIGN AND IMPLEMENTATION OF FIR FILTERS

Figure 4.18 FDATool window

It is important to compare the Filter Specifications region in Figure 4.18 with Figure 4.4. The param-

eters Fpass, Fstop, Apass, and Astop are corresponding to ωp, ωs, Ap, and As, respectively. These parameters

can be entered in the Frequency Specifications and Magnitude Specifications regions. The frequency

units are Hz (default), kHz, MHz, or GHz, and the magnitude options are dB (default) or Linear.

Example 4.12: Design a lowpass FIR filter with the following specifications:

sampling frequency (fs) = 8 kHz;

passband cutoff frequency (ωp) = 2 kHz;

stopband cutoff frequency (ωs) = 2.5 kHz;

passband ripple (Ap) = 1 dB; and

stopband attenuation (As) = 60 dB.

We can easily design this filter by entering parameters in Frequency Specifications and Mag-
nitude Specifications regions as shown in Figure 4.19. Pressing Design Filter button computes

the filter coefficients. The Filter Specifications region will show the Magnitude Response (dB)
(see Figure 4.20). We can analyze different characteristics of the designed filter by clicking the

Analysis menu. For example, selecting the Impulse Response available in the menu opens a new

Impulse Response window to display the designed FIR filter coefficients as shown in Figure 4.21.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

DESIGN OF FIR FILTERS 209

Figure 4.19 Frequency and magnitude specifications for a lowpass filter

50

0

0 0.5 1 1.5 2

Frequency (kHz)

Magnitude response (dB)

M
ag

n
it

u
d
e

(d
B

)

2.5 3 3.5

−50

−100

−150

Figure 4.20 Magnitude response of the designed lowpass filter

0.6

0.4

0 0.5 1 1.5 2

Time (ms)

Impulse response

A
m

p
li

tu
d
e

2.5 3 3.5

0.2

0

−0.2

Figure 4.21 Impulse responses (filter coefficients) of the designed filter

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

210 DESIGN AND IMPLEMENTATION OF FIR FILTERS

Figure 4.22 Setting fixed-point quantization parameters in the FDATool

We have two options for determining the filter order: we can specify the filter order by Specify Order,

or use the default Minimum Order. In Example 4.12, we use the default minimum order, and the order

(31) is shown in the Current Filter Information region. Note that order = 31 means the length of FIR

filter is L = 32, which is shown in Figure 4.21 with 32 coefficients.

Once the filter has been designed (using 64-bit double-precision floating-point arithmetic and represen-

tation) and verified, we can turn on the quantization mode by clicking the Set Quantization Parameters

button on the side bar shown in Figure 4.18. The bottom-half of the FDATool window will change

to a new pane with the default Double-Precision Floating-Point as shown in the Filter Arithmetic
menu. The Filter Arithmetic option allows users to quantize the designed filter and analyze the effects

with different quantization settings. When the user has chosen an arithmetic setting (single-precision

floating-point or fixed-point), FDATool quantizes the current filter according to the selection and updates

the information displayed in the analysis area. For example, to enable the fixed-point quantization settings

in the FDATool, select Fixed-Point from the pull-down menu. The quantization options appear in the

lower pane of the FDATool window as shown in Figure 4.22.

As shown in Figure 4.22, there are three tabs in the dialog window for user to select quantization tasks

from the FDATool:

1. Coefficients tab defines the coefficient quantization.

2. Input/Output tab quantizes the input and output signals for the filter.

3. Filter Internals tab sets a variety of options for the arithmetic.

After setting the proper options for the desired filter, click Apply to start the quantization processes.

The Coefficients tab is the default active pane. The filter type and structure determine the available

options. Numerator Wordlength sets the wordlength used to represent coefficients of FIR filters. Note

that the Best-Precision Fraction Lengths box is also checked and the Numerator Wordlength box is

set to 16 by default. We can uncheck the Best-Precision Fraction Lengths box to specify Numerator
Frac. Length or Numerator Range (+/−).

The Filter Internals tab as shown in Figure 4.23 specifies how the quantized filter performs arithmetic

operations. Round towards options,Ceiling (round up), Nearest, Nearest (convergent), Zero, or Floor
(round down), set a rounding mode that the filter will be used to quantize the numeric values. Overflow
Mode options, Wrap and Saturate, set to overflow conditions in fixed-point arithmetic. Product mode

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

DESIGN OF FIR FILTERS 211

Figure 4.23 Setting filter arithmetic operations in the FDATool

options, Full precision, Keep MSB, Keep LSB, or Specify all (set the fraction length), determine how

the filter handles the output of the multiplication operations. The Accum. mode option determines how

the accumulator stores its output values.

Example 4.13: Design a bandpass FIR filter for a 16-bit fixed-point DSP processor with the

following specifications:

Sampling frequency = 8000 Hz.

Lower stopband cutoff frequency (Fstop1) = 1200 Hz.

Lower passband cutoff frequency (Fpass1) = 1400 Hz.

Upper passband cutoff frequency (Fpass2) = 1600 Hz.

Upper stopband cutoff frequency (Fstop2) = 1800 Hz.

Passband ripple = 1 dB.

Stopband (both lower and upper) attenuation = 60 dB.

After entering these parameters in the Frequency Specifications and Magnitude Specifications
regions and clicking Design Filter, Figure 4.24 will be displayed. Click the Set Quantization
Parameters button to switch to quantization mode and open the quantization panel. Selecting the

Fixed-point option from the Filter arithmetic pull-down menu, the analysis areas will show the

magnitude responses for both the designed filter and the fixed-point quantized filter. The default

settings in Coefficients, Input/Output, and Filter Internals Taps are used.

We can export filter coefficients to MATLAB workspace to a coefficient file or MAT-file. To save

the quantized filter coefficients as a text file, select Export from the File menu on the toolbar. When

the Export dialog box appears, select Coefficient File (ASCII) from the Export to menu and choose

Decimal, Hexadecimal, or Binary from the Format options. After clicking the OK button, the Export
Filter Coefficients to .FCF File dialog box will appear. Enter a filename and click the Save button.

To create a C header file containing filter coefficients, select Generate C header from the Targets
menu. For an FIR filter, variable used in C header file are for numerator name and length. We can use

the default variable names B and BL as shown in Figure 4.25 in the C program, or change them to match

the variable names defined in the C program that will include this header file. As shown in the figure,

we can use the default Signed 16-Bit Integer with 16-Bit Fractional Length, or select Export as and

choose the desired data type. Clicking Generate button opens Generate C Header dialog box. Enter

the filename and click Save to save the file.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

212 DESIGN AND IMPLEMENTATION OF FIR FILTERS

Figure 4.24 FDATool window for designing a bandpass filter

Figure 4.25 Generate C header dialog box

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

IMPLEMENTATION CONSIDERATIONS 213

Example 4.14: We continue the Example 4.13 by saving the quantized 16-bit FIR filter coefficients

in a file named as Bandpass1500FIR.h. The parameters and filter coefficients saved in the header

file are shown as follows:

const int BL = 80;

const int 16_T B[80] = {
79, -48, -126, -86, 71, 155, 34, -148, -149,

28, 135, 59, -24, 23, 20, -188, -296, 101,

674, 492, -614, -1321, -315, 1563, 1806, -480, -2725,

1719, 1886, 3635, 784, -3559, -3782, 931, 4906, 2884,

-2965, -5350, -1080, 4634, 4634, -1080, -5350, -2965, 2884,

4906, 931, -3782, -3559, 784, 3635, 1886, -1719, -2725,

-480, 1806, 1563, -315, -1321, -614, 492, 674, 101,

-296, -188, 20, 23, -24, 59, 135, 28, -149,

-148, 34, 155, 71, -86, -126, -48, 79
};

If the TMS320C5000 CCS is also installed on the computer, the Targets pull-down menu has additional

option called Composer Studio (tm) IDE. Selecting this option, the Export to Code Composer
Studio (R) IDE dialog box appears as shown in Figure 4.26. Comparing with Figure 4.25, we have

additional options in Export mode: C Header File or Write Directly to Memory. In addition, we can

select target DSP board such as the C5510 DSK. The MATLAB connects with DSK via MATLAB Link

for CCS. This useful feature can simplify the DSP development and testing procedures by combining

MATLAB functions with DSP processors. The MATLAB Link for CCS will be introduced in Chapter 9.

4.3 Implementation Considerations

In this section, we will consider finite-wordlength effects of digital FIR filters, and discuss the software

implementation using MATLAB and C to illustrate some important issues.

4.3.1 Quantization Effects in FIR Filters

Consider the FIR filter given in Equation (3.22). The filter coefficients, bl , are determined by a filter design

package such as MATLAB. These coefficients are usually represented by double-precision floating-point

numbers and have to be quantized for implementation on a fixed-point processor. The filter coefficients

are quantized and analyzed during the design process. If it no longer meets the given specifications, we

shall optimize, redesign, restructure, and/or use more bits to satisfy the specifications.

Let b′
l denote the quantized values corresponding to bl . As discussed in Chapter 3, the nonlinear

quantization can be modeled as a linear operation expressed as

b′
l = Q[bl] = bl + e(l), (4.41)

where e(l) is the quantization error and can be assumed as a uniformly distributed random noise of zero

mean.

The frequency response of the actual FIR filter with quantized coefficients b′
l can be expressed as

B ′ (ω) = B (ω) + E (ω) , (4.42)

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

214 DESIGN AND IMPLEMENTATION OF FIR FILTERS

Figure 4.26 FDATool exports to CCS: (a) FDATool exports to CCS dialog box; (b) link for CCS target selection

dialog box; (c) C5510 DSK linked with MATLAB

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

IMPLEMENTATION CONSIDERATIONS 215

Figure 4.26 (Continued)

where

E (ω) =
L−1∑
l=0

e(l)e− jωl (4.43)

represents the error in the desired frequency response B(ω). The error spectrum is bounded by

|E (ω)| =
∣∣∣∣∣L−1∑

l=0

e(l)e− jωl

∣∣∣∣∣ ≤
L−1∑
l=0

|e (l)| ∣∣e− jωl
∣∣ ≤

L−1∑
l=0

|e (l)|. (4.44)

As shown in Equation (3.82),

|e (l)| ≤ �

2
= 2−B . (4.45)

Thus, Equation (4.44) becomes

|E (ω)| ≤ L · 2−B . (4.46)

This bound is too conservative because it can only be reached if all errors, e(l), are of the same sign and

have the maximum value in the range. A more realistic bound can be derived assuming e(l) is statistically

independent random variable.

Example 4.15: We first use a least-square method to design the FIR filter coefficients. To convert it

to the fixed-point FIR filter, we use the filter construction function dfilt and change the arithmetic

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

216 DESIGN AND IMPLEMENTATION OF FIR FILTERS

Magnitude response (dB)
M

ag
n
it

u
d
e

(d
B

)

Normalized frequency (xπ rad/sample)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20

0

−20

−40

−60

−80

−100

−120

−140

−160

−180

12-bit FIR filter

Figure 4.27 Magnitude responses of 12-bit and 16-bit FIR filters

setting for the filter to fixed-point arithmetic as follows:

hd = dfilt.dffir(b); % Create the direct-form FIR filter
set(hd,'Arithmetic','fixed');

The first function returns a digital filter object hd of type dffir (direct-form FIR filter). The second

function set(hd,'PropertyName',PropertyValue) sets the value of the specified property

for the graphics object with handle hd. We can use FVTool to plot the magnitude responses for

both the quantized filter and the corresponding reference filter.

The fixed-point filter object hd uses 16 bits to represent the coefficients. We can make several

copies of the filter for different wordlengths. For example, we can use

h1 = copy(hd); % Copy hd to h1
set(h1,'CoeffWordLength',12); % Use 12 bits for coefficients

The MATLAB script is given in example4 15.m, and the magnitude responses of FIR filters with

16-bit and 12-bit coefficients are shown in Figure 4.27.

4.3.2 MATLAB Implementations

For simulation purposes, it is convenient to use a powerful software package such as MATLAB for

software implementation of digital filter. MATLAB provides the function filter for FIR and IIR

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

IMPLEMENTATION CONSIDERATIONS 217

Figure 4.28 Export window from FDATool

filtering. The basic form of this function is

y = filter(b, a, x)

For FIR filtering, a = 1 and filter coefficients bl are contained in the vector b. The input vector is x

while the output vector generated by the filter is y.

Example 4.16: A 1.5 kHz sinewave with sampling rate 8 kHz is corrupted by white noise.

This noisy signal can be generated, saved in file xn int.dat, and plotted by MATLAB script

example4 16.m. Note that we normalized the floating-point numbers and saved them in Q15

integer format using the following MATLAB commands:

xn_int = round(32767*in./max(abs(in)));% Normalize to 16-bit integer
fid = fopen('xn_int.dat','w'); % Save signal to xn_int.dat
fprintf(fid,'%4.0f\ n',xn_ int); % Save in integer format

Using the bandpass filter designed in Example 4.13, we export FIR filter coefficients to current

MATLAB workplace by selecting File→Export. From the pop-up dialog box Export shown in Fig-

ure 4.28, type b in the Numerator box, and click OK. This saves the filter coefficients in vector b,

which is available for use in current MATLAB directory.

Now, we can perform FIR filtering using the MATLAB function filter by the command:

y = filter(b, 1, xn_int);

The filter output is saved in y vector of workspace, which can be plotted to compare with the input

waveform.

Example 4.17: This example evaluates the accuracy of the fixed-point filter when compared to a

double-precision floating-point version using random data as input signal. We create a quantizer

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

218 DESIGN AND IMPLEMENTATION OF FIR FILTERS

to generate uniformly distributed white-noise data using 16-bit wordlength as

rand('state',0); % Initializing the random number generator
q = quantizer([16,15],'RoundMode','round');
xq = randquant(q,256,1); % 256 samples
xin = fi(xq,true,16,15);

Now xin is an array of integers with 256 members, represented as a fixed-point object (a fi

object). Now we perform the actual fixed-point filtering as follows:

y = filter(hd,xin);

The complete MATLAB program is given in example4 17.m.

4.3.3 Floating-Point C Implementations

The FIR filtering implementation usually begins with floating-point C, migrates to the fixed-point C, and

then to assembly language programs.

Example 4.18: The input data is denoted as x and the filter output as y. The filter coefficients are

stored in the coefficient array h[]. The filter delay line (signal vector) w[] keeps the past data

samples. The sample-by-sample floating-point C program is listed as follows:

void floatPointFir(float *x, float *h, short order, float *y, float *w)
{

short i;
float sum;

w[0] = *x++; // Get current data to delay line
for (sum=0, i=0; i<order; i++) // FIR filter processing
{

sum += h[i] * w[i];
}
*y++ = sum; // Save filter output

for (i=order-1; i>0; i--) // Update signal buffer
{

w[i] = w[i-1];
}

}

The signal buffer w[] is updated every sampling period as shown in Figure 4.9. For each update

process, the oldest sample at the end of the signal buffer is discarded and the remaining samples are

shifted one location down in the buffer. The most recent data sample x(n) is inserted to the top location

at w[0].

It is more efficient to implement DSP algorithms using block-processing technique. For many practical

applications such as wireless communications, speech processing, and video compression, the signal

samples are usually grouped into packets or frames. An FIR filter that processes data by frames instead

of sample by sample is called block-FIR filter. With the circular addressing mode available on most DSP

processors, the shifting of data in the signal buffer can be replaced by circular buffer.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

IMPLEMENTATION CONSIDERATIONS 219

Example 4.19: The block-FIR filtering function processes one block of data samples for each

function call. The input samples are stored in the array x[] and the filtered output samples are

stored in the array y[]. In the following C program, the block size is denoted as blkSize:

void floatPointBlockFir(float *x, short blkSize, float *h, short order,
float *y, float *w, short *index)

{
short i,j,k;
float sum;
float *c;

k = *index;
for (j=0; j<blkSize; j++) // Block processing
{

w[k] = *x++; // Get current data to delay line
c = h;
for (sum=0, i=0; i<order; i++)// FIR filter processing
{

sum += *c++ * w[k++];
k %= order // Simulate circular buffer

}
*y++ = sum; // Save filter output
k = (order + k - 1)%order; // Update index for next time

}
*index = k; // Update circular buffer index

}

4.3.4 Fixed-Point C Implementations

The fixed-point implementation using fractional representation is introduced in Chapter 3. The commonly

used Q15 format is often used by fixed-point DSP processors.

Example 4.20: For fixed-point implementation, we use Q15 format to represent data samples in

the range of −1 to 1 − 2−15. The ANSI C compiler requires the data type to be long to ensure that

the product is saved as left aligned 32-bit data. When saving the filter output, the 32-bit temporary

variable sum is shifted 15 bits to the right to compensate for the conversion from 32 bits to 16 bits

after multiplication. The fixed-point C code is listed as follows:

void fixedPointBlockFir(short *x, short blkSize, short *h, short order,
short *y, short *w, short *index)

{
short i,j,k;
long sum;
short *c;

k = *index;
for (j=0; j<blkSize; j++) // Block processing
{

w[k] = *x++; // Get current data to delay line
c = h;
for (sum=0, i=0; i<order; i++) // FIR filter processing

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

220 DESIGN AND IMPLEMENTATION OF FIR FILTERS

{
sum += *c++ * (long)w[k++];
if (k == order) // Simulate circular buffer

k = 0;
}
*y++ = (short)(sum>>15); // Save filter output
if (k-- <=0) // Update index for next time

k = order-1;
}
*index = k; // Update circular buffer index

}

4.4 Applications: Interpolation and Decimation Filters

In many applications such as interconnecting DSP systems operating at different sampling rates, sampling

frequency changes are necessary. The process of converting a digital signal to a different sampling rate

is called sampling-rate conversion. The key processing for sampling-rate conversion is lowpass FIR

filtering.

Sampling rate increased by an integer factor U is called interpolation, while decreased by an integer

factor D is called decimation. Combination of interpolation and decimation allows the digital system

to change the sampling rate with any ratio. One of the main applications of decimation is to eliminate

the need for high-quality analog antialiasing filters. In an audio system that uses oversampling and

decimation, the analog input is first filtered by a simple analog antialiasing filter and then sampled at a

higher rate. The decimation filter then reduces the bandwidth of the sampled digital signal. The digital

decimation filter provides high-quality lowpass filtering and reduces the cost of using expensive analog

filters.

4.4.1 Interpolation

Interpolation is the process of inserting additional samples between successive samples of the original

low-rate signal, and filtering the interpolated samples with an interpolation filter. For an interpolator of

1:U , the process inserts (U− 1) zeros in between the successive samples of the original signal x(n) of

sampling rate fs, thus the sampling rate is increased to U fs, or the sampling period is reduced to T /U . This

intermediate signal, x(n′), is then filtered by a lowpass filter to produce the final interpolated signal y(n′).
The simplest lowpass filter is a linear-phase FIR filter. The FDA Tool introduced in Section 4.2.5 can

be used for designing this interpolation filter. The interpolating filter B(z) operates at the high rate of

f ′
s = U fs with the frequency response

B(ω) =
{

U,

0,

0 ≤ ω ≤ ωc

ωc < ω ≤ π
, (4.47)

where the cutoff frequency is determined as

ωc = π

U
or fc = f ′

s /2U = fs/2. (4.48)

Since the insertion of (U − 1) zeros spreads the energy of each signal sample over U output samples,

the gain U compensates for the energy loss of the up-sampling process. The interpolation increases the

sampling rate while the bandwidth (fs/2) of the interpolated signal is still the same as the original signal.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

APPLICATIONS: INTERPOLATION AND DECIMATION FILTERS 221

Because the interpolation introduces (U− 1) zeros between successive samples of the input signal,

only one out of every U input samples sent to the interpolation filter is nonzero. To efficiently implement

this filter, the required filtering operations may be rearranged to operate only on the nonzero samples.

Suppose at time n, these nonzero samples are multiplied by the corresponding FIR filter coefficients b0,

bU , b2U , . . . , bL−U . At the following time n + 1, the nonzero samples are multiplied by the coinciding

filter coefficients b1, bU+1, b2U+1, . . . , bL−U+1. This can be accomplished by replacing the high-rate FIR

filter of length L with U , shorter polyphase filters Bm(z), m = 0, 1, . . . , U − 1 of length I = L/U at

the low-rate fs . The computational efficiency of the polyphase filter structure comes from dividing the

single L-point FIR filter into a set of smaller filters of length L/U, each of which operates at the lower

sampling rate fs. Furthermore, these U polyphase filters share a single signal buffer of size L/U .

Example 4.21: Given the signal file wn20db.dat, which is sampled at 8 kHz. We can use the

MATLAB script (example4 21.m) to interpolate it to 48 kHz. Figure 4.29 shows the spectra of

the original signal, interpolated by 6 before and after lowpass filtering. This example shows that

the lowpass filtering defined by Equation (4.47) removes all folded image spectra. Some useful

MATLAB functions used in this example are presented in Section 4.4.4.

4.4.2 Decimation

Decimation of a high-rate signal with sampling rate f ′
s by a factor D results in the lower rate f ′′

s = f ′
s /D.

The down sample process by a factor of D may be simply done by discarding the (D − 1) samples that are

between the low-rate ones. However, decreasing the sampling rate by a factor D reduces the bandwidth

by the same factor D. Thus, if the original high-rate signal has frequency components outside the new

bandwidth, aliasing would occur. Lowpass filtering the original signal x(n′) prior to the decimation

process can solve the aliasing problem. The cutoff frequency of the lowpass filter is given as

fc = f ′
s /2D = f ′′

s /2. (4.49)

This lowpass filter is called the decimation filter. The high-rate filter output y(n′) is down sampled to

obtain the desired low-rate decimated signal y(n′′) by discarding (D − 1) samples for every D sample

of the filtered signal y(n′).
The decimation filter operates at the high-rate f ′

s . Because only every Dth output of the filter is needed,

it is unnecessary to compute output samples that will be discarded. Therefore, the overall computation

is reduced by a factor of D.

Example 4.22: Given the signal file wn20dba.dat, which is sampled at 48 kHz. We can use

the MATLAB script (example4 22.m) to decimate it to 8 kHz. Figure 4.30 shows the spectra of

the original signal, decimated by 6 with and without lowpass filtering. This example shows the

lowpass filtering before decimation reduces the aliasing.

The spectrum in Figure 4.30(c) basically is part of the spectrum from 0 to 4000 Hz of Figure 4.30(a).

The spectrum in Figure 4.30(b) is distorted especially in the low-magnitude segments.

4.4.3 Sampling-Rate Conversion

The sampling-rate conversion by a rational factor U/D can be done entirely in the digital domain with

proper interpolation and decimation factors. We can achieve this digital sampling-rate conversion by first

performing interpolation of a factor U , and then decimating the signal by a factor D. For example, we

can convert digital audio signals for broadcasting (32 kHz) to professional audio (48 kHz) using a factor

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

222 DESIGN AND IMPLEMENTATION OF FIR FILTERS

(A) Original signal spectrum

Frequency (Hz)

0 500 1000 1500 2000 2500 3000 3500 4000

40

30

20

10

0

−10

M
ag

n
it

u
d
e

(d
B

)

(B) Interpolation by 6 before lowpass filtering

Frequency (Hz)

0 5000 10000 15000 20000 24000

40

30

20

10

0

−10

M
ag

n
it

u
d
e

(d
B

)

(C) Interpolation by 6 after lowpass filtering

Frequency (Hz)

0 5000 10000 15000 20000 24000

40

30

20

10

0

−10

M
ag

n
it

u
d
e

(d
B

)

Figure 4.29 Interpolation by an integer operation: (a) original signal spectrum; (b) interpolation by 6 before lowpass

filtering; and (c) interpolation after lowpass filtering

of U /D = 3/2. That is, we interpolate the 32 kHz signal with U = 3, then decimate the resulting 96 kHz

signal with D = 2 to obtain the desired 48 kHz. It is very important to note that we have to perform inter-

polation before the decimation in order to preserve the desired spectral characteristics. Otherwise, the dec-

imation may remove some of the desired frequency components that cannot be recovered by interpolation.

The interpolation filter must have the cutoff frequency given in Equation (4.48), and the cutoff frequency

of the decimation filter is given in Equation (4.49). The frequency response of the combined filter must

incorporate the filtering operations for both interpolation and decimation, and hence it should ideally

have the cutoff frequency

fc = 1

2
min

(
fs, f ′′

s

)
. (4.50)

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

APPLICATIONS: INTERPOLATION AND DECIMATION FILTERS 223

(a) Original spectrum

(b) Decimation by 6 without lowpass filter (c) Decimation by 6 with lowpass filter

Frequency (Hz)

Frequency (Hz)Frequency (Hz)

0 5000

1000 10002000 20003000 30004000 40000 0

10000 15000 20000 24000

40

40 40

30

30 30

20

20 20

10

10 10

M
ag

n
it

u
d
e

(d
B

)

M
ag

n
it

u
d
e

(d
B

)

M
ag

n
it

u
d
e

(d
B

)

Distorted

Figure 4.30 Decimation operation: (a) original signal spectrum; (b) decimation by 6 without lowpass filter; and

(c) decimation by 6 with lowpass filter

Example 4.23: Convert a sinewave from 48 to 44.1 kHz using the following MATLAB script

example4_23.m (adapted from the MATLAB Help menu for upfirdn). Some useful MATLAB

functions used in this example are presented in Section 4.4.4.

g = gcd(48000, 44100); % Greatest common divisor, g = 300
U = 44100/g; % Up sample factor, U=147
D = 48000/g; % Down sample factor, D = 160
N = 24*D;
b = fir1(N,1/D,kaiser(N+1,7.8562)); % Design FIR filter in b
b = U*b; % Passband gain = U
Fs = 48000; % Original sampling frequency: 48 kHz
n = 0:10239; % 10240 samples, 0.213 seconds long
x = sin(2*pi*1000/Fs*n); % Original signal, sinusoid at 1 kHz
y = upfirdn(x,b,U,D); % 9408 samples, still 0.213 seconds

% Overlay original (48 kHz) with resampled signal (44.1 kHz) in red
stem(n(1:49)/Fs,x(1:49));
hold on
stem(n(1:45)/(Fs*U/D),y(13:57),'r','filled');
xlabel('Time (seconds)');
ylabel('Signal value');

The original 48 kHz sinewave and the converted 44.1 kHz signal are shown in Figure 4.31.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

224 DESIGN AND IMPLEMENTATION OF FIR FILTERS

0
–1

–0.5

0S
ig

n
al

 v
al

u
e 0.5

1

1.5

0.1 0.2 0.3 0.4

Time (s) × 10–3

0.5 0.6 0.7 0.8 0.9 1

Figure 4.31 Sampling-rate conversion from 48 to 44.1 kHz

4.4.4 MATLAB Implementations

The interpolation introduced in Section 4.4.1 can be implemented by the MATLAB function interp

with the following syntax:

y = interp(x, U);

The interpolated vector y is U times longer than the original input vector x.

The decimation for decreasing the sampling rate of a given sequence can be implemented by the

MATLAB function decimate with the following syntax:

y = decimate(x, D);

This function uses an eighth-order lowpass Chebyshev type-I filter by default. We can employ FIR filter

by using the following syntax:

y = decimate(x, D, 'fir');

This command uses a 30-order FIR filter generated by fir1(30, 1/D) to filter the data. We can also

specify the FIR filter order L by using y = decimate(x, D, L, 'fir').

Example 4.24: Given the speech file timit 4.asc, which is sampled by a 16-bit ADC with

sampling rate 16 kHz. We can use the following MATLAB script (example4 24.m) to decimate

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 225

it to 4 kHz:

load timit_4.asc -ascii; % Load speech file
soundsc(timit_4, 16000) % Play at 16 kHz

timit4 = decimate(timit_4,4,60,'fir'); % Decimation by 4
soundsc(timit4, 4000) % Play the decimated speech

We can tell the sound quality (bandwidth) difference by listening to timit 4 with 16 kHz

bandwidth and timit4 with 2 kHz bandwidth.

For sampling-rate conversion, we can use the MATLAB functiongcd to find the conversion factor U /D.

For example, to convert an audio signal from CD (44.1 kHz) for transmission using telecommunication

channels (8 kHz), we can use the following commands:

g = gcd(8000, 44100); % Find the greatest common divisor
U = 8000/g; % Up sample factor
D = 44100/g; % Down sample factor

In this example, we obtain U = 80 and D = 441 since g = 100.

The sampling-rate conversion algorithm is supported by the function upfirdn in the Signal Processing
Toolbox. This function implements the efficient polyphase filtering technique. For example, we can use

the following command for sampling-rate conversion:

y = upfindn(x, b, U, D);

This function first interpolates the signal in vector x with factor U, filters the intermediate resulting signal

by the FIR filter given in coefficient vector b, and finally decimates the intermediate result using the

factor D to obtain the final output vector y. The quality of the sampling-rate conversion result depends

on the quality of the FIR filter.

Another function that performs sampling-rate conversion is resample. For example,

y = resample(x, U, D);

This function converts the sequence in vector x to the sequence in vector y with the sampling ratio U /D.

It designs the FIR lowpass filter using firls with a Kaiser window.

MATLAB provides the function intfilt for designing interpolation (and decimation) FIR filters.

For example,

b = intfilt(U, L, alpha);

designs a linear-phase FIR filter with the interpolation ratio 1:U and saves the coefficients in vector b.

The bandwidth of filter is alpha times the Nyquist frequency.

Finally, we can use FDATool designing an interpolation filter by selecting Lowpass and Interpolated
FIR as shown in Figure 4.32. For the Options, we can enter U in Interp. Factor box. We can also

specify other parameters as introduced in Section 4.2.5.

4.5 Experiments and Program Examples

In this section, we will present FIR filter implementation using fixed-point C, assembly programming,

and use the C55x DSK for real-time application.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

226 DESIGN AND IMPLEMENTATION OF FIR FILTERS

Figure 4.32 Design an interpolation filter using FDATool

4.5.1 Implementation of FIR Filters Using Fixed-Point C

This experiment uses the block-FIR filtering example presented in Section 4.3.4. The 16-bit test data is

sampled at 8000 Hz and has three sinusoidal components at frequencies 800, 1800, and 3300 Hz. The

48-tap bandpass filter is designed using the following MATLAB script:

f = [0 0.3 0.4 0.5 0.6 1];
m = [0 0 1 1 0 0];
b = remez(47, f, m);

This bandpass filter will attenuate the input sinusoids of frequencies 800 and 3300 Hz. Figure 4.33 shows

the CCS plots of the input and output waveforms along with their spectra. We use the file I/O method

(introduced in Section 1.6.4) for reading and storing data files. The files used for this experiment are

listed in Table 4.2.

Procedures of the experiment are listed as follows:

1. Open the project fixedPoint BlockFIR.pjt and rebuild the project.

2. Load and run the program to filter the input data file input.pcm.

3. Validate the output result using CCS plots to show that 800 and 3300 Hz components are removed.

4. Profile the FIR filter performance.

4.5.2 Implementation of FIR Filter Using C55x Assembly Language

The TMS320C55x has MAC instructions, circular addressing modes, and zero-overhead nested loops to

efficiently support FIR filtering. In this experiment, we use the same filter and input data as the previous

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 227

Figure 4.33 Input and output of the FIR filter. Input waveform (top left) and its spectrum (top right), and output

waveform (bottom left) and its spectrum (bottom right)

experiment to realize the FIR filter using the following C55x assembly language:

rptblocal sample_loop-1 ; Start the outer loop
mov *AR0+,*AR3 ; Put the new sample to signal buffer
mpym *AR3+,*AR1+,AC0 ; Do the 1st operation

|| rpt CSR ; Start the inner loop
macm *AR3+,*AR1+,AC0
macmr *AR3,*AR1+,AC0 ; Do the last operation with rounding
mov hi(AC0),*AR2+ ; Save Q15 filtered value

sample_loop

The filtering loop counter is CSR and the block FIR loop counter is BRC0. AR0 points to the input buffer

x[]. The signal buffer w[] is pointed by AR3. The coefficient array h[] is pointed by AR1. A new

Table 4.2 File listing for experiment exp4.5.1 fixedPoint BlockFIR

Files Description

fixedPointBlockFirTest.c C function for testing block FIR filter

fixedPointBlockFir.c C function for fixed-point block FIR filter

fixedPointFir.h C header file for block FIR experiment

firCoef.h FIR filter coefficients file

fixedPoint BlockFIR.pjt DSP project file

fixedPoint BlockFIR.cmd DSP linker command file

input.pcm Data file

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

228 DESIGN AND IMPLEMENTATION OF FIR FILTERS

Table 4.3 File listing for experiment exp4.5.2 asm BlockFIR

Files Description

blockFirTest.c C function for testing block FIR filter

blockFir.asm Assembly implementation of block FIR filter

blockFir.h C header file for block FIR experiment

blockFirCoef.h FIR filter coefficients file

asm_BlockFIR.pjt DSP project file

asm_BlockFIR.cmd DSP linker command file

input.pcm Data file

sample is placed in the signal buffer, and the inner loop repeats the MAC instructions. The intermediate

results are kept in AC0. When the filtering operation is completed, the output y(n) is rounded in Q15

format and stored in the output buffer out[], which is pointed at by AR2. Both AR1 and AR3 are

configured as circular pointers. The circular addressing mode is set as follows:

mov mmap(AR1),BSA01 ; AR1=base address for coefficients
mov mmap(T1),BK03 ; Set coefficient array size (order)
mov mmap(AR3),BSA23 ; AR3=base address for signal buffer
or #0xA,mmap(ST2_55) ; AR1 & AR3 as circular pointers
mov #0,AR1 ; Coefficient start from h[0]
mov *AR4,AR3 ; Signal buffer start from w[index]

The circular addressing mode for signal and coefficient buffers is configured by setting the base address

register BSA01 for AR1 and BSA23 for AR3. The length of the circular buffers is determined by BK03. The

starting address of the circular buffer for the coefficient vector h is always h[0]. For the signal buffer,

the circular buffer starting address depends upon the previous iteration, which is passed by AR4. At the

end of computation, the signal buffer pointer AR3 will point at the oldest sample, w(n − L + 1). This

offset is kept as shown in Figure 4.10.

In this experiment, we set C55x FRCT bit to automatically compensate for the Q15 multiplication. The

SMUL and SATD bits are set to handle the saturation of the fractional integer operation. The SXMD bit sets

the sign-extension mode. The C55x assembly language implementation of FIR filtering takes order+3
clock cycles to process each input sample. Thus, the 48-tap FIR filter needs 51 cycles, excluding the

overhead. Table 4.3 lists the files used for this experiment.

Procedures of the experiment are listed as follows:

1. Open the project asm BlockFIR.pjt and rebuild it.

2. Load the FIR filter project and run the program to filter the input data.

3. Validate the output data to ensure that the 800 and 3300 Hz components are attenuated.

4. Profile the FIR filter performance and compare the result with the fixed-point C implementation.

4.5.3 Optimization for Symmetric FIR Filters

The TMS320C55x has two special instructions firsadd and firssub to implement the symmetric and

antisymmetric FIR filters, respectively. The syntax of instructions is

firsadd Xmem,Ymem,Cmem,ACx,ACy

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 229

where Xmem and Ymem are the signal buffers of {x(n), x(n−1), . . . x(n − L/2 + 1)} and {x(n − L/2),

. . . x(n − L+1)}, respectively, and Cmem is the coefficient buffer.

The firsadd instruction is equivalent to the following parallel instructions:

macm *CDP+,ACx,ACy ; bl [x(n − l)+x(n+l − L+1)]

|| add *ARx+,*ARy+,ACx ; x(n − l+1)+x(n+l − L+2)

The macm instruction carries out the multiply–accumulate portion of the symmetric filter operation, and

the add instruction adds a pair of samples for the next iteration. The implementation of symmetric FIR

filter using the C55x assembly program is listed as follows:

rptblocal sample_loop-1 ; To prevent overflow in addition,
mov #0,AC0 ; input is scaled to Q14 format

|| mov AC1<<#-1,*AR3 ; Put input to signal buffer in Q14
add *AR3+,*AR1-,AC1 ; AC1=[x(n)+x(n-L+1)]<<16

|| rpt CSR ; Do order/2-2 iterations
firsadd *AR3+,*AR1-,*CDP+,AC1,AC0
firsadd *(AR3-T0),*(AR1+T1),*CDP+,AC1,AC0
macm *CDP+,AC1,AC0 ; Finish the last macm instruction
mov rnd(hi(AC0<<#1)),*AR2+ ; Store the rounded & scaled result

|| mov *AR0+,AC1 ; Get next sample
sample-loop

We need to store only the first half of the symmetric FIR filter coefficients. The inner-repeat loop is

set to L/2 − 2 since each multiply–accumulate operation accounts for a pair of samples. In order to use

firsadd instruction inside a repeat loop, we add the first pair of filter samples using the dual memory

add instruction

add *AR3+,*AR1-,AC1

We also place the following instructions outside the repeat loop for the final calculation:

firsadd *(AR3-T0),*(AR1+T1),*CDP+,AC1,AC0
macm *CDP+,AC1,AC0

We use two data pointers AR1 and AR3 to address the signal buffer. AR3 points at the newest sample

in the buffer, and AR1 points at the oldest sample in the buffer. Temporary registers, T1 and T0, are

used as the offsets for updating circular buffer pointers. The offsets are initialized to T0 = L/2 and

T1 = L/2 − 2. Figure 4.34 illustrates these two circular buffer pointers for a symmetric FIR filtering.

The firsadd instruction accesses three data buses simultaneously.

Two implementation issues should be considered. First, the instruction firsadd adds two correspond-

ing samples, which may cause an undesired overflow. Second, the firsadd instruction accesses three

read operations in the same cycle, which may cause data bus contention. The first problem can be resolved

by scaling the input to Q14 format, and scaling the filter output back to Q15. The second problem can

be resolved by placing the coefficient buffer and the signal buffer in different memory blocks. The C55x

assembly language implementation of symmetric FIR filter takes (order/2) + 4 clock cycles to process

each input data. Thus, this 48-tap FIR filter needs 28 cycles for each sample, excluding the overhead.

Table 4.4 lists the files used for this experiment.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

230 DESIGN AND IMPLEMENTATION OF FIR FILTERS

x(n – L + 2)

x(n)x(n – L + 1)
x(n – 1)

x(n – 2)

x(n – 3)

AR3 at time nAR1 at time n

(a) Circular buffer for a symmetric
FIR filter at time n

x(n – L + 2)

x(n)x(n – L + 1)
x(n – 1)

x(n – 2)

x(n – 3)AR1 for next x(n – L + 1)

AR3 for next x(n)

(b) Circular buffer for a symmetric
FIR filter at time n + 1

Figure 4.34 Circular buffer for a symmetric FIR filtering. The pointers to x(n) and x(n − L + 1) are updated at the

counterclockwise direction: (a) circular buffer for a symmetric FIR filter at time n; (b) circular buffer for a symmetric

FIR filter at time n + 1

Procedures of the experiment are listed as follows:

1. Open the symmetric BlockFIR.pjt and rebuild the project.

2. Load and run the program to filter the input data.

3. Validate the output data to ensure that the 800 and 3300 Hz components are removed.

4. Profile the FIR filter performance and compare the result with previous C55x assembly language

implementation.

4.5.4 Optimization Using Dual MAC Architecture

Dual MAC improves the processing speed by generating two outputs, y(n) and y(n + 1), in parallel. For

example, the following parallel instructions use dual MAC architecture:

rpt CSR
mac *ARx+,*CDP+,ACx ; ACx=bl*x(n)

:: mac *ARy+,*CDP+,ACy ; ACy=bl*x(n+1)

Table 4.4 File listing for experiment exp4.5.3 symmetric BlockFIR

Files Description

symFirTest.c C function for testing symmetric FIR filter

symFir.asm Assembly routine of symmetric FIR filter

symFir.h C header file for symmetric FIR experiment

symFirCoef.h FIR filter coefficients file

symmetric_BlockFIR.pjt DSP project file

symmetric_BlockFIR.cmd DSP linker command file

input.pcm Data file

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 231

In this example, ARx and ARy are data pointers to x(n) and x(n + 1), and CDP is the coefficient

pointer. The repeat loop produces two filter outputs y(n) and y(n + 1). After execution, pointers CDP,

ARx, and ARy are increased by 1. The following example shows the C55x assembly implementation

using the dual MAC and circular buffer for a block-FIR filter:

rptblocal sample_loop-1
mov *AR0+,*AR1 ; Put new sample to signal buffer x[n]
mov *AR0+,*AR3 ; Put next new sample to location x[n+1]
mpy *AR1+,*CDP+,AC0 ; The first operation

:: mpy *AR3+,*CDP+,AC1
|| rpt CSR

mac *AR1+,*CDP+,AC0 ; The rest MAC iterations
:: mac *AR3+,*CDP+,AC1

macr *AR1,*CDP+,AC0
:: macr *AR3,*CDP+,AC1 ; The last MAC operation

mov pair(hi(AC0)),dbl(*AR2+); Store two output data
sample-loop

There are three implementation issues to be considered when using the dual MAC architecture: (1) We

must increase the length of the signal buffer by 1 to accommodate an extra memory location required for

computing two signals in parallel. With an additional space in the buffer, we can form two sequences in

the signal buffer, one pointed by AR1 and the other by AR3. (2) Dual MAC implementation of the FIR

filtering needs three memory reads (two data samples and one filter coefficient) simultaneously. To avoid

memory bus contention, we shall place the signal buffer and the coefficient buffer in different memory

blocks. (3) The results are kept in two accumulators, thus requires two store instructions to save two

output samples. It is more efficient to use the following dual-memory-store instruction

mov pair(hi(AC0)),dbl(*AR2+)

to save both outputs to the data memory in 1 cycle. However, the dual-memory-store instruction requires

the data to be aligned on an even word (32-bit) boundary. This alignment can be set using the key word

align 4 in the linker command file as

output : {} > RAM0 align 4 /* word boundary alignment */

and using the DATA SECTION pragma directive to tell the linker where to place the output sequence.

Another method to set data alignment is to use DATA ALIGN pragma directive as

#pragma DATA_ALIGN(y,2); /* Alignment for dual accumulator store */

The C55x implementation of FIR filter using dual MAC needs (order+3)/2 clock cycles to process

each input data. Thus, it needs 26 cycles for each sample excluding the overhead. The files used for this

experiment are listed in Table 4.5.

Table 4.5 File listing for experiment exp4.5.4 dualMAC BlockFIR

Files Description

dualMacFirTest.c C function for testing dual MAC FIR filter

dualMacFir.asm Assembly routine of dual MAC FIR filter

dualMacFir.h C header file for dual MAC FIR experiment

dualMacFirCoef.h FIR filter coefficients file

dualMAC_BlockFIR.pjt DSP project file

dualMAC_BlockFIR.cmd DSP linker command file

input.pcm Data file

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

232 DESIGN AND IMPLEMENTATION OF FIR FILTERS

Procedures of the experiment are listed as follows:

1. Open the dual BlockFIR.pjt and rebuild the project.

2. Load the FIR filter project and run the program to filter the input data.

3. Validate the output data to ensure that the 800 and 3300 Hz components are removed.

4. Profile the FIR filter performance and compare the result with previous C55x assembly language

implementations.

4.5.5 Implementation of Decimation

The implementation of a decimator must consider multistage filter if the decimation factor can be formed

by common multiply factors. In this experiment, we will implement the 6:1 decimator using two FIR

filters of 2:1 and 3:1 decimation ratios.

The two-stage decimator uses the input, output, and temporary buffers. The input buffer size is equal

to the frame size multiplied by the decimation factor. For example, when the frame size is chosen as 80,

the 48 to 8 kHz decimation will require the input buffer size of 480 (80 * 6). The temporary buffer size

(240) is determined as the input buffer size (480) divided by the first decimation factor 2.

The offset, D − 1, is preloaded to the temporary register T0. After reading two input data samples

to the signal buffer, the address pointers AR1 and AR3 are incremented by D − 1. The decimation FIR

filter uses the dual MAC instruction with loop unrolling. The last instruction

mov pair(hi(AC0)),dbl(*AR2+)

requires the output address pointer to be aligned with even-word boundary. Table 4.6 lists the files used

for this experiment.

|| rptblocal sample_loop-1
mov *(AR0+T0),*AR3 ; Put new sample to signal buffer x[n]
mov *(AR0+T0),*AR1 ; Put next new sample to location x[n+1]
mpy *AR1+,*CDP+,AC0 ; The first operation

:: mpy *AR3+,*CDP+,AC1
|| rpt CSR

mac *AR1+,*CDP+,AC0 ; The rest MAC iterations
:: mac *AR3+,*CDP+,AC1

macr *AR1,*CDP+,AC0
:: macr *AR3,*CDP+,AC1 ; The last MAC operation

Table 4.6 File listing for experiment exp4.5.5 decimation

Files Description

decimationTest.c C function for testing decimation experiment

decimate.asm Assembly routine of decimation filter

decimation.h C header file for decimation experiment

coef48to24.h FIR filter coefficients for 2:1 decimation

coef24to8.h FIR filter coefficients for 3:1 decimation

decimation.pjt DSP project file

decimation.cmd DSP linker command file

tone1k_48000.pcm Data file 1 kHz tone at 48 kHz sampling rate

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 233

mov pair(hi(AC0)),dbl(*AR2+); Store two output data
sample-loop

Procedures of the experiment are listed as follows:

1. Open the decimation.pjt and rebuild the project.

2. Load and run the program to obtain the output data using the input data given in the data folder.

3. The 1000 Hz sinewave at 48 kHz sampling rate will have 48 samples per cycle. Validate the output

data of the 1000 Hz sinewave. At 8 kHz sampling rate, each cycle should have eight samples, see

Figure 4.35.

Figure 4.35 Decimation of the 48 kHz sampling-rate signal to 8 kHz. 1 kHz tone sampled at 48 kHz (top left) and

its spectrum (top right). Decimation output of 8 kHz sampling rate (bottoom left) and its spectrum (bottom right)

4. Use MATLAB to plot the spectrum of decimation output to verify that it is 1000 Hz sinewave.

4.5.6 Implementation of Interpolation

In this experiment, we interpolate the 8 kHz sampling data to 48 kHz. We will use two interpolation

filters with interpolation factors of 2 and 3. The interpolation filter is implemented using fixed-point C

program that mimics circular addressing mode. The circular buffer index is kept by the variable index.

The coefficient array is h[], and the signal buffer is w[]. Since we do not have to filter the data samples

with zero values, the coefficient array pointer is offset with interpolation factor. Table 4.7 lists the files

used for this experiment. The C code is listed as follows:

k = *index;
for (j=0; j<blkSize; j++) // Block processing

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

234 DESIGN AND IMPLEMENTATION OF FIR FILTERS

{
c = h;
w[k] = *x++; // Get the current data to delay line
m = k;
for (n=0; n<intp; n++)
{

sum = 0;
for (i=0; i<order; i++) // FIR filtering
{

sum += c[i*intp] * (long)w[k++];
if (k == order) // Simulate circular buffer

k = 0;
}
*y++ = (short)(sum>>14); // Save filter output
c++;
k = m;

}
k--;
if (k<0) // Update index for next time

k += order;
}

Table 4.7 File listing for experiment exp4.5.6_interpolation

Files Description

interpolateTest.c C function for testing interpolation experiment

interpolate.c C function for interpolation filter

interpolation.h C header file for interpolation experiment

coef8to16.h FIR filter coefficients for 1:2 interpolation

coef16to48.h FIR filter coefficients for 1:3 interpolation

interpolation.pjt DSP project file

interpolation.cmd DSP linker command file

tone1k_8000.pcm Data file – 1 kHz tone at 8 kHz sampling rate

Procedures of the experiment are listed as follows:

1. Open the interpolation.pjt and rebuild the project.

2. Load and run the program to obtain the output data using the input data given in the data folder.

3. The 1000 Hz sinewave input data sampled at 8 kHz will have eight samples in each cycle. Validate

the output 1000 Hz sinewave data at 48 kHz sampling rate that each cycle should have 48 samples.

4. Use MATLAB to plot the spectrum of interpolator output to verify that it is a 1000 Hz tone.

4.5.7 Sample Rate Conversion

In this experiment, we will convert the sampling rate from 48 to 32 kHz. We first interpolate the signal

sampled at 48 kHz to 96 kHz, and then decimate it to 32 kHz. The files used for this experiment are

listed in Table 4.8. Figure 4.36 illustrates the procedures of sampling-rate conversion from 48 to 32 kHz.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 235

Table 4.8 File listing for experiment exp4.5.7_SRC

Files Description

srcTest.c C function for testing sample rate conversion

interpolate.c C function for interpolation filter

decimate.asm Assembly routine for decimation filter

interpolation.h C header file for interpolation

decimation.h C header file for decimation

coef96to32.h FIR filter coefficients for 3:1 decimation

SRC.pjt DSP project file

SRC.cmd DSP linker command file

tone1k_48000.pcm Data file – 1 kHz tone at 48 kHz sampling rate

The first lowpass filter with cutoff frequency 48 kHz (π/2) may not be necessary in this case since a

decimation lowpass filter with narrower cutoff frequency is immediately followed.

Procedures of the experiment are listed as follows:

1. Open the SRC.pjt and rebuild the project.

2. Load and run the program to obtain the output data using the input data given in the folder.

3. The input signal sampled at 48 kHz will be converted to 32 kHz at the output. For each period, the

output should have 32 samples.

4. Use MATLAB to plot the output spectrum to verify that it is 1000 Hz.

4.5.8 Real-Time Sample Rate Conversion Using DSP/BIOS and DSK

In this experiment, we create a DSP/BIOS application that uses C5510 DSK to capture and play back

audio samples for real-time sample rate conversion using C5510 DSK. The DSP/BIOS is a small kernel

included in the CCS for real-time synchronization, host-target communication, and scheduling. It provides

multithreading, real-time analysis, and configuration capabilities to greatly reduce the development effort

when hardware and other processor resources are involved.

Step 1: Create a DSP/BIOS configuration file
A DSP/BIOS program needs a configuration file, which is a window interface that determines

application parameters and sets up modules including interrupts and I/Os. To create configuration file

for the C55x DSK, we start from CCS menu File→New→DSP Configuration to select dsk5510.cdb

and click OK. When the new configuration file is opened, save it as dspbios.cdb. Similar to the

previous experiments, create and save the DSP/BIOS project, DSPBIOS.pjt, and add the configuration

file to the project.

↓ 3
Decimation by 3Lowpass filter48 kHz 96 kHz 96 kHz 32 kHz 32 kHz

↑ 2
Interpolate by 2 Lowpass fiter

π/2 π/2
r r

Figure 4.36 Sampling-rate conversion

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

236 DESIGN AND IMPLEMENTATION OF FIR FILTERS

Figure 4.37 The DSP/BIOS configuration file

Double click the configuration file to open it as shown in Figure 4.37. Left click the + sign in

front of an item on the left window will open the property of that item on the right window. To

change the parameters listed by the configuration file, right click the item and select Properties. The

configuration has six items: System, Instrumentation, Scheduling, Synchronization, Input/Output,
and Chip Support Library. Under the System item, users can change and modify the processor

global settings and adjust memory blocks size and allocation. To make changes, select the item and

right click to bring up the Properties of that item. In this experiment, we will use the default global

settings.

Step 2: Create a software interrupt object
Open the Scheduling and click the + sign in front of SWI to open the submenu, right click SWI

and select Insert SWI to insert a new software interrupt object. Rename the newly inserted SWI0 to

swiAudioProcess. Right click swiAudioProcess and select Properties again to open the dialog

box, enter new function name _audioProcess to the Function box, and set the Priority to 2 and

Mailbox to 3 as shown in Figure 4.38.

Step 3: Set up pipe input and output
We now connect the input and output of the DSK with DSP/BIOS through the configuration file.

Click the + sign in front of the Input/Output to open the submenu, right click the PIP Buffer Pipe
Manager and select Insert PIP to insert two new PIPs. Rename one to pipRx and the other to pipTx.

This adds two ping-pong data buffers through the DMA for connecting input and output. Right click

pipRx and select Properties to open the dialog box. For the experiment, we configure pipRx to

receive audio samples and pipTx to transmit audio samples. First, we align the buffer in even-word

boundary by setting the bufalign to 2, and we change the buffer size to 480 by modifying the frame-
size. We then move to Notify Functions window and change the notifyWriter from _FXN_F_nop

to _PLIO_rxPrime, and change the notifyReader from _FXN_F_nop to _SWI_andnHook. In the

function _PLIO_rxPrime, we enter _plioRx to the nwarg0 field, and 0 to the nwarg1 field. In the

function _SWI_andnHook, we enter _swiAudioProcess to the nrarg0 field, and 1 to the nrarg1
field. We configure pipTx to work with pipRx in a similar way. Note that the notification monitor for

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 237

Figure 4.38 Setting up SWI

pipRx is reader, while pipTx uses writer. The settings of pipRx and pipTx are shown in Figures

4.39 and 4.40, respectively.

Step 4: Configure the DMA
This step connects the input/output of the DSK using the DMA controller. From the DSP/BIOS

configuration file dialog window, select Chip Support Library and open DMA→Direct Memory

Access Controller. From the DMA Configuration Manager, insert two new dmaCfg objects and

rename them as dmaCfgReceive and dmaCfgTransmit. Open dmaCfgReceive and from the Frame
tab configure the frame as follows:

Data Type = 16-bit.

Number of Element (CEN) = 256.

Figure 4.39 The settings of pipRx in DSP/BIOS buffered pipe manager

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

238 DESIGN AND IMPLEMENTATION OF FIR FILTERS

Figure 4.40 The settings of pipTx in DSP/BIOS buffered pipe manager

Number of Frames (CFN) = 1.

Frame Index (CFI) = 0.

Element Index (CEI) = 0.

In the Source tab of the dmaCfgReceive, set the source configuration as follows:

Burst Enable (SRC BEN) = Single Access (No Burst).

Packing (SRC PACK) = No Packing Access.

Source Space = Data Space.

Source Address Format = Numeric.

Start Address (CSSA) = 0x006002.

Address Mode (SRC AMODE) = Constant.

Transfer Source (SRC) = Peripheral Bus.

In the Destination tab of the dmaCfgReceive, set the destination configuration as follows:

Burst Enable (DST BEN) = Single Access (No Burst).

Packing (DST PACK) = No Packing Access.

Destination Space = Data Space.

Destination Address Format = Numeric.

Start Address (CDSA) = 0x000000.

Address Mode (DST AMODE) = Post-incremented.

Transfer Destination (DST) = DARAM.

In the Control tab of the dmaCfgReceive, set the control configuration as follows:

Sync Event (SYNC) = McBSP 2 Receive Event (REVT2).

Repetitive Operations (REPEAT) = Only if END PROG = 1.

End of Programmation (END PROG) = Delay re-initialization.

Frame Synchronization (FS) = Disabled.

Channel Priority (PRIO) = High.

Channel Enable (EN) = Disabled.

Auto-initialization (Auto INIT) = Disabled.

In the Interrupts tab of the dmaCfgReceive, set the interrupt configuration as follows:

Timeout (TIMEOUT IE) = Disabled.

Synchronization Event drop (DROP IE) = Disabled.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 239

Half Frame (FALF IE) = Disabled.

Frame Complete (FRAME IE) = Enabled.

Last Frame (LAST IE) = Disabled.

End Block (BLOCK IE) = Disabled.

The DMA configuration management also needs to be configured for transmit. OpendmaCfgTransmit

and from the Frame tab configure the frame to:

Data Type = 16-bit.

Number of Element (CEN) = 256.

Number of Frames (CFN) = 1.

Frame Index (CFI) = 0.

Element Index (CEI) = 0.

In the Source tab of the dmaCfgTransmit, set the source configuration as follows:

Burst Enable (SRC BEN) = Single Access (No Burst).

Packing (SRC PACK) = No Packing Access.

Source Space = Data Space.

Source Address Format = Numeric.

Start Address (CSSA) = 0x000000.

Address Mode (SRC AMODE) = Post-increment.

Transfer Source (SRC) = DARAM.

In the Destination tab of the dmaCfgTransmit, set the destination configuration as follows:

Burst Enable (DST BEN) = Single Access (No Burst).

Packing (DST PACK) = No Packing Access.

Destination Space = Data Space.

Destination Address Format = Numeric.

Start Address (CDSA) = 0x006006.

Address Mode (DST AMODE) = Constant.

Transfer Destination (DST) = Peripheral Bus.

In the Control tab of the dmaCfgTransmit, set the control configurations as follows:

Sync Event (SYNC) = McBSP 2 Transmit Event (XEVT2).

Repetitive Operations (REPEAT) = Only if END PROG = 1.

End of Programmation (END PROG) = Delay re-initialization.

Frame Synchronization (FS) = Disabled.

Channel Priority (PRIO) = High.

Channel Enable (EN) = Disabled.

Auto-initialization (Auto INIT) = Disabled.

In the Interrupts tab of the dmaCfgTransmit, set the interrupt configuration as follows:

Timeout (TIMEOUT IE) = Disabled.

Synchronization Event Drop (DROP IE) = Disabled.

Half Frame (FALF IE) = Disabled.

Frame Complete (FRAME IE) = Enabled.

Last Frame (LAST IE) = Disabled.

End Block (BLOCK IE) = Disabled.

From the DSP/BIOS configuration file dialog window, select Chip Support Library and open

DMA→Direct Memory Access Controller. There are six DMA channels in the DMA Resource Man-
ager. We set DMA4 for receiving and DMA5 for transmitting for C5510 DSK. Open the DMA4

dialog box by right clicking it and selecting its Properties. Enable the Open Handle to DMA box

and specify the DMA handle name as C55XX_DMA_MCBSP_hDmaRx and select dmaCfgReceive

as shown in Figure 4.41. Open the DMA5 dialog box, enable Open Handle to DMA box and

specify the handle name as C55XX_DMA_MCBSP_hDmaTx and select dmaCfgTransmit as shown in

Figure 4.42.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

240 DESIGN AND IMPLEMENTATION OF FIR FILTERS

Figure 4.41 The settings of DMA4 in DSP/BIOS DMA manager

Step 5: McBSP configuration
The command and data transfer control between the processor and the AIC23 is via the serial

ports as discussed in Chapter 2. The C55x chip support library also provides the McBSP functions

through the DSP/BIOS configuration file. From the DSP/BIOS configuration file dialog window, select

Chip Support Library and open McBSP→Multichannel Buffered Serial Port. Add two new objects to

McBSP Configuration Manager and rename them asmcbspCfg1 andmcbspCfg2. OpenmcbspCfg1

from the General tab to:

Only check the box of Configure DX, PSX, and CLKX as Serial Pins.

Uncheck the box of Configure DR, FSR, and CLKX as Serial Pins if checked.

Breakpoint Emulation = Stop After Current Word.

SPI Mode (CLKSTP) = Falling Edge w/o Delay.

Digital Loop Back (DLB) = Disabled.

Figure 4.42 The settings of DMA5 in DSP/BIOS DMA manager

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 241

In the Transmit Modes tab of the mcbspCfg1, set the configurations as follows:

SPI Clock Mode (CLKXM) = Master.

Frame-Sync Polarity (FSXP) = Active Low.

DX Pin Delay (DXENA) = Disabled.

Transmit Delay (XDATDLY) = 0-bit.

Detect Sync Error (XSYNCERR) = Disabled.

Interrupt Mode (XINTM) = XRDY.

Early Frame Sync Response (XFIG) = Restart Transfer.

Companding (XCOMPAND) = No Companding-MSB First.

Transmit Frame-Sync Source = DXR(1/2)-to-XSR(1/2) Copy.

In the Transmit Lengths tab of the mcbspCfg1, set the configurations as follows:

Phase (XPHASE) = Single-phase.

Word Length Phase1 (XWDLEN1) = 16-bit.

Words/Frame Phase1 (XFRLEN1) = 1.

In the Transmit Multichannel tab of the mcbspCfg1, set the configuration as:

TX Channel Enable = All 128 Channels.

In the Sample-Rate Gen tab of the mcbspCfg1, set the configurations as follows:

SRG Clock Source (CLKSM) = CPU Clock.

Transmit Frame-Sync Mode (FSXM=1)(FSGM) = Disabled.

Frame Width (1-256)(FWID) = 1.

Clock Divider (1-256)(CLKGDV) = 100.

Frame Period (1-4096)(FRER) = 20.

In the GPIO tab of the mcbspCfg1, set the configurations as follows:

Select CLKR Pin as = Input.

Select FSR Pin as = Input.

The McBSP 1 is used for command control and McBSP 2 is used for data transfer. McBSP 2 is

configured as bidirectional. Open mcbspCfg2 from the General tab to:

Check the box of Configure DX, PSX, and CLKX as Serial Pins.

Check the Configure DR, FSR, and CLKX as Serial Pins if checked.

Breakpoint Emulation = Stop After Current Word.

SPI Mode (CLKSTP) = Disabled.

Digital Loop Back (DLB) = Disabled.

In the Transmit Modes tab of the mcbspCfg2, set the configurations as follows:

Clock Mode (CLKXM) = External.

Clock Polarity (CLKXP) = Falling Edge.

Frame-Sync Polarity (FSXP) = Active High.

DX Pin Delay (DXENA) = Disabled.

Transmit Delay (XDATDLY) = 0-bit.

Detect Sync Error (XSYNCERR) = Disabled.

Interrupt Mode (XINTM) = XRDY.

Early Frame Sync Response (XFIG) = Restart Transfer.

Companding (XCOMPAND) = No Companding-MSB First.

Transmit Frame-Sync Source = External.

In the Transmit Lengths tab of the mcbspCfg2, set the configurations as follows:

Phase (XPHASE) = Single-phase.

Word Length Phase1 (XWDLEN1) = 16-bit.

Words/Frame Phase1 (XFRLEN1) = 2.

In the Transmit Multichannel tab of the mcbspCfg1, set the configuration as follows:

TX Channel Enable = All 128 Channels.

In the Receive Modes tab of the mcbspCfg2, set the configurations as follows:

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

242 DESIGN AND IMPLEMENTATION OF FIR FILTERS

Clock Mode (CLKXM) = External.

Clock Polarity (CLKXP) = Rising Edge.

Frame-Sync Polarity (FSXP) = Active High.

Receive Delay (RDATDLY) = 0-bit.

Detect Sync Error (RSYNCERR) = Disabled.

Interrupt Mode (RINTM) = RRDY.

Frame-Sync Mode (FSRM) = External.

Early Frame Sync Response (RFIG) = Restart Transfer.

Sign-Ext and Justification (RJUST) = Right-justify/zero-fill.

Companding (XCOMPAND) = No Companding-MSB First.

In the Receive Lengths tab of the mcbspCfg2, set the configurations as follows:

Phase (RPHASE) = Single-phase.

Word Length Phase1 (RWDLEN1) = 16-bit.

Words/Frame Phase1 (RFRLEN1) = 2.

In the Receive Multichannel tab of the mcbspCfg2, set the configuration as follows:

RX Channel Enable = All 128 Channels.

In the Sample-Rate Gen tab of the mcbspCfg2, set the configurations as follows:

SRG Clock Source (CLKSM) = CLKS Pin.

Clock Synchronization with CLKS Pin (GSYNC) = Disabled.

CLKS Polarity Clock Edge (From CLKS Pin) (CLKSP) = Rising Edge of CLKS.

Frame Width (1–256)(FWID) = 1.

Clock Divider (1–256)(CLKGDV) = 1.

Frame Period (1–4096) (FRER) = 1.

From the DSP/BIOS configuration file dialog window, select Chip Support Library and open

McBSP→Multichannel Buffered Serial Port. From McBSP Resource Manager modify hMCBSP1

and hMCBSP2 as shown in Figures 4.43 and 4.44, respectively.

Step 6: Configuration of hardware interrupts of the DSP/BIOS
Open the HWI under the Scheduling from the DSP/BIOS configuration file to connect the

interrupts to DSK. Hardware interrupts 14 and 15 are used by the DSK as receive and trans-

mit interrupts. Modify HWI INT14 by adding the receive function _C55XX_DMA_MCBSP_rxIsr

Figure 4.43 The settings of McBSP 1 in DSP/BIOS McBSP resource manager

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 243

Figure 4.44 The settings of McBSP 2 in DSP/BIOS McBSP resource manager

into the Function box and check Use Dispatcher box under the Dispatch tab. Also, mod-

ify HWI INT15 by adding the transmit function _C55XX_DMA_MCBSP_txIsr into the Func-
tion box and check Use Dispatcher box under the Dispatch tab as shown in Figures 4.45

and 4.46.

Step 7: Build and run the real-time DSP/BIOS experiment
Open the CCS project, set the project to use large memory (-ml option) and add CHIP 5510PG2 2

in Compiler-Preprocessor-defined symbol field. We also add the DSK board support library

dsk5510bslx.lib to the Linker Include Libraries search path. When we create the configura-

tion file, the CCS will generate a command file, dspbioscfg.cmd. We must use this linker command

file. The files used for this experiment are listed in Table 4.9 with brief descriptions. Add the command

file dspbioscfg.cmd and C and assembly source files listed in Table 4.9, and build this DSP/BIOS

project.

Figure 4.45 The settings of receive interrupt in HWI INT14 in DSP/BIOS

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

244 DESIGN AND IMPLEMENTATION OF FIR FILTERS

Figure 4.46 The settings of transmit interrupt in HWI INT15 in DSP/BIOS

Procedures of the experiment are listed as follows:

1. Create a DSP/BIOS configuration file and configure the DSK for real-time audio processing appli-

cation.

2. Create the DSP project and rebuild the project.

3. Connect input and output audio cables to audio source and headphone (or loudspeaker).

4. Load the project and run the program to validate the DSP/BIOS project.

Table 4.9 File listing for experiment exp4.5.8_realtime_SRC

Files Description

realtime_SRCTest.c C function for testing sample rate conversion

plio.c Interface for PIP functions with low level I/O

interpolate.c C function for interpolation filter

decimate.asm Assembly routine for decimation filter

interpolation.h C header file for interpolation

decimation.h C header file for decimation

coef8to16.h FIR filter coefficients for 1:2 interpolation

coef16to48.h FIR filter coefficients for 1:3 interpolation

coef48to24.h FIR filter coefficients for 2:1 decimation

coef24to8.h FIR filter coefficients for 3:1 decimation

lio.h Header file for low level I/O

plio.h Header file for PIP to connect with low level I/O

DSPBIOS.pjt DSP project file

dspbios.cdb DSP/BIOS configuration file

dspbioscfg.cmd DSP/BIOS linker command file

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

EXERCISES 245

References

[1] N. Ahmed and T. Natarajan, Discrete-Time Signals and Systems, Englewood Cliffs, NJ: Prentice Hall, 1983.

[2] V. K. Ingle and J. G. Proakis, Digital Signal Processing Using MATLAB V.4, Boston: PWS Publishing, 1997.

[3] S. M. Kuo and W. S. Gan, Digital Signal Processors, Upper Saddle River, NJ: Prentice Hall, 2005.

[4] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice Hall,

1989.

[5] S. J. Orfanidis, Introduction to Signal Processing, Englewood Cliffs, NJ: Prentice Hall, 1996.

[6] J. G. Proakis and D. G. Manolakis, Digital Signal Processing – Principles, Algorithms, and Applications, 3rd

Ed., Englewood Cliffs, NJ: Prentice Hall, 1996.

[7] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, 2nd Ed., New York, NY: McGraw Hill,

1998.

[8] D. Grover and J. R. Deller, Digital Signal Processing and the Microcontroller, Englewood Cliffs, NJ: Prentice

Hall, 1999.

[9] F. Taylor and J. Mellott, Hands-On Digital Signal Processing, New York, NY: McGraw Hill, 1998.

[10] S. D. Stearns and D. R. Hush, Digital Signal Analysis, 2nd Ed., Englewood Cliffs, NJ: Prentice Hall, 1990.

[11] The Math Works, Inc., Signal Processing Toolbox User’s Guide, Version 6, June 2004.

[12] The Math Works, Inc., Filter Design Toolbox User’s Guide, Version 3, Oct. 2004.

[13] Texas Instruments, Inc., TMS320C55x Optimizing C Compiler User’s Guide, Literature no. SPRU281E, Mar.

2003.

[14] Texas Instruments, Inc., TMS320C55x Chip Support Library API Reference Guide, Literature no. SPRU433J,

Sep. 2004.

[15] Texas Instruments, Inc., TMS320 DSP/BIOS User’s Guide, Literature no. SPRU423, Nov. 2002.

[16] Texas Instruments, Inc., TMS320C5000 DSP/BIOS Application Programming Interface (API) Reference Guide,

Literature no. SPRU404E, Oct. 2002.

Exercises

1. Consider the moving-average filter given in Example 4.1. What is the 3-dB bandwidth of this filter if the sampling

rate is 8 kHz?

2. Consider the FIR filter with the impulse response h(n) = {1, 1, 1}. Calculate the magnitude and phase responses,

and verify that the filter has linear phase.

3. Consider the comb filter designed in Example 4.2 with sampling rate 8 kHz. If a periodic signal with fundamental

frequency 500 Hz, and all its harmonics at 1, 1.5, . . . , 4 kHz, is filtered by this comb filter, then find out which

harmonics will be attenuated and why?

4. Using the graphical interpretation of linear convolution given in Figure 4.7, compute the linear convolution of

h(n) = {1, 2, 1} and x(n), n = 0, 1, 2 defined as follows:

(a) x(n) = {1, −1, 2}
(b) x(n) = {1, 2, −1}
(c) x(n) = {1, 3, 1}

5. The comb filter can also be described as

y(n) = x(n) + x(n − L).

Find the transfer function, zeros, and the magnitude response of this filter using MATLAB and compare the

results with Figure 4.3 (assume L = 8).

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

246 DESIGN AND IMPLEMENTATION OF FIR FILTERS

6. Assuming h(n) has the symmetry property h(n) = h(−n) for n = 0, 1, . . . , M , verify that H (ω) can be expressed

as

H (ω) = h(0) +
M∑

n=1

2h(n) cos(ωn).

7. The simplest digital approximation to a continuous-time differentiator is the first-order operation defined

as

y(n) = 1

T
[x(n) − x(n − 1)] .

Find the transfer function H (z), the frequency response H (ω), and the phase response of the differentiator.

8. Redraw the signal-flow diagram shown in Figure 4.6 and modify Equations (4.22) and (4.23) in the case that L
is an odd number.

9. Design a lowpass FIR filter of length L = 5 with a linear phase to approximate the ideal lowpass filter of cutoff

frequency 1.5 kHz with the sampling rate 8 kHz.

10. Consider the FIR filters with the following impulse responses:

(a) h(n) = { −4, 1, −1, −2, 5, 0, −5, 2, 1, −1, 4}
(b) h(n) = { −4, 1, −1, −2, 5, 6, 5, −2, −1, 1, −4}
Use MATLAB to plot magnitude responses, phase responses, and locations of zeros for both filters.

11. Show the frequency response of the lowpass filter given in Equation (4.8) for L = 8 and compare the result with

Figure 4.3.

12. Use Examples 4.6 and 4.7 to design and plot the magnitude response of a linear-phase FIR highpass filter of

cutoff frequency ωc = 0.6π by truncating the impulse response of the ideal highpass filter to length L = 2M + 1

for M = 32 and 64.

13. Repeat Problem 12 using Hamming and Blackman window functions. Show that oscillatory behavior is reduced

using the windowed Fourier series method.

14. Design a bandpass filter

H (f) =
{

1,

0,

1.6 kHz ≤ f ≤ 2 kHz

otherwise

with the sampling rate 8 kHz and the duration of impulse response 50 ms using Fourier series method; that is,

using MATLAB functions fir1. Plot the magnitude and phase responses.

15. Repeat Problem 14 using the FDATool using different design methods, and compare results with Problem 14.

16. Redo Example 4.15, quantize the designed coefficients using Q15 format, and save in C header file. Write a

floating-point C program to implement this FIR filter and test the result by comparing both input and output

signals in terms of time-domain waveforms and frequency-domain spectra.

17. Redo Problem 16 using a fixed-point C, and also use circular buffer.

18. Redo Example 4.12 with different cutoff frequencies and ripples, and summarize their relationship with the

required filter order.

19. List the window functions supported by the MATLAB WinTool. Also, use this tool to study the Kaiser window

with different L and β.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

EXERCISES 247

20. Write a C (or MATLAB) program that implements a comb filter of L = 8. The program must have the input/output

capability. Test the filter using the sinusoidal signals of frequencies ω1 = π/4 and ω2 = 3π/8. Explain the results

based on the distribution of the zeros of the filter.

21. Rewrite above program using a circular buffer.

22. Design a 24th-order bandpass FIR filter using MATLAB. The filter has passband frequencies of 1300–2100 Hz.

Implement this filter using the C55x assembly routines blockFir.asm, symFir.asm, and dualMac-
Fir.asm. The test data, input.pcm, is sampled at 8 kHz. Plot the filter results in both the time domain and

the frequency domain using the CCS graphics.

23. When designing highpass or bandstop FIR filter using MATLAB, the number of filter coefficients is an odd

number. This ensures the unit gain at the half-sampling frequency. Design a highpass FIR filter, such that its

cutoff frequency is 3000 Hz. Implement this filter using the dual MAC block-FIR filter. Plot the results in both

the time domain and the frequency domain. (Hint: Modify the assembly routine dualMacFir.asm to handle

the odd numbered coefficients.)

24. Design an antisymmetric bandpass FIR filter to allow only the middle frequency of the tri-frequency input signal

(input.pcm) to pass. Use firssub instruction to implement the FIR filter and plot the filter results in both

the time domain and the frequency domain using the CCS graphics.

25. Use symmetric instruction to implement the decimation function of the experimentexp4.5.5_decimation.

Compare the run-time efficiency of the function using symmetric instruction implementation and using dual

MAC implementation.

26. The assembly routine, asmIntpFir.asm, is written for implementing signal interpolation function. However,

there are some bugs in the code so it does not work, yet. Debug this assembly program and fix the problems.

Test the routine using exp4.5.6_interpolation.

27. Implementing a dual MAC assembly routine interpolation function for the experiment exp4.5.7_SRC, mea-

sure the performance improvement over C function in number of clock cycles.

28. Design a converter to change the 32 kHz sampling rate to 48 kHz.

29. For an experiment given in Section 4.5.7, the approach is to interpolate the 48 kHz signal to 96 kHz and then

decimate the 96 kHz signal to 32 kHz. Another approach is to decimate the 48 kHz signal to 16 kHz first and

then interpolate the 16 kHz signal to 32 kHz. Will these approaches provide the same result or performance,

why? Design an experiment to support your claim.

30. Design an interpolator that converts the 44.1 kHz sampling rate to 48 kHz.

31. Use the TMS320C5510 DSK for the following real-time tasks:� Set the TMS320C5510 DSK to 8 kHz sampling rate.� Connect the signal source to the audio input of the DSK.� Write an interrupt service routine to handle input samples or use DSP/BIOS.� Process signal in blocks with 128 samples per block, and apply lowpass filter, highpass filter, and bandpass

filter to input signals.

32. Use the TMS320C5510 DSK for the following real-time SRC:� Set the TMS320C55x DSK to 16 kHz sampling rate.� Connect the signal source to the audio input of the DSK.� Write an interrupt service routine to handle input samples or use DSP/BIOS.� Process signal in blocks with 160 samples per block.� Verify the result using an oscilloscope or spectrum analyzer.

JWBK080-04 JWBK080-Kuo March 8, 2006 11:40 Char Count= 0

248

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

5
Design and Implementation
of IIR Filters

In this chapter, we focus on the design, realization, implementation, and applications of digital IIR

filters. We will use experiments to demonstrate the implementation of IIR filters in different forms using

fixed-point processors.

5.1 Introduction

Designing a digital IIR filter usually begins with the designing of an analog filter, and applies a mapping

technique to transform it from the s-plane into the z-plane. Therefore, we will briefly review the Laplace

transform, analog filters, mapping properties, and frequency transformation.

5.1.1 Analog Systems

Given a positive time function x(t) = 0 for t < 0, the one-sided Laplace transform is defined as

X (s) =
∞∫

0

x(t)e−st dt, (5.1)

where s is a complex variable defined as

s = σ + j�, (5.2)

and σ is a real number. The inverse Laplace transform is expressed as

x(t) = 1

2π j

σ+ j∞∫
σ− j∞

X (s)est ds. (5.3)

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

249

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

250 DESIGN AND IMPLEMENTATION OF IIR FILTERS

The integral is evaluated along the straight line σ + j� in the complex plane from � = −∞ to � = ∞,

which is parallel to the imaginary axis j� at a distance σ from it.

Example 5.1: Find the Laplace transform of function x(t) = e−at u(t), where a is a real number.

From Equation (5.1), we have

X (s) =
∞∫

0

e−at e−st dt =
∞∫

0

e−(s+a)t dt

= − 1

s + a
e−(s+a)t

∣∣∣∣∞
0

= 1

s + a
, Re[s] > −a.

Equation (5.2) clearly shows a complex s-plane with a real axis σ and an imaginary axis j�.

For values of s along the j�-axis, i.e., σ = 0, we have

X (s)|s= j� =
∞∫

0

x(t)e− j�t dt, (5.4)

which is the Fourier transform of the causal signal x(t). Therefore, given a function X (s), we can

find its frequency characteristics by substituting s = j�.

If Y (s), X (s), and H (s) are the one-sided Laplace transforms of y(t), x(t), and h(t), respectively, and

y(t) = x(t) ∗ h(t)

=
∞∫

0

x(τ)h(t − τ) dτ =
∞∫

0

h(τ)x(t − τ) dτ , (5.5)

we have

Y (s) = H (s)X (s). (5.6)

Thus, linear convolution in the time domain is equivalent to multiplication in the Laplace (or frequency)

domain.

In Equation (5.6), the transfer function of a casual system is defined as

H (s) = Y (s)

X (s)
=

∞∫
0

h(t)e−st dt, (5.7)

where h(t) is the impulse response of the system. The general form of a system transfer function can be

expressed as

H (s) = b0 + b1s + · · · + bL−1sL−1

a0 + a1s + · · · + aM sM
= N (s)

D(s)
. (5.8)

The roots of N (s) are the zeros of H (s), while the roots of D(s) are the poles of the system. MATLAB

provides the function freqs to compute the frequency response H (�) of an analog system H (s).

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

INTRODUCTION 251

Example 5.2: The input signal x(t) = e−2t u(t) is applied to an LTI system, and the output of the

system is given as y(t) = (
e−t + e−2t − e−3t

)
u(t). Find the system’s transfer function H (s) and

the impulse response h(t).
From Example 5.1 for different values of a, we have

X (s) = 1

s + 2
and Y (s) = 1

s + 1
+ 1

s + 2
− 1

s + 3
.

From Equation (5.7), we obtain

H (s) = Y (s)

X (s)
= s2 + 6s + 7

(s + 1)(s + 3)
= 1 + 1

s + 1
+ 1

s + 3
.

Taking the inverse Laplace transform, we have

h(t) = δ(t) + (
e−t + e−3t

)
u(t).

The stability condition of an analog system can be represented in terms of its impulse response h(t)
or its transfer function H (s). A system is stable if

lim
t→∞

h(t) = 0. (5.9)

This condition requires that all the poles of H (s) must lie in the left-half of the s-plane, i.e., σ < 0. If

lim
t→∞

h(t) → ∞, the system is unstable. This condition is equivalent to the system that has one or more

poles in the right-half of the s-plane, or has multiple-order pole(s) on the j�-axis.

Example 5.3: Consider the system with impulse response h(t) = e−at u(t). This function satisfies

Equation (5.9), thus the system is stable for a > 0. From Example 5.1, the transfer function of this

system is

H (s) = 1

s + a
, a > 0,

which has the pole at s = −a. Thus, the system is stable since the pole is located at the left-hand

side of s-plane. This example shows we can evaluate the stability of system from the impulse

response h(t), or from the transfer function H (s).

5.1.2 Mapping Properties

The z-transform can be viewed as the Laplace transform of the sampled function x(nT) by changing of

variable

z = esT . (5.10)

This relationship represents the mapping of a region in the s-plane to the z-plane because both s and z
are complex variables. Since s = σ + j�, we have

z = eσ T e j�T = |z|e jω, (5.11)

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

252 DESIGN AND IMPLEMENTATION OF IIR FILTERS

|z| = 1 Im z

Re z

z-plane

ω = π/2

ω = 0

ω = 3π/2

ω = π

s-plane

σ = 0

σ

σ > 0σ < 0

−π/T

π/T

jΩ

Figure 5.1 Mapping between the s-plane and the z-plane

where the magnitude

|z| = eσ T (5.12)

and the angle

ω = �T . (5.13)

When σ = 0 (the j�-axis on the s-plane), the amplitude given in Equation (5.12) is |z| = 1 (the unit

circle on the z-plane), and Equation (5.11) is simplified to z = e j�T . It is apparent that the portion of

the j�-axis between � = −π/T and � = π/T in the s-plane is mapped onto the unit circle in the

z-plane from –π to π as illustrated in Figure 5.1. As � increases from π/T to 3π/T , it results in another

counterclockwise encirclement of the unit circle. Thus, as � varies from 0 to ∞, there are infinite numbers

of encirclements of the unit circle in the counterclockwise direction. Similarly, there are infinite numbers

of encirclements of the unit circle in the clockwise direction as � varies from 0 to −∞.

From Equation (5.12), |z| < 1 when σ < 0. Thus, each strip of width 2π/T in the left-half of the

s-plane is mapped inside the unit circle. This mapping occurs in the form of concentric circles in the

z-plane as σ varies from 0 to –∞. Equation (5.12) also implies that |z| > 1 if σ > 0. Thus, each strip

of width 2π/T in the right-half of the s-plane is mapped outside of the unit circle. This mapping also

occurs in concentric circles in the z-plane as σ varies from 0 to ∞.

In conclusion, the mapping from the s-plane to the z-plane is not one to one since there are many

points in the s-plane that correspond to a single point in the z-plane. This issue will be discussed later

when we design a digital filter H (z) from a given analog filter H (s).

5.1.3 Characteristics of Analog Filters

The ideal lowpass filter prototype is obtained by finding a polynomial approximation to the squared

magnitude |H (�)|2, and then converting this polynomial into a rational function. The approximations

of the ideal prototype will be discussed briefly based on Butterworth filters, Chebyshev type I and type

II filters, elliptic filters, and Bessel filters.

The Butterworth lowpass filter is an all-pole approximation to the ideal filter, which is characterized

by the squared-magnitude response

|H (�)|2 = 1

1 +
(
�
/
�p

)2L , (5.14)

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

INTRODUCTION 253

H(W)

WP

W
Ws

1
1− dP

ds

Figure 5.2 Magnitude response of Butterworth lowpass filter

where L is the order of the filter, which determines how closely the Butterworth approximates the

ideal filter. Equation (5.14) shows that |H (0)| = 1 and |H (�p)| = 1/
√

2 (or 20 log10 |H (�p)| = −3 dB)

for all values of L . Thus, �p is called the 3-dB cutoff frequency. The magnitude response of a typical

Butterworth lowpass filter is monotonically decreasing in both the passband and the stopband as illustrated

in Figure 5.2. The Butterworth filter has a flat magnitude response over the passband and stopband, and

thus is often referred to as the ‘maximally flat’ filter. This flat passband is achieved at the expense of slow

roll-off in the transition region from �p to �s.

Although the Butterworth filter is easy to design, the rate at which its magnitude decreases in the

frequency range � ≥ �p is rather slow for a small L . Therefore, for a given transition band, the order

of the Butterworth filter is often higher than that of other types of filters. We can improve the roll-off by

increasing the filter order L .

Chebyshev filters permit a certain amount of ripples, but have a steeper roll-off near the cutoff frequency

than the Butterworth filters. There are two types of Chebyshev filters. Type I Chebyshev filters are all-pole

filters that exhibit equiripple behavior in the passband and a monotonic characteristic in the stopband

(see the top plot of Figure 5.3). Type II Chebyshev filters contain both poles and zeros, and exhibit a

monotonic behavior in the passband and an equiripple behavior in the stopband as shown in bottom plot

|H(W)|

WP Ws

W

1 − dp

ds

1

|H(W)|

WP Ws

W

1 − dp

ds

1

Figure 5.3 Magnitude responses of type I (top) and type II Chebyshev lowpass filters

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

254 DESIGN AND IMPLEMENTATION OF IIR FILTERS

|H(W)|

WP Ws

W

1 − dp

ds

1

Figure 5.4 Magnitude response of elliptic lowpass filter

of Figure 5.3. In general, a Chebyshev filter meets the specifications with a fewer number of poles than

the corresponding Butterworth filter and improves the roll-off; however, it has a poorer phase response.

The sharpest transition from passband to stopband for any given δp, δs, and L can be achieved using

the elliptic filter design. As shown in Figure 5.4, elliptic filters exhibit equiripple behavior in both the

passband and the stopband. In addition, the phase response of elliptic filter is extremely nonlinear in

the passband, especially near the cutoff frequency. Therefore, we can only use the elliptic design where

the phase is not an important design parameter.

In summary, the Butterworth filter has a monotonic magnitude response at both passband and stopband

with slow roll-off. By allowing ripples in the passband for type I and in the stopband for type II, the

Chebyshev filter can achieve sharper cutoff with the same number of poles. An elliptic filter has even

sharper cutoffs than the Chebyshev filter for the same order, but it results in both passband and stopband

ripples. The design of these filters strives to achieve the ideal magnitude response with trade-offs in phase

response. Bessel filters are all-pole filters that approximate linear phase in the sense of maximally flat

group delay in the passband. However, we must sacrifice steepness in the transition region.

5.1.4 Frequency Transforms

We have discussed the design of prototype lowpass filters with cutoff frequency �p. Although the same

procedure can be applied to design highpass, bandpass, or bandstop filters, it is easier to obtain these

filters from the lowpass filter using frequency transformations. In addition, most classical filter design

techniques generate lowpass filters only.

A highpass filter Hhp(s) can be obtained from the lowpass filter H (s) by

Hhp(s) = H (s)|s= 1
s

= H

(
1

s

)
. (5.15)

For example, we have Butterworth H (s) = 1/(s + 1) for L = 1. From Equation (5.15), we obtain

Hhp(s) = 1

s + 1

∣∣∣∣
s= 1

s

= s

s + 1
. (5.16)

This shows that Hhp(s) has identical pole as the lowpass prototype, but with an additional zero at the

origin.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

DESIGN OF IIR FILTERS 255

Bandpass filters can be obtained from the lowpass prototypes by replacing s with (s2 + �2
m)/BW. That

is,

Hbp(s) = H (s)|
s= s2+�2

m

BW

, (5.17)

where �m is the center frequency of the bandpass filter defined as

�m =
√

�a�b , (5.18)

where �a and �b are the lower and upper cutoff frequencies, respectively. The filter bandwidth BW is

defined as

BW = �b − �a. (5.19)

For example, considering L = 1, we have

Hbp(s) = 1

s + 1

∣∣∣∣
s= s2+�2

m

BW

= BWs

s2 + BWs + �2
m

. (5.20)

For an Lth-order lowpass filter, we obtain a bandpass filter of order 2L .

Bandstop filter transfer functions can be obtained from the corresponding highpass filters by

Hbs(s) = Hhp(s)
∣∣
s= s2+�2

m

BW

. (5.21)

5.2 Design of IIR Filters

The transfer function of the IIR filter is defined in Equation (3.42) as

H (z) =

L−1∑
l=0

bl z
−l

1 +
M∑

m=1

am z−m

. (5.22)

The design problem is to find the coefficients bl and am so that H (z) satisfies the given specifications.

The IIR filter can be realized by the I/O equation

y(n) =
L−1∑
l=0

bl x(n − l) −
M∑

m=1

am y(n − m). (5.23)

The problem of designing IIR filters is to determine a digital filter H (z) which approximates the

prototype filter H (s) designed by one of the analog filter design methods. There are two methods that

can map the analog filter into an equivalent digital filter: the impulse-invariant and the bilinear transform.

The impulse-invariant method preserves the impulse response of the original analog filter by digitizing its

impulse response, but has inherent aliasing problem. The bilinear transform will preserve the magnitude

response characteristics of the analog filters, and thus is better for designing frequency-selective IIR

filters.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

256 DESIGN AND IMPLEMENTATION OF IIR FILTERS

Digital filter
specifications

Bilinear
transform

Bilinear
transform

W→ω

W←ω

Analog filter
specifications

Analog filter
H(s)

Digital filter
H(z)

Analog filter
design

Figure 5.5 Digital IIR filter design using the bilinear transform

5.2.1 Bilinear Transform

The procedure of digital filter design using bilinear transform is illustrated in Figure 5.5. This method

maps the digital filter specifications to an equivalent analog filter. The designed analog filter is then

mapped back to obtain the desired digital filter using the bilinear transform.

The bilinear transform is defined as

s = 2

T

(
z − 1

z + 1

)
= 2

T

(
1 − z−1

1 + z−1

)
. (5.24)

This is called the bilinear transform due to the linear functions of z in both the numerator and the

denominator. Because the j�-axis maps onto the unit circle (z = e jω), there is a direct relationship

between the s-plane frequency � and the z-plane frequency ω.

Substituting s = j� and z = e jω into Equation (5.24), we have

j� = 2

T

(
e jω − 1

e jω + 1

)
. (5.25)

It can be easily shown that the corresponding mapping of frequencies is obtained as

� = 2

T
tan

(ω

2

)
, (5.26)

or equivalently,

ω = 2 tan−1

(
�T

2

)
. (5.27)

Thus, the entire j�-axis is compressed into the interval [−π/T, π/T] for ω in a one-to-one manner.

The portion of 0 → ∞ in the s-plane is mapped onto the 0 → π portion of the unit circle, while the

0 → −∞ portion in the s-plane is mapped onto the 0 → −π portion of the unit circle. Each point in the

s-plane is uniquely mapped onto the z-plane.

The relationship between the frequency variables � and ω is illustrated in Figure 5.6. The bilinear

transform provides a one-to-one mapping of the points along the j�-axis onto the unit circle, or onto

the Nyquist band |ω| ≤ π . However, the mapping is highly nonlinear. The point � = 0 is mapped to

ω = 0 (or z = 1), and the point � = ∞ is mapped to ω = π (or z = −1). The entire band �T ≥ 1 is

compressed onto π/2 ≤ ω ≤ π . This frequency compression effect is known as frequency warping, and

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

DESIGN OF IIR FILTERS 257

0 1
WT

ω

π

2

π

−π

Figure 5.6 Plot of transformation given in Equation (5.27)

must be taken into consideration for digital filter design using the bilinear transform. The solution is to

prewarp the critical frequencies according to Equation (5.26).

5.2.2 Filter Design Using Bilinear Transform

The bilinear transform of an analog filter H (s) is obtained by simply replacing s with z using Equation

(5.24). The filter specifications will be in terms of the critical frequencies of the digital filter. For example,

the critical frequency ω for a lowpass filter is the bandwidth of the filter.

Three steps involved in the IIR filter design using bilinear transform are summarized as follows:

1. Prewarp the critical frequency ωc of the digital filter using Equation (5.26) to obtain the corresponding

analog filter’s frequency �c.

2. Scale the analog filter H (s) with �c to obtain the scaled transfer function

Ĥ (s) = H (s)|s=s/�c
= H

(s

�c

)
. (5.28)

3. Replace s using Equation (5.24) to obtain desired digital filter H (z). That is

H (z) = Ĥ (s)|s=2(z−1)/(z+1)T . (5.29)

Example 5.4: Using the simple lowpass filter H (s) = 1/(s + 1) and the bilinear transform method

to design a digital lowpass filter with the bandwidth 1000 Hz and the sampling frequency 8000 Hz.

The critical frequency for the lowpass filter is the bandwidth ωc = 2π (1000/8000) = 0.25π ,

and T = 1/8000 s.

Step 1: Prewarp the critical frequency as

�c = 2

T
tan

(ωc

2

)
= 2

T
tan (0.125π) = 0.8284

T
.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

258 DESIGN AND IMPLEMENTATION OF IIR FILTERS

Step 2: Use frequency scaling to obtain

Ĥ (s) = H (s)
∣∣
s=s/(0.8284/T) = 0.8284

sT + 0.8284
.

Step 3: Using bilinear transform in Equation (5.29) yields the desired transfer function

H (z) = Ĥ (s)
∣∣
s=2(z−1)/(z+1)T = 0.2929

1 + z−1

1 − 0.4142z−1
.

MATLAB Signal Processing Toolbox providesimpinvar andbilinear functions to support impulse-

invariant and bilinear transform methods, respectively. For example, we can use numerator and denomi-

nator polynomials as follows:

[NUMd,DENd] = bilinear(NUM,DEN,Fs, Fp);

where NUMd and DENd are digital filter coefficients obtained from the bilinear function. NUM and DEN are

row vectors containing numerator and denominator coefficients in descending powers of s, respectively,

Fs is the sampling frequency in Hz, and Fp is prewarping frequency.

Example 5.5: In order to design a digital IIR filtering using the bilinear transform, the transfer

function of the analog prototype filter is first determined. The numerator and denominator poly-

nomials of the prototype filter are then mapped to the polynomials for the digital filter using the

bilinear transform. The following MATLAB script (example5_5.m) designs a lowpass filter:

Fs = 2000; % Sampling frequency
Wn = 300; % Edge frequency
Fc = 2*pi*Wn % Edge frequency in rad/s
n = 4; % Order of analog filter
[b, a] = butter(n, Fc, 's'); % Design an analog filter
[bz, az] = bilinear(b, a, Fs, Wn); % Determine digital filter
[Hz,Wz] = freqz(bz,az,512,Fs); % Display magnitude & phase

5.3 Realization of IIR Filters

An IIR filter can be realized in different forms or structures. In this section, we will discuss direct-form

I, direct-form II, cascade, and parallel realizations of IIR filters. These realizations are equivalent math-

ematically, but may have different performance in practical implementation due to the finite wordlength

effects.

5.3.1 Direct Forms

The direct-form I realization is defined by the I/O equation (5.23). This filter has (L + M) coefficients

and needs (L + M + 1) memory locations to store {x(n − l), l = 0, 1, . . . , L − 1} and {y(n − m),

m = 0, 1, . . . , M}. It also requires (L + M) multiplications and (L + M − 1) additions. The detailed

signal-flow diagram for L = M + 1 is illustrated in Figure 3.11.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

REALIZATION OF IIR FILTERS 259

H1 (z) H2 (z)

z−1 z−1

z−1z−1

x(n)

b2

b1

b0

−a1

−a2

y(n)

y(n − 1)

y(n − 2)

x(n − 1)

x(n − 2)

Figure 5.7 Direct-form I realization of second-order IIR filter

Example 5.6: Consider a second-order IIR filter

H (z) = b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2
. (5.30)

The I/O equation of the direct-form I realization is described as

y(n) = b0x(n) + b1x(n − 1) + b2x(n − 2) − a1 y(n − 1) − a2 y(n − 2). (5.31)

The signal-flow diagram is illustrated in Figure 5.7.

As shown in Figure 5.7, the IIR filter H (z) can be interpreted as the cascade of two transfer functions

H1(z) and H2(z). That is,

H (z) = H1(z)H2(z), (5.32)

where H1(z) = b0 + b1z−1 + b2z−2 and H2(z) = 1/
(
1 + a1z−1 + a2z−2

)
. Since multiplication is com-

mutative, we have H (z) = H2(z)H1(z). Therefore, Figure 5.7 can be redrawn by exchanging the order

of H1(z) and H2(z), and combining two signal buffers into one as illustrated in Figure 5.8. This efficient

realization of a second-order IIR filter is called direct-form II (or biquad), which requires three memory

x(n) w(n)

w(n − 1)

w(n − 2)

y(n)b0

z−1

z−1

−a1

−a2 b2

b1

Figure 5.8 Direct-form II realization of second-order IIR filter

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

260 DESIGN AND IMPLEMENTATION OF IIR FILTERS

x(n) w(n)

w(n − 1)

w(n − 2)

y(n)b0

z−1

z−1

−a1

−a2 b2

w(n − L − 1)

−aM bL−1

b1

Figure 5.9 Direct-form II realization of general IIR filter, L = M + 1

locations as opposed to six memory locations required for the direct-form I given in Figure 5.7. Therefore,

the direct-form II is called the canonical form since it needs the minimum numbers of memory.

The direct-form II second-order IIR filter can be implemented as

y(n) = b0w(n) + b1w(n − 1) + b2w(n − 2), (5.33)

where

w(n) = x(n) − a1w(n − 1) − a2w(n − 2). (5.34)

This realization can be expanded as Figure 5.9 to realize the IIR filter defined in Equation (5.23) with

M = L− 1 using the direct-form II structure.

5.3.2 Cascade Forms

By factoring the numerator and the denominator polynomials of the transfer function H (z), an IIR filter

can be realized as a cascade of second-order IIR filter sections. Consider the transfer function H (z) given

in Equation (5.22), it can be expressed as

H (z) = b0 H1(z)H2(z) · · · HK (z) = b0

K∏
k=1

Hk(z), (5.35)

where K is the total number of sections, and Hk(z) is a second-order filter expressed as

Hk(z) = (z − z1k)(z − z2k)

(z − p1k)(z − p2k)
= 1 + b1k z−1 + b2k z−2

1 + a1k z−1 + a2k z−2
. (5.36)

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

REALIZATION OF IIR FILTERS 261

y(n)
HK (z)H2 (z)H1 (z)

b0x(n)

Figure 5.10 Cascade realization of digital filter

If the order is an odd number, one of the Hk(z) is a first-order IIR filter expressed as

Hk(z) = z − z1k

z − p1k
= 1 + b1k z−1

1 + a1k z−1
. (5.37)

The realization of Equation (5.35) in cascade form is illustrated in Figure 5.10. In this form, any

complex-conjugated roots must be grouped into the same section to guarantee that the coefficients of

Hk(z) are all real-valued numbers. Assuming that every Hk(z) is a second-order IIR filter described by

Equation (5.36), the I/O equations describing the cascade realization are

wk(n) = xk(n) − a1kwk(n − 1) − a2kwk(n − 2), (5.38)

yk(n) = wk(n) + b1kwk(n − 1) + b2kwk(n − 2), (5.39)

xk+1(n) = yk(n), (5.40)

for k = 1, 2, . . . , K where x1(n) = b0x(n) and y(n) = yK (n).

It is possible to obtain many different cascade realizations for the same transfer function H (z) by

different ordering and pairing. Ordering means the order of connecting Hk(z), and pairing means the

grouping of poles and zeros of H (z) to form Hk(z). In theory, these different cascade realizations are

equivalent; however, they may be different due to the finite-wordlength effects. In DSP implementation,

each section will generate a certain amount of roundoff error, which is propagated to the next section.

The total roundoff noise at the final output will depend on the particular pairing/ordering.

In the direct-form realization shown in Figure 5.9, the variation of one parameter will affect all the

poles of H (z). In the cascade realization, the variation of one parameter will only affect pole(s) in that

section. Therefore, the cascade realization is preferred in practical implementation because it is less

sensitive to parameter variation due to quantization effects.

Example 5.7: Consider the second-order IIR filter

H (z) = 0.5(z2 − 0.36)

z2 + 0.1z − 0.72
.

By factoring the numerator and denominator polynomials of H (z), we obtain

H (z) = 0.5(1 + 0.6z−1)(1 − 0.6z−1)

(1 + 0.9z−1)(1 − 0.8z−1)
.

By different pairings of poles and zeros, there are four possible realizations of H (z) in terms of

first-order sections. For example, we may choose

H1(z) = 1 + 0.6z−1

1 + 0.9z−1
and H2(z) = 1 − 0.6z−1

1 − 0.8z−1
.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

262 DESIGN AND IMPLEMENTATION OF IIR FILTERS

The IIR filter can be realized by the cascade form expressed as

H (z) = 0.5H1(z)H2(z).

5.3.3 Parallel Forms

The expression of H (z) in a partial-fraction expansion leads to another canonical structure called the

parallel form expressed as

H (z) = c + H1(z) + H2(z) + · · · + HK (z), (5.41)

where c is a constant, and Hk(z) is a second-order IIR filter expressed as

Hk(z) = b0k + b1k z−1

1 + a1k z−1 + a2k z−2
, (5.42)

or a first-order filter expressed as

Hk(z) = b0k

1 + a1k z−1
. (5.43)

The realization of Equation (5.41) in parallel form is illustrated in Figure 5.11. Each second-order

section can be implemented as direct-form II shown in Figure 5.8.

Example 5.8: Considering the transfer function H (z) given in Example 5.7, we can express it as

H ′(z) = H (z)

z
= 0.5

(
1 + 0.6z−1

) (
1 − 0.6z−1

)
z
(
1 + 0.9z−1

) (
1 − 0.8z−1

) = A

z
+ B

z + 0.9
+ C

z − 0.8
,

where

A = zH ′(z)|z=0 = 0.25

B = (z + 0.9)H ′(z)|z=−0.9 = 0.147

C = (z − 0.8)H ′(z)|z=0.8 = 0.103.

HK (z)

H2 (z)

H1 (z)

x(n) y(n)

c0

Figure 5.11 A parallel realization of digital IIR filter

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

REALIZATION OF IIR FILTERS 263

Therefore, we obtain

H (z) = 0.25 + 0.147

1 + 0.9z−1
+ 0.103

1 − 0.8z−1
.

5.3.4 Realization of IIR Filters Using MATLAB

The cascade realization of an IIR filter involves its factorization. This can be done in MATLAB using

the function roots. For example, the statement

r = roots(b);

returns the roots of the numerator vector b in the output vector r. Similarly, we can obtain the roots of

the denominator vector a. The coefficients of each section can be determined by pole-zero pairings.

The function tf2zp available in the Signal Processing Toolbox finds the zeros, poles, and gain of

systems. For example, the statement

[z, p, c] = tf2zp(b, a);

will return the zero locations in z, the pole locations in p, and the gain in c. Similarly, the function

[b, a] = zp2tf(z,p,k);

forms the transfer function H (z) given a set of zero locations in vector z, a set of pole locations in vector

p, and a gain in scalar k.

Example 5.9: The zeros, poles, and gain of the system defined in Example 5.7 can be obtained

using the MATLAB script (example5_9.m) as follows:

b = [0.5, 0, -0.18];
a = [1, 0.1, -0.72];
[z, p, c] = tf2zp(b,a)

Runing the program, we obtain z = 0.6, −0.6,p = −0.9, 0.8, and c = 0.5. These results verify

the derivation obtained in Example 5.7.

Signal Processing Toolbox also provides a useful function zp2sos to convert a zero-pole-gain repre-

sentation to an equivalent representation of second-order sections. The function

[sos, G] = zp2sos(z, p, c);

finds the overall gain G and a matrix sos containing the coefficients of each second-order section deter-

mined from its zero-pole form. The matrix sos is a K× 6 matrix as

sos =

⎡⎢⎢⎢⎣
b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

...
...

...
...

...
...

b0K b1K b2K 1 a1K a2K

⎤⎥⎥⎥⎦ , (5.44)

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

264 DESIGN AND IMPLEMENTATION OF IIR FILTERS

where each row contains the numerator and denominator coefficients, bik and aik , of the kth second-order

section Hk(z). The overall transfer function is expressed as

H (z) = G
K∏

k=1

Hk(z) = G
K∏

k=1

b0k + b1k z−1 + b2k z−2

1 + a1k z−1 + a2k z−2
, (5.45)

where G is a scalar which accounts for the overall gain of the system.

Similarly, the function [sos, G] = tf2sos(b, a) finds a matrix sos and a gain G. In addition, we

can use

[sos, G] = tf2sos(b, a, dir_flag, scale);

to specify the ordering of the second-order sections. If dir_flag is UP, the first row will contain the

poles closest to the origin, and the last row will contain the poles closest to the unit circle. If dir_flag is

DOWN, the sections are ordered in the opposite direction. The input parameter scale specifies the desired

scaling of the gain and the numerator coefficients of all second-order sections.

The parallel realizations discussed in Section 5.3.3 can be developed in MATLAB using the function

residuez in the Signal Processing Toolbox. This function converts the transfer function expressed as

Equation (5.22) to the partial-fraction-expansion (or residue) form as Equation (5.41). The function

[r, p, c] = residuez(b, a);

returns the column vector r that contains the residues, p contains the pole locations, and c contains the

direct terms.

5.4 Design of IIR Filters Using MATLAB

MATLAB can be used to evaluate the IIR filter design methods, realize and analyze the designed filters,

and quantize filter coefficients for fixed-point implementations.

5.4.1 Filter Design Using MATLAB

The Signal Processing Toolbox provides a variety of functions for designing IIR filters. This toolbox

supports design of Butterworth, Chebyshev type I, Chebyshev type II, elliptic, and Bessel IIR filters

in four different types: lowpass, highpass, bandpass, and bandstop. The direct filter design function

yulewalk finds a filter with magnitude response approximating a desired function, which supports the

design of a bandpass filter with multiple passbands. The filter design methods and functions available in

the Signal Processing Toolbox are summarized in Table 5.1.

Table 5.1 List of IIR filter design methods and functions

Design method Functions Description

Order estimation buttord, cheb1ord,

cheb2ord, ellipord
Design a digital filter through frequency transformation and

bilinear transform using an analog lowpass prototype filter

Design function besself, butter,

cheby1, cheby2, ellip
Direct design yulewalk Design directly by approximating a magnitude response

Generalized design maxflat Design lowpass Butterworth filters with more zeros than poles

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

DESIGN OF IIR FILTERS USING MATLAB 265

Additional IIR filter design methods are supported by MATLAB Filter Design Toolbox, which are

summarized as follows:

iircomb - IIR comb notching or peaking digital filter design;

iirgrpdelay - allpass filter design given a group delay;

iirlpnorm - least P-norm optimal IIR filter design;

iirlpnormc - constrained least P-norm IIR filter design;

iirnotch - second-order IIR notch digital filter design; and

iirpeak - second-order IIR peaking (resonator) digital filter design.

We will use iirpeak in Section 5.6 for practical application.

As indicated in Table 5.1, the IIR filter design requires two processes. First, compute the minimum

filter order N and the frequency-scaling factor Wn from the given specifications. Second, calculate the

filter coefficients using these two parameters. In the first step, the following MATLAB functions are used

for estimating filter order:

[N, Wn] = buttord(Wp, Ws, Rp, Rs); % Butterworth filter
[N, Wn] = cheb1ord(Wp, Ws, Rp, Rs); % Chebyshev type I filter
[N, Wn] = cheb2ord(Wp, Ws, Rp, Rs); % Chebyshev type II filter
[N, Wn] = ellip(Wp, Ws, Rp, Rs); % Elliptic filter

The parameters Wp and Ws are the normalized passband and stopband edge frequencies, respectively. The

ranges of Wp and Ws are between 0 and 1, where 1 corresponds to the Nyquist frequency (fs/2). The

parameters Rp and Rs are the passband ripple and the minimum stopband attenuation specified in dB,

respectively. These four functions return the order N and the frequency-scaling factor Wn, which are

needed in the second step of IIR filter design.

In the second step, the Signal Processing Toolbox provides the following functions:

[b, a] = butter(N, Wn);
[b, a] = cheby1(N, Rp, Wn);
[b, a] = cheby2(N, Rs, Wn);
[b, a] = ellip(N, Rp, Rs, Wn);
[b, a] = besself(N, Wn);

These functions return the filter coefficients in row vectors b and a. We can use butter(N,Wn,'high')

to design a highpass filter. If Wn is a two-element vector, Wn = [W1 W2], butter returns an order 2N

bandpass filter with passband in between W1 and W2, and butter(N,Wn,'stop') designs a bandstop

filter.

Example 5.10: Design a lowpass Butterworth filter with less than 1.0 dB of ripple from 0 to

800 Hz, and at least 20 dB of stopband attenuation from 1600 Hz to the Nyquist frequency 4000 Hz.

The MATLAB script (example5_10.m) for designing the filter is listed as follows:

Wp = 800/4000;
Ws= 1600/4000;
Rp = 1.0;
Rs = 20.0;
[N, Wn] = buttord(Wp, Ws, Rp, Rs); % First stage
[b, a] = butter(N, Wn); % Second stage
freqz(b, a, 512, 8000); % Display frequency responses

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

266 DESIGN AND IMPLEMENTATION OF IIR FILTERS

Figure 5.12 Filter visualization tool window

Instead of using freqz for display magnitude and phase responses, we can use a graphical user

interface (GUI) tool called the Filter Visualization Tool (FVTool) to analyze digital filters. The

following command

fvtool(b,a)

launches the FVTool and computes the magnitude response for the filter defined by numerator

and denominator coefficients in vectors b and a, respectively. For example, after execution of

example5_10.m, when you type in fvtool(b,a) in the MATLAB command window,

Figure 5.12 is displayed. From the Analysis menu, we can further analyze the designed

filter.

Example 5.11: Design a bandpass filter with passband of 100–200 Hz, and the sampling rate

is 1 kHz. The passband ripple is less than 3 dB and the stopband attenuation is at least 30 dB by

50 Hz out on both sides of the passband.

The MATLAB script (example5_11.m) for designing and evaluating filter is listed as follows:

Wp = [100 200]/500;
Ws = [50 250]/500;
Rp = 3;
Rs = 30;
[N, Wn] = buttord(Wp, Ws, Rp, Rs);
[b, a] = butter(N, Wn); % Design a Butterworth filter
fvtool(b, a); % Analyze the designed IIR filter

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

DESIGN OF IIR FILTERS USING MATLAB 267

50

−50

−150

−250

−350

−450
0 0.1 0.2 0.3 0.4 0.5

Normalized frequency (×π rad/sample)

Magnitude (dB) and Phase responses
M

ag
n
it

u
d
e

(d
B

)

Magnitude Response

Phase response

0.6 0.7 0.8 0.9
−1000

−760

−520

P
h
as

e
(d

eg
re

es
)

−280

−40

200

Figure 5.13 Magnitude and phase responses of the bandpass filter

From the Analysis menu in the FVTool window, we select the Magnitude and Phase Responses.

The magnitude and phase responses of the designed bandpass filter are shown in Figure 5.13.

5.4.2 Frequency Transforms Using MATLAB

The Signal Processing Toolbox provides functions lp2hp, lp2bp, and lp2bs for converting the prototype

lowpass filters to highpass, bandpass, and bandstop filters, respectively. For example, the following

command

[numt,dent] = lp2hp(num,den,wo);

transforms the lowpass filter prototype num/den with unity cutoff frequency to a highpass filter with

cutoff frequency wo.

The Filter Design Toolbox provides additional frequency transformations via numerator and denomi-

nator functions that are listed as follows:

iirbpc2bpc – complex bandpass to complex bandpass;

iirlp2bp – real lowpass to real bandpass;

iirlp2bpc – real lowpass to complex bandpass;

iirlp2bs – real lowpass to real bandstop;

iirlp2bsc – real lowpass to complex bandstop;

iirlp2hp – real lowpass to real highpass;

iirlp2lp – real lowpass to real lowpass;

iirlp2mb – real lowpass to real multiband; and

iirlp2mbc – real lowpass to complex multiband.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

268 DESIGN AND IMPLEMENTATION OF IIR FILTERS

0
−140

−120

−100

−80

−60

−40

−20

0

20

0.1 0.2 0.3 0.4 0.5

Normalized frequency (×π rad/sample)

Magnitude response (dB)
M

ag
n
it

u
d
e

(d
B

)

0.6 0.7 0.8 0.9

Lowpass Bandpass

Figure 5.14 Magnitude responses of the lowpass and bandpass filters

Example 5.12: The function iirlp2bp converts an IIR lowpass to an bandpass filter with the

following syntax:

[Num,Den,AllpassNum,AllpassDen] = iirlp2bp(b,a,Wo,Wt);

This functions returns numerator and denominator vectors,Num andDenof the transformed lowpass

digital filter. It also returns the numerator AllpassNum and the denominator AllpassDen of the

allpass mapping filter. The prototype lowpass filter is specified by numerator b and denominator a,

Wo is the center frequency value to be transformed from the prototype filter, and Wt is the desired

frequency in the transformed filter. Frequencies must be normalized to be between 0 and 1. The

following MATLAB script (example5_12.m, adapted from the Help menu) converts a lowpass

filter to a bandpass filter and analyzes it using FVTool as shown in Figure 5.14:

[b,a] = ellip(6,0.1,60,0.209); % Lowpass filter
[num,den] = iirlp2bp(b,a,0.5,[0.25,0.75]); % Convert to bandpass
fvtool(b,a,num,den); % Display both lowpass & bandpass filters

5.4.3 Design and Realization Using FDATool

In this section, we use the FDATool shown in Figure 4.18 for designing, realizing, and quantizing IIR

filters. To design an IIR filter, select the radio button next to IIR in the Design Method region on the

GUI. There are seven options (from the pull-down menu) for Lowpass types, and several different filter

design methods are available for different response types.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

DESIGN OF IIR FILTERS USING MATLAB 269

Figure 5.15 GUI of designing an elliptic IIR lowpass filter

Example 5.13: Similar to Example 4.12, design a lowpass IIR filter with the following specifi-

cations: sampling frequency fs = 8 kHz, passband cutoff frequency ωp = 2 kHz, stopband cutoff

frequency ωs = 2.5 kHz, passband ripple Ap = 1 dB, and stopband attenuation As = 60 dB.

We can design an elliptic filter by clicking the radio button next to IIR in the Design Method
region and selecting Elliptic from the pull-down menu. We then enter parameters in Frequency
Specifications and Magnitude Specifications regions as shown in Figure 5.15. After pressing

Design Filter button to compute the filter coefficients, the Filter Specifications region changed

to a Magnitude Response (dB) as shown in Figure 5.15.

We can specify filter order by clicking the radio button Specify Order and entering the filter order in

a text box, or choose the default Minimum Order. The order of the designed filter is 6, which is stated

in Current Filter Information region (top-left) as shown in Figure 5.15. By default, the designed IIR

filter was realized by cascading of second-order IIR sections using the direct-form II biquads shown in

Figure 5.8. We can change this default setting from Edit→Convert Structure, the dialog window shown

in Figure 5.16 displayed for selecting different structures. We can reorder and scale second-order sections

by selecting Edit→Reorder and Scale Second-Order Sections.

Once the filter has been designed and verified as shown in Figure 5.15, we can turn on the quantization

mode by clicking the Set Quantization Parameters button . The bottom-half of the FDATool window

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

270 DESIGN AND IMPLEMENTATION OF IIR FILTERS

Figure 5.16 Convert filter structure window

will change to a new pane with the Filter Arithmetic option allowing the user to quantize the designed

filter and analyzing the effects of changing quantization settings. To enable the fixed-point quantization,

select Fixed-Point from the Filter Arithmetic pull-down menu. See Section 4.2.5 for details of those

options and settings.

Example 5.14: Design a quantized bandpass IIR filter for a 16-bit fixed-point DSP processor

with the following specifications: sampling frequency = 8000 Hz, lower stopband cutoff frequency

Fstop1 = 1200 Hz, lower passband cutoff frequency Fpass1 = 1400 Hz, upper passband cutoff fre-

quency Fpass2 = 1600 Hz, upper stopband cutoff frequency Fstop2 = 1800 Hz, passband ripple =
1 dB, and stopband (both lower and upper) attenuation = 60 dB.

Start FDATool and enter the appropriate parameters in the Frequency Specifications and Mag-
nitude Specifications regions, select elliptic IIR filter type, and click Design Filter. The order

of designed filter is 16 with eight second-order sections. Click the Set Quantization Parameters
button, and select the Fixed-Point option from the pull-down menu of Filter Arithmetic and use

default settings. After designing and quantizing the filter, select the Magnitude Response Esti-
mate option on the Analysis menu for estimating the frequency response for quantized filter. The

magnitude response of the quantized filter is displayed in the analysis area as shown in Figure 5.17.

We observe that quantizing the coefficients has satisfactory filter magnitude response, primarily

because FDATool implements the filter in cascade second-order sections, which is more resistant

to the effects of coefficient quantization.

We also select Filter Coefficients from the Analysis menu, and display it in Figure 5.18. It shows

both the quantized coefficients (top) with Q15 format and the original coefficients (bottom) with double-

precision floating-point format.

We can save the designed filter coefficients in a C header file by selecting Generate C header from

the Targets menu. The Generate C Header dialog box appears as shown in Figure 5.19. For an IIR

filter, variable names in the C header file are numerator (NUM), numerator length (NL), denominator (DEN),

denominator length (DL), and number of sections (NS). We can use the default variable names as shown

in Figure 5.19, or change them to match the names used in the C program that will include this header

file. Click Generate, and the Generate C Header dialog box appears. Enter the filename and click Save
to save the file.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

IMPLEMENTATION CONSIDERATIONS 271

Figure 5.17 FDATool window for a quantized 16-bit bandpass filter

5.5 Implementation Considerations

This section discusses important considerations for implementing IIR filters, including stability and finite

wordlength effects.

5.5.1 Stability

The IIR filter defined by the transfer function given in Equation (3.44) is stable if all the poles lie within

the unit circle. That is,

|pm | < 1, m = 1, 2, . . . , M. (5.46)

Figure 5.18 Filter coefficients

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

272 DESIGN AND IMPLEMENTATION OF IIR FILTERS

Figure 5.19 Generate C header dialog box

In this case, we can show that lim
n→∞

h(n) = 0. If |pm | > 1 for any m, then the IIR filter is unstable since

lim
n→∞

h(n) → ∞. In addition, an IIR filter is unstable if H (z) has multiple-order pole(s) on the unit circle.

Example 5.15: Considering the IIR filter with transfer function

H (z) = 1

1 − az−1
,

the impulse response of the system is h(n) = an, n ≥ 0. If the pole is inside the unit circle, i.e.,

|a| < 1, the impulse response lim
n→∞

h(n) = lim
n→∞

an → 0. Thus, the IIR filter is stable. However,

the IIR filter is unstable for |a| > 1 since the pole is outside the unit circle and

lim
n→∞

h(n) = lim
n→∞

an → ∞ if |a| > 1.

Example 5.16: Considering the system with transfer function

H (z) = z

(z − 1)2
,

there is a second-order pole at z = 1. The impulse response of the system is h(n) = n, which is

an unstable system.

An IIR filter is marginally stable (or oscillatory bounded) if

lim
n→∞

h(n) = c, (5.47)

where c is a nonzero constant. For example, if H (z) = 1/1 + z−1, there is a first-order pole on

the unit circle. It is easy to show that the impulse response oscillates between ±1 since h(n) =
(−1)n, n ≥ 0.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

IMPLEMENTATION CONSIDERATIONS 273

a2

a1

a2 = 1

a1 = 1 + a2
− a1 = 1 + a2

1

−1

−2 2

Figure 5.20 Region of coefficient values for a stable second-order IIR filter

Consider the second-order IIR filter defined by Equation (5.30). The denominator can be factored as

1 + a1z−1 + a2z−2 = (
1 − p1z−1

) (
1 − p2z−1

)
, (5.48)

where

a1 = − (p1 + p2) and a2 = p1 p2. (5.49)

The poles must lie inside the unit circle for stability; that is, |p1| < 1 and |p2| < 1.

From Equation (5.49), we need

|a2| = |p1 p2| < 1 (5.50)

for a stable system. The corresponding condition on a1 can be derived from the Schur–Cohn stability test

as

|a1| < 1 + a2. (5.51)

Stability conditions in Equations (5.50) and (5.51) are illustrated in Figure 5.20, which shows the resulting

stability triangle in the a1 − a2 plane. That is, the second-order IIR filter is stable if and only if the

coefficients define a point (a1, a2) that lies inside the stability triangle.

5.5.2 Finite-Precision Effects and Solutions

In practical applications, the coefficients obtained from filter design are quantized to a finite number of

bits for implementation. The filter coefficients, bl and am , obtained by MATLAB are represented using

double-precision floating-point format. Let b′
l and a′

m denote the quantized values corresponding to bl

and am , respectively. The transfer function of quantized IIR filter is expressed as

H ′(z) =

L−1∑
l=0

b′
l z

−l

1 +
M∑

m=1

a′
m z−m

. (5.52)

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

274 DESIGN AND IMPLEMENTATION OF IIR FILTERS

If the wordlength is not sufficiently large, some undesirable effects will occur. For example, the magnitude

and phase responses of H ′(z) may be different from those of H (z). If the poles of H (z) are close to the

unit circle, the pole(s) of H ′(z) may move outside the unit circle after coefficient quantization, resulting

in an unstable implementation. These undesired effects are more serious when higher order IIR filters

are implemented using the direct-form realization. Therefore, the cascade and parallel realizations are

preferred in practical DSP implementations with each Hk(z) be a first- or second-order section. The

cascade form is recommended for the implementation of high-order narrowband IIR filters that have

closely clustered poles.

Example 5.17: Consider the IIR filter with transfer function

H (z) = 1

1 − 0.85z−1 + 0.18z−2
,

with the poles located at z = 0.4 and z = 0.45. This filter can be realized in the cascade form as

H (z) = H1(z)H2(z), where H1(z) = 1
(1−0.4z−1)

and H2(z) = 1
(1−0.45z−1)

.

If this IIR filter is implemented on a 4-bit (a sign bit plus three data bits; see Table 3.2) fixed-point

hardware, 0.85 and 0.18 are quantized to 0.875 and 0.125, respectively. Therefore, the direct-form

realization is described as

H ′(z) = 1

1 − 0.875z−1 + 0.125z−2
.

The poles of the direct-form H ′(z) become z = 0.1798 and z = 0.6952, which are significantly different

than the original 0.4 and 0.45.

For cascade realization, the poles 0.4 and 0.45 are quantized to 0.375 and 0.5, respectively. The

quantized cascade filter is expressed as

H ′′(z) = 1

1 − 0.375z−1
· 1

1 − 0.5z−1
.

The poles of H ′′(z) are z = 0.375 and z = 0.5. Therefore, the poles of cascade realization are closer to

the desired H (z) at z = 0.4 and z = 0.45.

Rounding of 2B-bit product to B bits introduces the roundoff noise. The order of cascade sections

influences the output noise power due to roundoff. In addition, when digital filters are implemented using

fixed-point processors, we have to optimize the ratio of signal power to the power of the quantization

noise. This involves a trade-off with the probability of arithmetic overflow. The most effective technique

in preventing overflow is to use scaling factors at various nodes within the filter sections. The optimization

is achieved by keeping the signal level as high as possible at each section without getting overflown.

Example 5.18: Consider the first-order IIR filter with scaling factor α described by

H (z) = α

1 − az−1
,

where stability requires that |a| < 1. The goal of including the scaling factor α is to ensure that the

values of y(n) will not exceed 1 in magnitude. Suppose that x(n) is a sinusoidal signal of frequency

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

IMPLEMENTATION CONSIDERATIONS 275

ω0, the amplitude of the output is a factor of |H (ω0)|. For such signals, the gain of H (z) is

max
ω

|H (ω)| = α

1 − |a| .

Thus, if the signals being considered are sinusoidal, a suitable scaling factor is given byα < 1 − |a|.

5.5.3 MATLAB Implementations

The MATLAB function filter implements the IIR filter defined by Equation (5.23). The basic forms

of this function are

y = filter(b, a, x);
y = filter(b, a, x, zi);

The first element of vector a, the first coefficient a(1), is assumed to be 1. The input vector is x, and the

filter output vector is y. At the beginning, the initial conditions (data in the signal buffers) are set to zero.

However, they can be specified in the vector zi to reduce transients.

Example 5.19: Given a signal consists of sinewave (150 Hz) corrupted by white noise with SNR

= 0 dB, and the sampling rate is 1000 Hz. To enhance the sinewave, we need a bandpass filter

with passband centered at 150 Hz. Similar to Example 5.11, we design a bandpass filter with the

following MATLAB functions:

Wp = [130 170]/500; % Passband edge frequencies
Ws = [100 200]/500; % Stopband edge frequencies
Rp = 3; % Passband ripple
Rs = 40; % Stopband ripple
[N, Wn] = buttord(Wp, Ws, Rp, Rs); % Find the filter order
[b, a] = butter(N, Wn); % Design an IIR filter

We implement the designed filter using the following function:

y = filter(b, a, xn); % IIR filtering

We then plot the input and output signals in thexn andy vectors, which are displayed in Figure 5.21.

The complete MATLAB script for this example is given in example5_19.m.

MATLAB Signal Processing Toolbox also provides the second-order (biquad) IIR filtering function

with the following syntax:

y = sosfilt(sos,x)

This function applies the IIR filter H (z) with second-order sections sos as defined in Equation (5.44) to

the vector x.

Example 5.20: In Example 5.19, we design a bandpass filter and implement the direct-form IIR

filter using the function filter. In this example, we convert the direct-form filter to cascade of

second-order sections using the following function:

sos = tf2sos(b,a);

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

276 DESIGN AND IMPLEMENTATION OF IIR FILTERS

4

2

0

0 50 100 150 200 250 300

A
m

p
li

tu
d
e

−2

−4

2

1

0

0 50 100 150

Time index n

200 250 300

A
m

p
li

tu
d
e

−1

−2

Figure 5.21 Input (top) and output (bottom) signals of bandpass filter

The sos matrix is shown as follows:

sos =
0.0000 0.0000 0.0000 1.0000 -0.9893 0.7590
1.0000 2.0000 1.0000 1.0000 -1.0991 0.7701
1.0000 1.9965 0.9965 1.0000 -0.9196 0.8119
1.0000 -2.0032 1.0032 1.0000 -1.2221 0.8350
1.0000 -1.9968 0.9968 1.0000 -0.9142 0.9257
1.0000 -2.0000 1.0000 1.0000 -1.3363 0.9384

We then perform the IIR filtering using the following function:

y = sosfilt(sos,xn);

The complete MATLAB program for this example is example5_20.m.

The Signal Processing Tool (SPTool) supports the user to analyze signals, design and analyze filters,

perform filtering, and analyze the spectra of signals. We can open this tool by typing

sptool

in the MATLAB command window. The SPTool main window is shown in Figure 5.22.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

IMPLEMENTATION CONSIDERATIONS 277

Figure 5.22 SPTool window

There are four windows that can be accessed within the SPTool:

1. The Signal Browser is used to view the input signals. Signals from the workspace or a file can be

loaded into the SPTool by clicking File → Import. The Import to SPTool window allows users to

select the data from either a file or a workspace. For example, after we execute example5_19.m,

our workspace contains noisy sinewave in vector xn with sampling rate 1000 Hz. We import it by

entering appropriate parameters in the dialog box. To view the signal, simply highlight the signal, and

click View. The Signal Browser window is shown in Figure 5.23, which allows the user to zoom-in

the signal, read the data values via markers, display format, and even play the selected signal using

the computer’s speakers.

2. The Filter Designer is used to design filters. Users can click the New icon to start a new filter, or

the Edit icon to open an existing filter. We can design filters using different filter design algorithms.

For example, we design an IIR filter displayed in Figure 5.24 that uses the same specifications as

Example 5.19. In addition, we can also design a filter using the Pole/Zero Editor to graphically

place the poles and zeros in the z-plane.

3. Once the filter has been designed, the frequency specification and other filter characteristics can be

verified using the Filter Viewer. Selecting the name of the designed filter, and clicking the View
icon under the Filter column will open the Filter Viewer window. We can analyze the filter in terms

of its magnitude response, phase response, group delay, zero-pole plot, impulse response, and step

response.

After the filter characteristics have been verified, we can perform the filtering operation of the

selected input signal. Click the Apply button, the Apply Filter window will be displayed, which

allows the user to specify the file name of the output signal.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

278 DESIGN AND IMPLEMENTATION OF IIR FILTERS

Figure 5.23 Signal browser window

Figure 5.24 Design of bandpass filter

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

PRACTICAL APPLICATIONS 279

Figure 5.25 Spectrum viewer window for both input and output signals

4. We can compute the spectrum by selecting the signal, and then clicking the Create button in the

Spectra column. Figure 5.25 is the display of the Spectrum Viewer. At the left-bottom corner of

the window, click Apply to generate the spectrum of the selected signal. We repeat this process for

both input and output signals. To view the spectra of input and output signals, select both spect1

(spectrum of input) and spect2 (spectrum of output), and click the View button in the Spectra
column to display them (see Figure 5.25).

5.6 Practical Applications

In this section, we briefly introduce the application of IIR filtering for signal generation and audio

equalization.

5.6.1 Recursive Resonators

Consider a simple second-order filter whose frequency response is dominated by a single peak at frequency

ω0. To make a peak at frequency ω = ω0, we place a pair of complex-conjugated poles at

pi = rpe± jω0 , (5.53)

where the radius 0 < rp < 1. The transfer function of this IIR filter can be expressed as

H (z) = A(
1 − rpe jω0 z−1

) (
1 − rpe− jω0 z−1

) = A

1 − 2rp cos (ω0) z−1 + r 2
p z−2

= A

1 + a1z−1 + a2z−2
, (5.54)

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

280 DESIGN AND IMPLEMENTATION OF IIR FILTERS

x(n)
A

z−1

z−1

2rp cosω0

y(n)

−rp
2

Figure 5.26 Signal-flow graph of second-order resonator filter

where A is a fixed gain used to normalize the filter to unity at ω0 such that |H (ω0)| = 1. The direct-form

realization is shown in Figure 5.26.

The magnitude response of this normalized filter is given by

|H (ω0)|z=e− jω0 = A

|(1 − rpe jω0 e− jω0)(1 − rpe− jω0 e− jω0)| = 1. (5.55)

This condition can be used to obtain the gain

A = |(1 − rp)(1 − rpe−2 jω0)| = (1 − rp)
√

1 − 2rp cos(2ω0) + r 2
p . (5.56)

The 3-dB bandwidth of the filter is equivalent to

|H (ω)|2 = 1

2
|H (ω0)|2 = 1

2
. (5.57)

There are two solutions on both sides of ω0, and the bandwidth is the difference between these two

frequencies. When the poles are close to the unit circle, the BW is approximated as

BW ∼= 2(1 − rp). (5.58)

This design criterion determines the value of rp for a given BW. The closer rp is to 1, the sharper the peak.

From Equation (5.54), the I/O equation of resonator is given by

y(n) = Ax(n) − a1 y(n − 1) − a2 y(n − 2), (5.59)

where

a1 = −2rp cos ω0 and a2 = r 2
p . (5.60)

This recursive oscillator is very useful for generating sinusoidal waveforms. This method uses a marginally

stable two-pole resonator where the complex-conjugated poles lie on the unit circle (rp = 1). This recur-

sive oscillator is the most efficient way for generating a sinusoidal waveform, particularly if the quadrature

signals (sine and cosine signals) are required.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

PRACTICAL APPLICATIONS 281

The Filter Design Toolbox provides the function iirpeak for designing IIR peaking filter with the

following syntax:

[NUM, DEN] = iirpeak(Wo, BW);

This function designs a second-order resonator with the peak at frequency Wo and a 3-dB bandwidth BW.

In addition, we can use [NUM,DEN] = iirpeak(Wo,BW,Ab) to design a peaking filter with a bandwidth

of BW at a level Ab in decibels.

Example 5.21: Design resonators operating at a sampling rate of 10 kHz having peaks at 1 and

2.5 kHz, and a 3-dB bandwidth of 500 and 200 Hz, respectively. These filters can be designed

using the following MATLAB script (example5_21.m, adapted from the Help menu):

Fs = 10000; % Sampling rate
Wo = 1000/(Fs/2); % First filter peak frequency
BW = 500/(Fs/2); % First filter bandwidth
W1 = 2500/(Fs/2); % Second filter peak frequency
BW1 = 200/(Fs/2); % Second filter bandwidth
[b,a] = iirpeak(Wo,BW); % Design first filter
[b1,a1] = iirpeak(W1,BW1); % Design second filter
fvtool(b,a,b1,a1); % Analyze both filters

The magnitude responses of both filters are shown in Figure 5.27. In the FVTool window, we select

Analysis→Pole/Zero Plot to display poles and zeros of both filters, which are shown in Figure 5.28. It

is clearly shown that the second filter (peak at 2500 Hz) has a narrower bandwidth (200 Hz), and thus its

poles are closer to the unit circle.

0
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

0.1 0.2 0.3 0.4 0.5

Normalized frequency (×π rad/sample)

Magnitude response (dB)

M
ag

n
it

u
d
e

(d
B

)

0.6 0.7 0.8 0.9

Figure 5.27 Magnitude responses of resonators

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

282 DESIGN AND IMPLEMENTATION OF IIR FILTERS

−1.5 −1 −0.5 0

Real part

Pole/zero plot

−1

−0.8

−0.6

−0.4

−0.2

0

Im
ag

in
ar

y
 p

ar
t

0.2

0.4

0.6

0.8

1

0.5 1 1.5

Figure 5.28 Pole/zero plot of resonators

5.6.2 Recursive Quadrature Oscillators

Consider two causal impulse responses

hc(n) = cos (ω0n) u(n) (5.61a)

and

hs(n) = sin (ω0n) u(n), (5.61b)

where u(n) is the unit step function. The corresponding system transfer functions are

Hc(z) = 1 − cos(ω0)z−1

1 − 2 cos(ω0)z−1 + z−2
(5.62a)

and

Hs(z) = sin(ω0)z−1

1 − 2 cos(ω0)z−1 + z−2
. (5.62b)

A two-output recursive structure with these system transfer functions is illustrated in Figure 5.29. The

implementation requires just two data memory locations and two multiplications per sample. The output

equations are

yc(n) = w(n) − cos(ω0)w(n − 1) (5.63a)

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

PRACTICAL APPLICATIONS 283

sin(ω0)cos(ω0)2

+

−

w(n − 1)

w(n − 2)

w(n) +

−
yc(n)

ys(n)

z−1

z−1

Figure 5.29 Recursive quadrature oscillators

and

ys(n) = sin(ω0)w(n − 1), (5.63b)

where w(n) is an internal state variable that is updated as

w(n) = 2 cos(ω0)w(n − 1) − w(n − 2). (5.64)

An impulse signal Aδ(n) is applied to excite the oscillator, which is equivalent to presetting the

following initial conditions:

w(−2) = −A and w(−1) = 0. (5.65)

The waveform accuracy is limited primarily by the DSP processor wordlength. The quantization of the

coefficient cos (ω0) will cause the actual output frequency to differ slightly from the ideal frequency ω0.

For some applications, only a sinewave is required. From Equations (5.59) and (5.60) using the

conditions that x(n) = Aδ(n) and rp = 1, we can obtain the sinusoidal function

ys(n) = Ax(n) − a1 ys(n − 1) − a2 ys(n − 2)

= 2 cos(ω0)ys(n − 1) − ys(n − 2) (5.66)

with the initial conditions

ys(−2) = −A sin(ω0) and ys(−1) = 0. (5.67)

The oscillating frequency defined by Equation (5.66) is determined from its coefficient a1 and its

sampling frequency fs, and can be expressed as

f = cos−1

(|a1|
2

)
fs

2π
Hz, (5.68)

where the coefficient |a1| ≤ 2.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

284 DESIGN AND IMPLEMENTATION OF IIR FILTERS

Example 5.22: The sinewave generator using resonator can be realized from the recursive compu-

tation given in Equation (5.66). The implementation using the TMS320C55x assembly language

is listed as follows:

mov cos_w,T1
mpym *AR1+,T1,AC0 ; AC0=cos(w)*y[n-1]
sub *AR1-<<#16,AC0,AC1 ; AC1=cos(w)*y[n-1]-y[n-2]
add AC0,AC1 ; AC1=2*cos(w)*y[n-1]-y[n-2]

|| delay *AR1 ; y[n-2]=y[n-1]
mov rnd(hi(AC1)),*AR1 ; y[n-1]=y[n]
mov rnd(hi(AC1)),*AR0+ ; y[n]=2*cos(w)*y[n-1]-y[n-2]

|| mpym *AR1+,T1,AC0 ; AC0=cos(w)*y[n-1]

In the program, AR1 is the pointer for the signal buffer. The output sinewave samples are stored in

the output buffer pointed by AR0. Due to the limited wordlength, the quantization error of fixed-

point DSP processors such as the TMSC320C55x could be severe for the recursive computation.

5.6.3 Parametric Equalizers

A simple parametric equalizer filter can be designed from a resonator given in Equation (5.54) by adding

a pair of zeros near the poles at the same angles as the poles; that is, placing the complex-conjugated

poles at

zi = rze
± jω0 , (5.69)

where 0 < rz < 1. Thus, the transfer function given in Equation (5.54) becomes

H (z) =
(
1 − rze jω0 z−1

) (
1 − rze− jω0 z−1

)(
1 − rpe jω0 z−1

) (
1 − rpe− jω0 z−1

)
= 1 − 2rz cos (ω0) z−1 + r 2

z z−2

1 − 2rp cos (ω0) z−1 + r 2
p z−2

= 1 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2
. (5.70)

When rz < rp, the pole dominates over the zero because it is closer to the unit circle than the zero does.

Thus, it generates a peak in the frequency response at ω = ω0. When rz > rp, the zero dominates over the

pole, thus providing a dip in the frequency response. When the pole and zero are very close to each other,

the effects of the poles and zeros are reduced, resulting in a flat response. Therefore, Equation (5.70)

provides a boost if rz < rp, or a cut if rz > rp. The amount of gain and attenuation is controlled by the differ-

ence between rp and rz. The distance from rp to the unit circle will determine the bandwidth of the equalizer.

Example 5.23: Design a parametric equalizer with a peak at frequency 1500 Hz, and the sampling

rate is 10 kHz. The parameters rz = 0.8 and rp = 0.9. The MATLAB script (example5_23.m) is

listed as follows:

rz=0.8; rp=0.9;
b=[1, -2*rz*cos(w0), rz*rz];
a=[1, -2*rp*cos(w0), rp*rp];

Since rz < rp, this filter provides a boost.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 285

Table 5.2 List of C function for implementing a floating-point, direct-form I IIR filter

void floatPoint_IIR(double in, double *x, double *y,
double *b, short nb, double *a, short na)

{
double z1,z2;
short i;

for(i=nb-1; i>0; i--) // Update the buffer x[]
x[i] = x[i-1];

x[0] = in; // Insert new data to x[0]
for(z1=0, i=0; i<nb; i++) // Filter x[] with coefficients in b[]

z1 += x[i] * b[i];
for(i=na-1; i>0; i--) // Update y buffer

y[i] = y[i-1];
for(z2=0, i=1; i<na; i++) // Filter y[] with coefficients in a[]

z2 += y[i] * a[i];
y[0] = z1 - z2; // Place the result into y[0]

}

5.7 Experiments and Program Examples

This section will demonstrate the IIR filter design and implementation in MATLAB, C, and the

TMS320C55x assembly programs using the simulator and DSK.

5.7.1 Floating-Point Direct-Form I IIR Filter

The direct-form I realization of IIR filter given by Equation (5.31) can be implemented by the C function

listed in Table 5.2. The input and output signal buffers are x and y, respectively. The current input data

is passed to the function via the variable in, and the filter output is saved on the top of y buffer as

y[0]. The IIR filter coefficients are stored in the arrays a and b with lengths na and nb, respectively.

This IIR filter function uses a sample-by-sample processing with 8 kHz sampling rate. The input signal

contains three sinusoids with frequencies 800, 1800, and 3300 Hz. The IIR bandpass filter is designed

with center frequency at 1800 Hz, passband bandwidth of 836 Hz, and stopband attenuation of 60 dB,

thus the filter attenuates the 800 and 3300 Hz sinusoidal components. Table 5.3 lists the files used for this

experiment.

Table 5.3 File listing for experiment exp5.7.1_floatPoint_directIIR

Files Description

floatPoint_directIIRTest.c C function for testing floating-point IIR filter

floatPoint_directIIR.c C function for floating-point IIR filter

floatPointIIR.h C header file for IIR experiment

floatPoint_direcIIR.pjt DSP project file

floatPoint_direcIIR.cmd DSP linker command file

input.pcm Data file

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

286 DESIGN AND IMPLEMENTATION OF IIR FILTERS

Procedures of the experiment are listed as follows:

1. Open the project floatPoint_directIIR.pjt, and rebuild the floating-point IIR filter project.

2. Run the project to filter the input data located in the data directory.

3. Validate the output signal to ensure that the 800 and 3300 Hz frequency components are reduced by

the 60 dB.

5.7.2 Fixed-Point Direct-Form I IIR Filter

The fixed-point implementation can be obtained by modifying the floating-point IIR filter from the

previous experiment. Data type long must be used for integer multiplication. For fractional integer

implementation, the product of the multiplication resides in the upper portion of the long variables. The

fixed-point IIR filter function is listed in Table 5.4. Table 5.5 lists the files used for this experiment.

Procedures of the experiment are listed as follows:

1. Open the project file fixedPoint_direcIIR.pjt and rebuild the project.

2. Run the project using the input signal in the data directory.

Table 5.4 Fixed-point implementation of direct-form I IIR filter

void fixPoint_IIR(short in, short *x, short *y,
short *b, short nb, short *a, short na)

{
long z1,z2,temp;
short i;

for(i=nb-1; i>0; i--) // Update the buffer x[]
x[i] = x[i-1];

x[0] = in; // Insert new data to x[0]
for(z1=0, i=0; i<nb; i++) // Filter x[] with coefficients in b[]
{

temp = (long)x[i] * b[i];
temp += 0x400;
z1 += (short)(temp>>11);

}
for(i=na-1; i>0; i--) // Update y[] buffer

y[i] = y[i-1];
for(z2=0, i=1; i<na; i++) // Filter y[] with coefficients in a[]
{

temp = (long)y[i] * a[i];
temp += 0x400;
z2 += (short)(temp>>11);

}
y[0] = (short)(z1 - z2); // Place the result into y[0]

}

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 287

Table 5.5 File listing for experiment exp5.7.2_fixedPoint_directIIR

Files Description

fixPoint_directIIRTest.c C function for testing fixed-point IIR filter experiment

fixPoint_directIIR.c C function for fixed-point IIR filter

fixPointIIR.h C header file for IIR experiment

fixedPoint_direcIIR.pjt DSP project file

floatPoint_direcIIR.cmd DSP linker command file

input.pcm Data file

3. Validate the output signal to ensure that the 800 and 3300 Hz sinusoidal components are reduced by

60 dB.

4. Compare the output signal with previous floating-point output signal to check the performance

difference.

5. Profile the fixed-point IIR filter performance.

5.7.3 Fixed-Point Direct-Form II Cascade IIR Filter

The cascade structure shown in Figure 5.8 can be expressed as

w(n) = x(n) − a1w(n − 1) − a2w(n − 2).

y(n) = b0w(n) + b1w(n − 1) + b2w(n − 2) (5.71)

The C implementation of cascading K second-order sections is given as follows:

temp = input[n];
for (k=0; k<K; k++)
{

w[k][0] = temp-a[k][1]*w[k][1]-a[k][2]*w[k][2];
temp = b[k][0]*w[k][0]+b[k][1]*w[k][1]+b[k][2]*w[k][2];
w[k][2] = w[k][1]; /* w(n-2) <- w(n-1) */
w[k][1] = w[k][0]; /* w(n-1) <- w(n) */

}
output[n] = temp;

In the code, a[][] and b[][] are filter coefficient matrices, and w[][] is the signal buffer

for wk(n − m), m = 0, 1, 2. The row index k represents the kth second-order IIR filter section, and the

column index points at the filter coefficients or signal samples in the buffers.

As mentioned earlier, the zero-overhead repeat loops, multiply–accumulate instructions, and circular

addressing modes are three important features of modern DSP processors. To better understand these

features, we write the function of second-order IIR filter with cascade structure in fixed-point C using

the data pointers to simulate the circular addressing modes. We also arrange the C statements to mimic

the DSP multiply–accumulate operations. The fixed-point C program listed in Table 5.6 implements an

IIR filter with Ns second-order sections in cascade form.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

288 DESIGN AND IMPLEMENTATION OF IIR FILTERS

Table 5.6 Fixed-point implementation of direct-form II IIR filter

void cascadeIIR(short *x, short Nx, short *y, short *coef, short Ns,
short *w)

{
short i,j,n,m,k,l;
short temp16;
long w_0,temp32;

m=Ns*5; // Setup circular buffer coef[]
k=Ns*2; // Setup circular buffer w[]

for (j=0,l=0,n=0; n<Nx; n++) // IIR filtering
{

w_0 = (long)x[n]<<12; // Scale input to prevent overflow
for (i=0; i<Ns; i++)
{

temp32 = (long)(*(w+l)) * *(coef+j); j++; l=(l+Ns)%k;
w_0 -= temp32<<1;
temp32 = (long)(*(w+l)) * *(coef+j); j++;
w_0 -= temp32<<1;
w_0 += 0x4000; // Rounding
temp16 = *(w+l);
*(w+l) = (short)(w_0>>15); // Save in Q15 format
w_0 = (long)temp16 * *(coef+j); j++;
w_0 <<= 1;
temp32 = (long)*(w+l) * *(coef+j); j++; l=(l+Ns)%k;
w_0 += temp32<<1;
temp32 = (long)*(w+l) * *(coef+j); j=(j+1)%m; l=(l+1)%k;
w_0 += temp32<<1;
w_0 += 0x800; // Rounding

}
y[n] = (short)(w_0>>12); // Output in Q15 format

}
}

The coefficient and signal buffers are configured as circular buffers shown in Figure 5.30. The signal

buffer contains two elements, wk(n − 1) and wk(n − 2), for each second-order section. The pointer

address is initialized pointing at the first sample w1(n − 1) in the buffer. The coefficient vector is arranged

with five coefficients (a1k, a2k , b2k, b0k , and b1k) per section with the coefficient pointer initialized to point

at the first coefficient, a11. The circular pointers are updated by j=(j+1)%m and l=(l+1)%k, where m

and k are the sizes of the coefficient and signal buffers, respectively.

The test function reads in the filter coefficients header file, fdacoefsMATLAB.h, generated by the

FDATool directly. Table 5.7 lists the files used for this experiment, where the test input data file in.pcm

consists of three frequencies, 800, 1500, and 3300 Hz with the 8 kHz sampling rate.

Procedures of the experiment are listed as follows:

1. Open the project file fixedPoint_cascadeIIR.pjt and rebuild the project.

2. Run the cascade filter experiment to filter the input signal in the data directory.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 289

Coefficient
buffer C[]

Signal
buffer w[]

Offset =
Number of
sections

Section 1
coefficients

Section 2
coefficients

Section K
coefficients

a11

a21

b21

b01

b11

a12

a22

b22

b02

b12

a1K

a2K

b2K

b0K

b1K

w1(n − 1)

w2(n − 1)

wK(n − 1)

wK(n − 2)

w1(n − 2)

w2(n − 2)

:

:

:

:

:

:

Figure 5.30 IIR filter coefficient and signal buffers configuration

3. Validate the output data to ensure that the 800 and 3300 Hz sinusoidal components are reduced by

the 60 dB.

4. Profile the fixed-point direct-form II cascade IIR filter performance.

5.7.4 Implementation Using DSP Intrinsics

The C55x C intrinsics can be used as any C function and they produce assembly language statements

directly in compile time. The intrinsics are specified with a leading underscore and can be accessed

Table 5.7 File listing for experiment exp5.7.3_fixedPoint_cascadeIIR

Files Description

fixPoint_cascadeIIRTest.c C function for testing cascade IIR filter experiment

fixPoint_cascadetIIR.c C function for fixed-point second-order IIR filter

cascadeIIR.h C header file for cascade IIR experiment

fdacoefsMATLAB.h FDATool generated C header file

tmwtypes.h Data type definition file for MATLAB C header file

fixedPoint_cascadeIIR.pjt DSP project file

fixedPoint_cascadeIIR.cmd DSP linker command file

in.pcm Data file

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

290 DESIGN AND IMPLEMENTATION OF IIR FILTERS

by calling them as C functions. For example, the multiply–accumulation operation, z+=x*y, can be

implemented by the following intrinsic:

short x,y;
long z;
z = _smac(z,x,y); // Perform signed z=z+x*y

This intrinsic performs the following assembly instruction:

macm Xmem,Ymem,Acx; Perform signed z=z+x*y

Table 5.8 lists the intrinsics supported by the TMS320C55x C compiler.

We will modify the previous fixed-point C function for cascade IIR filter using C intrinsics. Table 5.9

lists the implementation of the fixed-point IIR filter with coefficients in Q14 format. For the modulo

operation, we replaced the sections, k, with an and(&) operation since the number k is a power-of-2

number.

The test function reads in the filter coefficients from the C header file fdacoefsMATLAB.h generated

by the FDATool. Table 5.10 lists the files used for this experiment, where the input data file in.pcm

consists of three frequencies, 800, 1500, and 3300 Hz with the 8 kHz sampling rate.

Procedures of the experiment are listed as follows:

1. Open the project file intrisics_implementation.pjt and rebuild the project.

2. Run the experiment to filter the test signal in the data directory.

3. Validate the output signal to ensure that the 800 and 3300 Hz sinusoidal components are attenuated

by 60 dB.

4. Profile the code and compare the result with the performance obtained in previous experiment.

5.7.5 Implementation Using Assembly Language

The fixed-point C implementation of an IIR filter can be more efficient using the C55x multiply–

accumulator instruction with circular buffers. The C55x assembly implementation of the second-order,

direct-form II IIR filter given in Equation (5.71) can be written as

mov *AR0+<<#12,AC0 ; AC0 = x(n) with scale down
masm *AR3+,*AR7+,AC0 ; AC0=AC0-a1*wi(n-1)
masm T3=*AR3,*AR7+,AC0 ; AC0=AC0-a2*wi(n-2)
mov hi(AC0),*AR3- ; wi(n-2)=wi(n)
mpym *AR7+,T3,AC0 ; AC0=b2*wi(n-2)
macm *AR3+,*AR7+,AC0 ; AC0=AC0+bi0*wi(n-1)
macm *AR3,*AR7+,AC0 ; AC0=AC0+bi1*wi(n)
mov hi(AC0),*AR1+ ; Store filter result

The assembly program contains three data pointers and a coefficient pointer. The auxiliary register AR0

is the input buffer pointer pointing to the input sample. The filtered sample is rounded and stored in the

output buffer pointed by AR1. The signal buffer wi (n) is pointed by AR3. The filter coefficients pointer

AR7 and signal pointer AR3 can be efficiently implemented using circular addressing mode.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 291

Table 5.8 Intrinsics supported by the TMS320C55x C compiler

C compiler intrinsics Description

short _sadd(short src1, short src2); Adds two 16-bit integers with SATA set, producing a

saturated 16-bit result

long _lsadd(long src1, long src2); Adds two 32-bit integers with SATD set, producing a

saturated 32-bit result

short _ssub(short src1, short src2); Subtracts src2 from src1 with SATA set, producing a

saturated 16-bit result

long _lssub(long src1, long src2); Subtracts src2 from src1 with SATD set, producing a

saturated 32-bit result

short _smpy(short src1, short src2); Multiplies src1 and src2 and shifts the result left by 1.

Produces a saturated 16-bit result. (SATD and FRCT

are set.)

long _lsmpy(short src1, short src2); Multiplies src1 and src2 and shifts the result left by 1.

Produces a saturated 32-bit result. (SATD and FRCT

are set.)

long _smac(long src, short op1,
short op2);

Multiplies op1 and op2, shifts the result left by 1, and

adds it to src. Produces a saturated 32-bit result.

(SATD, SMUL, and FRCT are set.)

long _smas(long src, short op1,
short op2);

Multiplies op1 and op2, shifts the result left by 1, and

subtracts it from src. Produces a 32-bit result. (SATD,

SMUL, and FRCT are set.)

short _abss(short src); Creates a saturated 16-bit absolute value.

_abss(0x8000) => 0x7FFF (SATA set)

long _labss(long src); Creates a saturated 32-bit absolute value.

_labss(0x8000000) => 0x7FFFFFFF

(SATD set)

short _sneg(short src); Negates the 16-bit value with saturation

_sneg(0xffff8000) => 0x00007FFF

long _lsneg(long src); Negates the 32-bit value with saturation.

_lsneg(0x80000000) => 0x7FFFFFFF

short _smpyr(short src1, short
src2);

Multiplies src1 and src2, shifts the result left by 1, and

rounds by adding 215 to the result. (SATD and FRCT

are set.)

short _smacr(long src, short op1,
short op2);

Multiplies op1 and op2, shifts the result left by 1, adds

the result to src, and then rounds the result by adding

215. (SATD, SMUL, and FRCT are set)

short _smasr(long src, short op1,
short op2);

Multiplies op1 and op2, shifts the result left by 1,

subtracts the result from src, and then rounds the

result by adding 215. (SATD, SMUL, and FRCT set.)

short _norm(short src); Produces the number of left shifts needed to normalize

src.
short _lnorm(long src); Produces the number of left shifts needed to normalize

src.
short _rnd(long src); Rounds src by adding 215. Produces a 16-bit saturated

result. (SATD set)

continues overleaf

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

292 DESIGN AND IMPLEMENTATION OF IIR FILTERS

Table 5.8 (continued)

C compiler intrinsics Description

short _sshl(short src1, short src2); Shifts src1 left by src2 and produces a 16-bit result.

The result is saturated if src2 is less than or equal to

8. (SATD set)

long _lsshl(long src1, short src2); Shifts src1 left by src2 and produces a 32-bit result.

The result is saturated if src2 is less than or equal to

8. (SATD set)

short _shrs(short src1, short src2); Shifts src1 right by src2 and produces a 16-bit result.

Produces a saturated 16-bit result. (SATD set)

long _lshrs(long src1, short src2); Shifts src1 right by src2 and produces a 32-bit result.

Produces a saturated 32-bit result. (SATD set)

short _addc(short src1, short src2); Adds src1, src2, and carry bit and produces a 16-bit

result.

long _laddc(long src1, short src2); Adds src1, src2, and carry bit and produces a 32-bit

result.

This IIR filtering code can be easily modified for performing either a sample-by-sample or block

processing. When the IIR filter function is called, the temporary register T0 contains the number of

input samples to be filtered, and T1 contains the number of second-order sections. The IIR filter sections

are implemented by the inner loop, and the outer loop is used for processing samples in blocks. The

Table 5.9 Fixed-point implementation of direct-form II IIR filter using intrinsics

void intrinsics_IIR(short *x, short Nx, short *y,
short *coef, short Ns, short *w)

{
short i,j,n,m,k,l;
short temp16;
long w_0;

m=Ns*5; // Setup circular buffer coef[]
k=Ns*2-1; // Setup circular buffer w[]

for (j=0,l=0,n=0; n<Nx; n++) // IIR filtering
{

w_0 = (long)x[n]<<12; // Scale input to prevent overflow
for (i=0; i<Ns; i++)
{

w_0 = _smas(w_0,*(w+l),*(coef+j)); j++; l=(l+Ns)&k;
w_0 = _smas(w_0,*(w+l),*(coef+j)); j++;
temp16 = *(w+l);
*(w+l) = (short)(w_0>>15); // Save in Q15 format
w_0 = _lsmpy(temp16,*(coef+j)); j++;
w_0 = _smac(w_0,*(w+l),*(coef+j)); j++; l=(l+Ns)&k;
w_0 = _smac(w_0,*(w+l),*(coef+j)); j=(j+1)%m; l=(l+1)&k;

}
y[n] = (short)(w_0>>12); // Output in Q15 format

}
}

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 293

Table 5.10 File listing for experiment exp5.7.4_intrisics_implementation

Files Description

intrinsics_IIRTest.c C function for testing IIR filter intrinsics experiment

intrinsics_IIR.c Intrinsics implementation of second-order IIR filter

intrinsics_IIR.h C header file for intrinsics IIR experiment

fdacoefsMATLAB.h FDATool generated C header file

tmwtypes.h Data type definition file for MATLAB C header file

intrisics_implementation.pjt DSP project file

intrisics_implementation.cmd DSP linker command file

in.pcm Data file

IIR filter coefficients are represented using Q14 format. To prevent the overflow, the input sample is

scaled down as well. To compensate the Q14 formatted coefficients and scaled down input samples,

the filter result y(n) is scaled up to form the Q15 format and stored with rounding. Temporary register

T3 is used to hold the second element wi (n − 2) of the signal buffer when the buffer update is taking

place.

For a K -section IIR filter, the signal buffer elements are arranged in such a way that two elements of

each section are separated by K – 1 elements. The filter coefficients and the signal samples are arranged

for circular buffer as shown in Figure 5.30. The complete assembly language implementation of the IIR

filter in cascade second-order sections is listed in Table 5.11.

Table 5.12 lists the files used for this experiment. The test function reads in the filter coefficients

generated by the FDATool, which are saved in C header file fdacoefsMATLAB.h.

Procedures of the experiment are listed as follows:

1. Open the project file asm_implementation.pjt and rebuild the project.

2. Run the experiment to filter the input signal in data directory.

3. Validate the output signal to ensure that the 800 and 3300 Hz sinusoidal components are attenuated

by 60 dB.

4. Profile this experiment and compare the result with previous experiments.

5.7.6 Real-Time Experiments Using DSP/BIOS

In Chapter 4, we have used DSP/BIOS for real-time FIR filtering. In this experiment, we will apply

the same process to create a new DSP/BIOS project for IIR filtering. The DSP/BIOS provides addi-

tional tools for code development and debug. One of the useful tools is the CPU load graph. The CPU

loading can be plotted in real time to monitor the real-time performance of DSP system. This fea-

ture is especially useful for multithread system when multiple threads sharing the CPU concurrently.

Another useful graphical tool is the DSP execution graph. The DSP execution graph shows several

DSP/BIOS tasks, including hardware interrupts (HWI), software interrupts (SWI), tasks (TSK), and

semaphores (SEM). The IIR filtering experiment execution graph is shown in Figure 5.31. Our exper-

iment has one task – swiAudioProcess. This task is software interrupt based and has the highest

priority.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

294 DESIGN AND IMPLEMENTATION OF IIR FILTERS

Table 5.11 Assembly language implementation of direct-form II IIR filter

.global _asmIIR

.sect ".text:iir_code"

_asmIIR
pshm ST1_55 ; Save ST1, ST2, ST3
pshm ST2_55
pshm ST3_55
psh T3 ; Save T3
pshboth XAR7 ; Save AR7
or #0x340,mmap(ST1_55) ; Set FRCT, SXMD, SATD
bset SMUL ; Set SMUL
sub #1,T0 ; Number of samples - 1
mov T0,BRC0 ; Set up outer loop counter
sub #1,T1,T0 ; Number of sections -1
mov T0,BRC1 ; Set up inner loop counter
mov T1,T0 ; Set up circular buffer sizes
sfts T0,#1
mov mmap(T0),BK03 ; BK03=2*number of sections
sfts T0,#1
add T1,T0
mov mmap(T0),BK47 ; BK47=5*number of sections
mov mmap(AR3),BSA23 ; Initial signal buffer base
mov mmap(AR2),BSA67 ; Initial coefficient base
amov #0,AR3 ; Initial signal buffer entry
amov #0,AR7 ; Initial coefficient entry
or #0x88,mmap(ST2_55)
mov #1,T0 ; Used for shift left

|| rptblocal sample_loop-1 ; Start IIR filtering loop
mov *AR0+ <<#12,AC0 ; AC0 = x(n)/8 (i.e. Q12)

|| rptblocal filter_loop-1 ; Loop for each section
masm *(AR3+T1),*AR7+,AC0 ; AC0-=ai1*wi(n-1)
masm T3=*AR3,*AR7+,AC0 ; AC0-=ai2*di(n-2)
mov rnd(hi(AC0<<T0)),*AR3 ; wi(n-2)=wi(n)

|| mpym *AR7+,T3,AC0 ; AC0+=bi2*wi(n-2)
macm *(AR3+T1),*AR7+,AC0 ; AC0+=bi0*wi(n-1)
macm *AR3+,*AR7+,AC0 ; AC0+=bi1*wi(n)

filter_loop
mov rnd(hi(AC0<<#4)),*AR1+ ; Store result in Q15 format

sample_loop
popboth XAR7 ; Restore AR7
pop T3 ; Restore T3
popm ST3_55 ; Restore ST1, ST2, ST3
popm ST2_55
popm ST1_55
ret

.end

The DSP/BIOS example code uses buffered pipe manager (PIP) for data exchange between threads.

The PIP operation is frame based. The important parameters for PIP are:

bufseg – memory segment for the PIP data;

bufalign – data alignment in memory;

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 295

Table 5.12 File listing for experiment exp5.7.5_asm_implementation

Files Description

asmIIRTest.c C function for testing IIR filter assembly experiment

asmIIR.asm Assembly implementation of second-order IIR filter

asmIIR.h Header file for assembly IIR experiment

fdacoefsMATLAB.h FDATool generated C header file

tmwtypes.h Data type definition file for MATLAB C header file

asm_implementation.pjt DSP project file

asm_implementation.cmd DSP linker command file

in.pcm Data file

numframes – number of frames;

framesize – Length of the frame.

monitor – Monitoring the PIP reader and writer for status module.

Each data transfer should have its own pipe. Each pipe should have its own reader for receiving data

and writer for transmit data. Usually, one end of the pipe will be connected and controlled by HWI, while

the other end is connected to processor and controlled by SWI. We use the following code to show an

example of using PIP for data exchange:

// Get the full rx buffer from the receive PIP
PIP_get(&pipRx);
src = PIP_getReaderAddr(&pipRx);
size = PIP_getReaderSize(&pipRx) * sizeof(short);

// Get the empty tx buffer from the transmit PIP
PIP_alloc(&pipTx);
dst = PIP_getWriterAddr(&pipTx);

// Record the amount of actual data being sent
PIP_setWriterSize(&pipTx, PIP_getReaderSize(&pipRx));

// Free the receive buffer, put the transmit buffer
PIP_free(&pipRx);
PIP_put(&pipTx);

Figure 5.31 DSP/BIOS execution graph of the IIR filter experiment

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

296 DESIGN AND IMPLEMENTATION OF IIR FILTERS

Table 5.13 File listing for experiment exp5.7.6_realtime_DSPBIOS

Files Description

realtime_DSPBIOS.c C function for testing DSP/BIOS IIR filter experiment

asmIIR.asm Assembly implementation of second-order IIR filter

plio.c PIP function in C

asmIIR.h Header file for assembly IIR experiment

fdacoefsMATLAB.h FDATool generated C header file

tmwtypes.h Data type definition file for MATLAB C header file

lio.h Low level I/O header file

plio.h PIP to low level I/O interface header file

dspbios.cdb DSP/BIOS configuration file

dSPBIOS.pjt DSP/BIOS project file

dspbioscfg.cmd DSP/BIOS linker command file

in.pcm Data file

in.wav Data file

To read data, we first call PIP_get() to get a frame of received data, and then call

PIP_getReaderAddr() and PIP_getReaderSize() to set the data frame buffer address and the

length of the frame. Before writing data to the PIP, we call PIP_alloc() to allocate an empty frame

memory. The data pointer is obtained by the function PIP_getWriterAddr(). The number of the data

to be sent is passed using the function PIP_setWriterSize(). Finally, we free the receive frame

memory and notify the writer that the transmit frame data is ready to be sent.

The DSP/BIOS project with assembly implementation of the direct-form II cascade IIR filter is included

in the companion CD. We encourage readers to create their own DSP/BIOS project and configure the

DSP/BIOS project properly. Table 5.13 lists the files used for this experiment.

Procedures of the experiment are listed as follows:

1. Create the DSP/BIOS project for using DSK with PIP module.

2. Configure the AIC23 of the DSK for real-time I/O at 8 kHz sampling rate for 16-bit audio data.

3. Add IIR filter program and build the project. Run the project to filter the input signal in real time.

4. Validate the output signal using a scope.

5.7.7 Implementation of Parametric Equalizer

This experiment follows Equation (5.54) to design an equalizer that has the resonators at 200 and

1000 Hz when the sampling rate is 8 kHz. The equalizer has a dynamic range of ± 6 dB with 1 dB step. A

direct-form II IIR filter is used as the resonator. The equalizer coefficients are generated by the function

coefGen() listed in Table 5.14. This function uses the parameter gain to select rz and rp, and then

computes the coefficients.

The experiment is implemented in fixed-point C to show the logic flow. Table 5.15 lists the files used

for this experiment.

Procedures of the experiment are listed as follows:

1. Open the project file parametric_equalizer.pjt and rebuild the project.

2. Run the equalizer project using the input signal file, input.pcm.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 297

Table 5.14 C function for generating parametric equalizer coefficients

void coefGen(double (*gainTbl)[2], short gain, short *c, float freq)
{

double rz,rp,temp,omega;

rz = gainTbl[gain][0]; // Get rz from the lookup table
rp = gainTbl[gain][1]; // Get rp from the lookup table

omega = 2.0*3.1415926*freq/8000.0; // 8kHz sampling rate
c[3] = 0x4000; // b[0] in Q14 format
temp = -2.0*rz*cos(omega);
c[4] = (short)(temp*16384.0+0.5); // b[1]
c[2] = (short)(rz*rz*16384.0+0.5); // b[2]
temp = -2.0*rp*cos(omega);
c[0] = (short)(temp*16384.0+0.5); // a[1]
c[1] = (short)(rp*rp*16384.0+0.5); // a[2]

}

3. Examine the output signal file and measure the signal level at frequencies 200 and 1000 Hz.

4. Vary the equalizer gains and repeat the experiment to see the response of the output signal under the

different equalizer settings.

5. Replace the test data file input.pcm with the white noise file wn.pcm, and repeat the experiment.

5.7.8 Real-Time Two-Band Equalizer Using DSP/BIOS

The DSP/BIOS project using assembly program to implement a two-band parametric equalizer. Table 5.16

lists the files used for this experiment. We encourage readers to create their own DSP/BIOS project and

configure the DSP/BIOS project properly.

Procedures of the experiment are listed as follows:

1. Create the DSP/BIOS project for using DSK with PIP module.

2. Configure the AIC23 of the DSK for real-time I/O at 8 kHz sampling rate for 16-bit audio data.

Table 5.15 File listing for experiment exp5.7.7_parametric_equalizer

Files Description

parametric_equalizerTest.c C function for testing equalizer experiment

fixPoint_cascadetIIR.c C function of parametric equalizer

cascadeIIR.h Header file for the experiment

parametric_equalizer.pjt Experiment project file

parametric_equalizer.cmd DSP linker command file

input.pcm Data file consists of two tones

wn.wav Data file consists of white noise

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

298 DESIGN AND IMPLEMENTATION OF IIR FILTERS

Table 5.16 File listing for experiment exp5.7.8_realtime_2Band_EQ

Files Description

rt_2band_eq.c C function for testing DSP/BIOS EQ experiment

asmIIR.asm Assembly implementation of second-order IIR filter

plio.c PIP function in C

asmIIR.h Header file for assembly IIR experiment

lio.h Low level I/O header file

plio.h PIP to low level I/O interface header file

DSPBIOS_2band_eq.cdb DSP/BIOS configuration file

DSPBIOS_2band_eq.pjt DSP/BIOS project file

DSPBIOS_2band_eqcfg.cmd DSP/BIOS linker command file

3. Test the project in audio loopback only mode.

4. Refer to Experiment 5.7.6 and add function coefGen() that generates equalizer coefficients.

5. Insert the IIR filter program to the loopback project.

6. Build and run the project using real-time audio signal such as from a CD player.

Table 5.17 Equalizer coefficients switching in real time

void switchBand()
{

short i;

// Initialize IIR filter signal buffer
for (i=0; i<SECTIONS*2;i++)
{

w[i] = 0;
}
if (bandFlag)
{

// Generate filter coefficients for high band
coefGen(gain1000, NEG_6dB, &C[0], 1000);

// Generate filter coefficients for low band
coefGen(gain200, POS_6dB, &C[5], 200);
bandFlag = 0;

}
else

{
// Generate filter coefficients for high band

coefGen(gain1000, POS_6dB, &C[0], 1000);

// Generate filter coefficients for low band
coefGen(gain200, NEG_6dB, &C[5], 200);

bandFlag = 1;
}

}

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

EXERCISES 299

7. Listen to the equalizer output and alter the equalizer settings and listen again.

8. Add a function that will be called periodically to switch the upper and lower bands. The function

switchBand() that swaps upper and lower bands is listed in Table 5.17.

9. In order for DSP/BIOS to call switchBand() periodically, we need to add a new DSP/BIOS

object. Open the DSP/BIOS CDB file from the project, go to the Scheduling and add a new object

under the PRD. Rename the new object to changeBand. Open the new PRD object changeBnad

by right clicking it and selecting Properties. Set the ticks to 20 000 for running it at the 20-s

rate. Change the function name to _switchBand. The underscore in front of the function name is

necessary for DSP/BIOS call. Leave the mode as Continuous. Click OK when finish.

10. Rebuild the project and run the experiment again. This time, the equalizer will automatically switch

upper and lower band settings every 20 s.

References

[1] N. Ahmed and T. Natarajan, Discrete-Time Signals and Systems, Englewood Cliffs, NJ: Prentice-Hall, 1983.

[2] V. K. Ingle and J. G. Proakis, Digital Signal Processing Using MATLAB V.4, Boston: PWS Publishing, 1997.

[3] Math Works, Inc., Signal Processing Toolbox for Use with MATLAB, Math Works, Inc., 1994.

[4] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice-Hall,

1989.

[5] S. J. Orfanidis, Introduction to Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1996.

[6] J. G. Proakis and D. G. Manolakis, Digital Signal Processing – Principles, Algorithms, and Applications, 3rd

Ed., Englewood Cliffs, NJ: Prentice-Hall, 1996.

[7] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, New York: McGraw-Hill, 1998.

[8] D. Grover and J. R. Deller, Digital Signal Processing and the Microcontroller, Englewood Cliffs, NJ: Prentice-

Hall, 1999.

[9] F. Taylor and J. Mellott, Hands-On Digital Signal Processing, New York: McGraw-Hill, 1998.

[10] S. D. Stearns and D. R. Hush, Digital Signal Analysis, 2nd Ed., Englewood Cliffs, NJ: Prentice-Hall, 1990.

[11] S. S. Soliman and M. D. Srinath, Continuous and Discrete Signals and Systems, 2nd Ed., Englewood Cliffs, NJ:

Prentice-Hall, 1998.

[12] L. B. Jackson, Digital Filters and Signal Processing, 2nd Ed., Boston, MA: Kluwer Academic Publishers, 1989.

[13] Math Works, Inc.,Using MATLAB, Version 6, 2000.

[14] Math Works, Inc., Signal Processing Toolbox User’s Guide, Version 6, 2004.

[15] Math Works, Inc., Filter Design Toolbox User’s Guide, Version 3, 2004.

[16] Math Works, Inc., Fixed-Point Toolbox User’s Guide, Version 1, 2004.

[17] Texas Instruments, TMS320 DSP/BIOS User’s Guide, Literature no. SPRU423B, Nov. 2002.

[18] Texas Instruments, TMS3205000 DSP/BIOS Application Programming Interface (API) Reference Guide,

Literature no. SPRU404E, Oct. 2002.

Exercises

1. Compute the Laplace transform of unit impulse function δ(t) and unit step function u(t).

2. Given the analog system

H (s) = 2s + 3

s2 + 3s + 2
,

find the poles and zeros of the system and discuss its stability.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

300 DESIGN AND IMPLEMENTATION OF IIR FILTERS

3. Given the transfer function

H (z) = 0.5
(
z2 + 0.55z − 0.2

)
z3 − 0.7z2 − 0.84z + 0.544

,

realize the system using the direct-form II and cascade of first-order sections.

4. Draw the direct-form I and II realizations of the transfer function

H (z) =
(
z2 + 2z + 2

)
(z + 0.6)

(z − 0.8) (z + 0.8)
(
z2 + 0.1z + 0.8

) .

5. Given an IIR filter with the transfer function

H (z) =
(
1 + 1.414z−1 + z−2

) (
1 + 2z−1 + z−2

)(
1 − 0.8z−1 + 0.64z−2

) (
1 − 1.0833z−1 + 0.25z−2

) ,

find the poles and zeros of the filter, and using the stability triangle, check if H(z) is a stable filter.

6. Considering the second-order IIR filter with the I / O equation

y(n) = x(n) + a1 y(n − 1) + a2 y(n − 2), n ≥ 0,

find the transfer function H(z), and discuss the stability conditions related to the cases:

(a) a2
1/4 + a2 < 0;

(b) a2
1/4 + a2 > 0; and

(c) a2
1/4 + a2 = 0.

7. A first-order allpass filter has the transfer function

H (z) = z−1 − a

1 − az−1
.

(a) Draw the direct-form I and II realizations.

(b) Show that |H (ω)| = 1 for all ω.

(c) Sketch the phase response of this filter.

8. Given a six-order IIR transfer function

H (z) = 6 + 17z−1 + 33z−2 + 25z−3 + 20z−4 − 5z−5 + 8z−6

1 + 2z−1 + 3z−2 + z−3 + 0.2z−4 − 0.3z−5 − 0.2z−6
,

find the factored form of the IIR transfer function in terms of second-order sections using MATLAB.

9. Given a fourth-order IIR transfer function

H (z) = 12 − 2z−1 + 3z−2 + 20z−4

6 − 12z−1 + 11z−2 − 5z−3 + z−4
.

(a) Use MATLAB to express H (z) in factored form.

(b) Develop two different cascade realizations.

(c) Develop two different parallel realizations.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

EXERCISES 301

10. Design and plot the magnitude response of an elliptic IIR lowpass filter with the following specifications using

MATLAB: passband edge at 1600 Hz, stopband edge at 2000 Hz, passband ripple of 0.5 dB, and minimum

stopband attenuation of 40 dB with sampling rate of 8 kHz. Analyze the design filter using the FVTool.

11. Use FDATool to design an IIR filter specified in Problem 10 using:

(a) Butterworth;

(b) Chebyshev type-I; and

(c) Chebyshev type-II and Bessel methods.

Show both magnitude and phase responses of the designed filters and indicate the required filter order.

12. Redo Problem 10 using the FDATool, compare the results with Problem 10, and design a quantized filter for

16-bit fixed-point DSP processors.

13. Redo Problem 12 for designing an 8-bit fixed-point filter. Show the differences with the 16-bit filter designed in

Problem 12.

14. Design an IIR Butterworth bandpass filter with the following specifications: passband edges at 450 and 650 Hz,

stopband edges at 300 and 750 Hz, passband ripple of 1 dB, minimum stopband attenuation of 60 dB, and

sampling rate of 8 kHz. Analyze the design filter using the FVTool.

15. Redo Problem 14 using the FDATool, compare the results with Problem 14, and design a quantized filter for

16-bit fixed-point DSP processors.

16. Design a type-I Chebyshev IIR highpass filter with passband edge at 700 Hz, stopband edge at 500 Hz, passband

ripple of 1 dB, and minimum stopband attenuation of 32 dB. The sampling frequency is 2 kHz. Analyze the

design filter using the FVTool.

17. Redo Problem 16 using FDATool, compare the results with Problem 16, and design a quantized filter for 16-bit

fixed-point DSP processors.

18. Given an IIR lowpass filter with transfer function

H (z) = 0.0662
(
1 + 3z−1 + 3z−2 + z−3

)
1 − 0.9356z−1 + 0.5671z−2 − 0.1016z−3

,

plot the impulse response using an appropriate MATLAB function and compare the result using the FVTool.

19. It is interesting to examine the frequency response of the second-order resonator filter as the radius rp and the

pole angle ω0 are varied. Use the MATLAB to compute and plot the magnitude response for ω0 = π/2 and

various values of rp. Also, plot the magnitude response for rp = 0.95 and various values of ω0.

20. Use MATLAB FDATool to design an 8 kHz sampling rate highpass filter with the passband starting at 3000 Hz

and at least 45-dB attenuation in the stopband. Write a direct-form I IIR filter function in fixed-point C. The test

data file is given in the companion CD.

21. Rewrite the highpass filter implementation in Problem 20 using C intrinsics.

22. Use MATLAB FDATool to design an 8 kHz sampling rate lowpass filter with the stopband beginning at 1000 Hz

with at least 60-dB attenuation. Write the direct-form I IIR filter in C55x assembly language. The test data file

is given in the companion CD.

23. Create a real-time experiment using DSP/BIOS for the direct-form I IIR filter designed by Problem 22.

JWBK080-05 JWBK080-Kuo March 8, 2006 11:47 Char Count= 0

302 DESIGN AND IMPLEMENTATION OF IIR FILTERS

24. The cascade IIR filter implementation in this problem has some issues that need to be corrected. Identify the

problems and make corrections. Run the test and compare the result with the experiment given in Section 5.7.3.

The software for this exercise is included in the companion CD.

25. Write the IIR filter function using intrinsics for Problem 24. Compare the profile result against the experiment

given in Section 5.7.4.

26. Write the program for IIR filter function defined in Problem 24 using C55x assembly language. Compare the

profile result against the experiment given in Section 5.7.5.

27. Can the experiment given in Section 5.7.5 be optimized even further? Try to improve the run-time efficiency of

the experiment given in Section 5.7.5.

28. Use MATLAB FDATool to design two 16-kHz sampling rate filters. A lowpass filter with stopband at 800 Hz

and attenuation at least 40 dB in the stopband and a highpass filter with the passband starting from 1200 Hz and

at least 40-dB attenuation in its stopband. Modify the experiment given in Section 5.7.6 such that the DSK uses

stereo line-in at 16 kHz sampling rate and PIP frame size set to 40. Place the lowpass filter on the left channel

of the audio path and the highpass filter on the right channel of the audio path. Use a high-fidelity CD as audio

input and listen to the filter output of the left and right channels.

29. Using Equation (5.70), design a three-band equalizer with normalized resonate frequencies of 0.05, 0.25, and

0.5. The equalizer must have a dynamic range of at least ± 9 dB at 1 dB step with:

(a) 8 kHz sampling rate;

(b) 48 kHz sampling rate.

30. Write a fixed-point C program to verify the three-band equalizer performance from Problem 29. Implement this

real-time three-band equalizer using DSK with:

(a) 8 kHz sampling rate;

(b) 48 kHz sampling rate.

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

6
Frequency Analysis and Fast
Fourier Transform

This chapter introduces the properties, applications, and implementations of the discrete Fourier transform

(DFT). Because of the development of the fast Fourier transform algorithms, the DFT is now widely used

for spectral analysis and fast convolution.

6.1 Fourier Series and Transform

In this section, we will introduce the representation of analog periodic signals using Fourier series and

the analysis of finite-energy signals using Fourier transform.

6.1.1 Fourier Series

A periodic signal can be represented as the sum of an infinite number of harmonic-related sinusoids

and complex exponentials. The representation of periodic signal x(t) with period T0 is the Fourier series

defined as

x(t) =
∞∑

k=−∞
cke jk�0t , (6.1)

where ck is the Fourier series coefficient, �0 = 2π/T0 is the fundamental frequency, and k�0 is the

frequency of the kth harmonic.

The kth Fourier coefficient ck is expressed as

ck = 1

T0

∫
T0

x(t)e− jk�0t dt . (6.2)

For an odd function x(t), it is easier to calculate the interval from 0 to T0. For an even function, integration

from −T0/2 to T0/2 is commonly used. The term c0 = 1
T0

∫
T0

x(t) dt is called the DC component because

it equals the average value of x(t) over one period.

Example 6.1: A rectangular pulse train is a periodic signal with period T0 and can be expressed as

x(t) =
{

A,

0,

kT0 − τ/2 ≤ t ≤ kT0 + τ/2

otherwise , (6.3)

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

303

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

304 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

where k = 0, ±1, ±2, . . . , and τ < T0 is the width of rectangular pulse with amplitude A. Since

x(t) is an even function, its Fourier coefficients can be calculated as

ck = 1

T0

T0
2∫

− T0
2

Ae− jk�0t dt = A

T0

[
e− jk�0t

− jk�0

∣∣∣∣
τ
2

− τ
2

]
= Aτ

T0

sin (k�0τ/2)

k�0τ/2
. (6.4)

This equation shows that ck has a maximum value of Aτ/T0 at the DC frequency �0 = 0, decays

to zero as �0 → ±∞, and equals zero at frequencies that are multiples of π .

The plot of |ck |2 shows that the power of the periodic signal is distributed among the frequency

components. Since the power of a periodic signal exists only at discrete frequencies k�0, the signal has a

line spectrum. The spacing between two consecutive spectral lines is equal to the fundamental frequency

�0. For the rectangular pulse train with a fixed period T0, the effect of decreasing τ is to spread the signal

power over the entire frequency range. On the other hand, when τ is fixed but the period T0 increases,

the spacing between adjacent spectral lines decreases.

Example 6.2: Consider a perfect sinewave expressed as

x(t) = sin(2π f0t).

Using Euler’s formula (see Appendix A) and Equation (6.1), we obtain

sin(2π f0t) = 1

2 j
(e j2π f0t − e− j2π f0t) =

∞∑
k=−∞

cke jk2π f0t .

Therefore, the Fourier series coefficients can be calculated as

ck =
⎧⎨⎩

1/2 j,
−1/2 j,

0,

k = 1

k = −1

otherwise

. (6.5)

This equation indicates that the power of a pure sinewave is distributed only at the harmonics

k = ±1, a perfect line spectrum.

6.1.2 Fourier Transform

We have shown that a periodic signal has a line spectrum and the space between two adjacent spectral

lines is equal to the fundamental frequency �0 = 2π/T0. As T0 increases, the line space decreases and

the number of frequency components increases. If we increase the period without limit (i.e., T0 → ∞),

the line spacing tends toward zero with infinite frequency components. Therefore, the discrete line

components converge into a continuum of frequency spectrum.

In practice, most real-world signals, such as speech, are not periodic. They can be approximated by

periodic signals with infinite period, i.e., T0 → ∞ (or �0 → 0). Therefore, the number of exponential

components in Equation (6.1) tends toward infinity, and the summation becomes integration over the

range (−∞, ∞). Thus, Equation (6.1) becomes

x(t) = 1

2π

∞∫
−∞

X (�)e j�t d�. (6.6)

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

DISCRETE FOURIER TRANSFORM 305

This is the inverse Fourier transform. Similarly, Equation (6.2) becomes

X (�) =
∞∫

−∞

x(t)e− j�t dt, (6.7)

or

X (f) =
∞∫

−∞

x(t)e− j2π f t dt . (6.8)

This is the Fourier transform of the analog x(t).

Example 6.3: Calculate the Fourier transform of function x(t) = e−at u(t), where a > 0 and u(t)
is the unit-step function. From Equation (6.7), we have

X (�) =
∞∫

−∞

e−at u(t)e− j�t dt =
∞∫

0

e−(a+ j�)t dt

= 1

a + j�
.

For a function x(t) defined over a finite interval T0, i.e., x(t) = 0 for |t | > T0/2, the Fourier series

coefficients ck can be expressed in terms of X (�) using Equations (6.2) and (6.7) as

ck = 1

T0

X (k�0). (6.9)

Therefore, the Fourier transform X (�) of a finite interval function at a set of equally spaced points on

the �-axis is specified exactly by the Fourier series coefficients ck .

6.2 Discrete Fourier Transform

In this section, we introduce the discrete-time Fourier transform and discrete Fourier transform of digital

signals.

6.2.1 Discrete-Time Fourier Transform

The discrete-time Fourier transform (DTFT) of a discrete-time signal x(nT) is defined as

X (ω) =
∞∑

n=−∞
x(nT)e− jωnT . (6.10)

It shows that X (ω) is a periodic function with period 2π . Thus, the frequency range of a discrete-time

signal is unique over the range (−π, π) or (0, 2π).

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

306 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

The DTFT of x(nT) can also be defined in terms of normalized frequency as

X (F) =
∞∑

n=−∞
x(nT)e− j2π Fn . (6.11)

Comparing this equation with Equation (6.8), the periodic sampling imposes a relationship between the

independent variables t and n as t = nT = n/ fs. It can be shown that

X (F) = 1

T

∞∑
k=−∞

X (f − k fs). (6.12)

This equation states that X (F) is the sum of an infinite number of X (f), scaled by 1/T , and then frequency

shifted to k fs. It also states that X (F) is a periodic function with period T = 1/ fs.

Example 6.4: Assume that a continuous-time signal x(t) is bandlimited to fM, i.e., |X (f)| = 0

for | f | ≥ fM, where fM is the bandwidth of signal x(t). The spectrum is zero for | f | ≥ fM as

shown in Figure 6.1(a).

As shown in Equation (6.12), sampling extends the spectrum X (f) repeatedly on both sides of

the f-axis. When the sampling rate fs is greater than 2 fM, i.e., fM ≤ fs/2, the spectrum X (f) is

preserved in X (F) as shown in Figure 6.1(b). In this case, there is no aliasing because the spectrum

X (f)

0 fM− fM f

(a) Spectrum of an analog signal.

X(f / fs)

X(f / fs)

0 fM fs− fs

fs
2

− fs
2

− fM
f

(b) Spectrum of discrete-time signal when the sampling theorem is satisfied.

2

− fs fs
2

0 fM fs− fs − fM

f

(c) Spectrum of discrete-time signal when the sampling theorem is violated.

Figure 6.1 Spectrum replication caused by sampling: (a) spectrum of analog bandlimited signal x(t); (b) sampling

theorem is satisfied; and (c) overlap of spectral components

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

DISCRETE FOURIER TRANSFORM 307

of the discrete-time signal is identical (except the scaling factor 1/T) to the spectrum of the analog

signal within the frequency range | f | ≤ fs/2 or |F | ≤ 1. The analog signal x(t) can be recovered

from the discrete-time signal x(nT) by passing it through an ideal lowpass filter with bandwidth

fM and gain T . This verifies the sampling theorem defined in Equation (1.3).

However, if the sampling rate fs < 2 fM, the shifted replicas of X (f) will overlap as shown in

Figure 6.1(c). This phenomenon is called aliasing since the frequency components in the overlapped

region are corrupted.

The DTFT X (ω) is a continuous function of frequency ω and the computation requires an infinite-length

sequence x(n). We have defined DFT in Section 3.2.6 for N samples of x(n) at N discrete frequencies.

Therefore, DFT is a numerically computable transform.

6.2.2 Discrete Fourier Transform

The DFT of a finite-duration sequence x(n) of length N is defined as

X (k) =
N−1∑
n=0

x(n)e− j(2π/N)kn, k = 0, 1, . . . , N − 1, (6.13)

where X (k) is the kth DFT coefficient and the upper and lower indices in the summation reflect the fact

that x(n) = 0 outside the range 0 ≤ n ≤ N − 1. The DFT is equivalent to taking N samples of DTFT

X (ω) over the interval 0 ≤ ω < 2π at N discrete frequencies ωk = 2πk/N , where k = 0, 1, . . . , N − 1.

The spacing between two successive X (k) is 2π/N rad (or fs/N Hz).

Example 6.5: If the signal {x(n)} is real valued and N is an even number, we can show that

X (0) =
N−1∑
n=0

x(n)

and

X (N/2) =
N−1∑
n=0

e− jπn x(n) =
N−1∑
n=0

(−1)n x(n).

Therefore, the DFT coefficients X (0) and X (N/2) are real values.

The DFT defined in Equation (6.13) can also be written as

X (k) =
N−1∑
n=0

x(n)W kn
N , k = 0, 1, . . . , N − 1, (6.14)

where

W kn
N = e− j

(
2π
N

)
kn = cos

(
2πkn

N

)
− j sin

(
2πkn

N

)
, 0 ≤ k, n ≤ N − 1. (6.15)

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

308 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

W
8
6 = −W 8

2

W
8
7 = −W

8
3

W
8
0 = 1

W
8
3

W
8
2

W
8
1

W
8
5 = −W 8

1

W
8
4 = −W

8
0 = −1

Figure 6.2 Twiddle factors for DFT, N = 8

The parameter W kn
N is called the twiddle factors of the DFT. Because W N

N = e− j2π = 1 = W 0
N , W k

N , k =
0, 1, . . . , N − 1 are the N roots of unity in clockwise direction on the unit circle. It can be shown that

W N/2
N = e− jπ = −1.

The twiddle factors have the symmetry property

W k+N/2
N = −W k

N , 0 ≤ k ≤ N/2 − 1, (6.16)

and the periodicity property

W k+N
N = W k

N . (6.17)

Figure 6.2 illustrates the cyclic property of the twiddle factors for an 8-point DFT.

Example 6.6: Consider the finite-length signal

x(n) = an, n = 0, 1, . . . , N − 1,

where 0 < a < 1. The DFT of x(n) is computed as

X (k) =
N−1∑
n=0

ane− j(2πk/N)n =
N−1∑
n=0

(
ae− j2πk/N

)n

= 1 − (
ae− j2πk/N

)N

1 − ae− j2πk/N
= 1 − aN

1 − ae− j2πk/N
, k = 0, 1, . . . , N − 1.

The inverse discrete Fourier transform (IDFT) is used to transform the frequency domain X (k) back

into the time-domain signal x(n). The IDFT is defined as

x(n) = 1

N

N−1∑
k=0

X (k)e j(2π/N)kn = 1

N

N−1∑
k=0

X (k)W −kn
N , n = 0, 1, . . . , N − 1. (6.18)

This is identical to the DFT with the exception of the normalizing factor 1/N and the opposite sign of

the exponent of the twiddle factors.

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

DISCRETE FOURIER TRANSFORM 309

The DFT and IDFT defined in Equations (6.14) and (6.18), respectively, can be expressed in matrix-

vector form as

X = Wx (6.19)

and

x = 1

N
W∗X, (6.20)

where x = [x(0) x(1) . . . x(N − 1)]T is the signal vector, the complex vector X = [X (0)X (1) . . .

X (N − 1)]T contains the DFT coefficients, and the NxN twiddle-factor matrix (or DFT matrix) W
is defined by

W =
[
W kn

N

]
0≤k,n≤N−1

=

⎡⎢⎢⎢⎣
1 1 · · · 1

1 W 1
N · · · W N−1

N
...

...
. . .

...

1 W N−1
N · · · W (N−1)2

N

⎤⎥⎥⎥⎦ , (6.21)

and W∗ is the complex conjugate of the matrix W. Since W is a symmetric matrix, the inverse matrix

W−1 = 1
N W∗ was used to derive Equation (6.20).

Example 6.7: Given x(n) = {1, 1, 0, 0}, the DFT of this 4-point sequence can be computed using

the matrix formulation as

X =

⎡⎢⎢⎣
1 1 1 1

1 W 1
4 W 2

4 W 3
4

1 W 2
4 W 4

4 W 6
4

1 W 3
4 W 6

4 W 9
4

⎤⎥⎥⎦ x =

⎡⎢⎢⎣
1 1 1 1

1 − j −1 j
1 −1 1 −1

1 j −1 − j

⎤⎥⎥⎦
⎡⎢⎢⎣

1

1

0

0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
2

1 − j
0

1 + j

⎤⎥⎥⎦ ,

where we used symmetry and periodicity properties given in Equations (6.16) and (6.17) to obtain

W 0
4 = W 4

4 = 1, W 1
4 = W 9

4 = − j , W 2
4 = W 6

4 = −1, and W 3
4 = j . The IDFT can be computed as

x = 1

4

⎡⎢⎢⎣
1 1 1 1

1 W −1
4 W −2

4 W −3
4

1 W −2
4 W −4

4 W −6
4

1 W −3
4 W −6

4 W −9
4

⎤⎥⎥⎦ X = 1

4

⎡⎢⎢⎣
1 1 1 1

1 j −1 − j
1 −1 1 −1

1 − j −1 j

⎤⎥⎥⎦
⎡⎢⎢⎣

2

1 − j
0

1 + j

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1

1

0

0

⎤⎥⎥⎦ .

The DFT coefficients are equally spaced on the unit circle with frequency intervals of fs/N (or 2π/N).

Therefore, the frequency resolution of the DFT is � = fs/N . The frequency sample X (k) represents

discrete frequency

fk = k
fs

N
, for k = 0, 1, . . . , N − 1. (6.22)

Since the DFT coefficient X (k) is a complex variable, it can be expressed in polar form as

X (k) = |X (k)|e jφ(k), (6.23)

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

310 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

where the DFT magnitude spectrum is defined as

|X (k)| =
√

{Re[X (k)]}2 + {Im[X (k)]}2 (6.24)

and the phase spectrum is defined as

φ(k) = tan−1

{
Im[X (k)]

Re[X (k)]

}
. (6.25)

Example 6.8: Consider a finite-length DC signal x(n) = c, where n = 0, 1, . . . , N − 1. From

Equation (6.14), we obtain

X (k) = c
N−1∑
n=0

W kn
N = c

1 − W k N
N

1 − W k
N

.

Since W k N
N = e− j

(
2π
N

)
k N = 1 for all k, and W k

N �= 1 for k �= i N , we have X (k) = 0 for k =
1, 2, . . . , N − 1. For k = 0,

N−1∑
n=0

W kn
N = N . Therefore, we obtain

X (k) = cNδ(k), k = 0, 1, . . . , N − 1.

6.2.3 Important Properties

This section introduces several important properties of DFT that are useful for analyzing digital signals

and systems.

Linearity: If {x(n)} and {y(n)} are digital sequences of the same length,

DFT[ax(n) + by(n)] = aDFT[x(n)] + bDFT[y(n)]

= aX (k) + bY (k), (6.26)

where a and b are arbitrary constants. Linearity allows us to analyze complex signals and systems by

evaluating their individual components. The overall response is the combination of individual results

evaluated at every frequency component.

Complex conjugate: If the sequence {x(n), 0 ≤ n ≤ N − 1} is real valued, then

X (−k) = X∗(k) = X (N − k), 0 ≤ k ≤ N − 1, (6.27)

where X∗(k) is the complex conjugate of X (k). Or equivalently,

X (M + k) = X∗(M − k), 0 ≤ k ≤ M, (6.28)

where M = N/2 if N is even, or M = (N − 1)/2 if N is odd. This property shows that only the first

(M + 1) DFT coefficients from k = 0 to M are independent as illustrated in Figure 6.3. For complex

signals, however, all N complex outputs carry useful information.

From the symmetry property, we obtain

|X (k)| = |X (N − k)|, k = 1, 2, . . . , M − 1 (6.29)

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

DISCRETE FOURIER TRANSFORM 311

X(0) X(1) … X(M − 2) X(M − 1) X(M) X(M + 1) X(M + 2) … X(N − 1)

Complex conjugate

Real Real

Figure 6.3 Complex-conjugate property, N is an even number

and

φ(k) = −φ(N − k), k = 1, 2, . . . , M − 1. (6.30)

Circular shifts: Let y(n) be a circular-shifted sequence defined as

y(n) = x(n − m) mod N , (6.31)

where m is the number of samples by which x(n) is shifted to the right and the modulo operation

0 ≤ (n − m) mod N = (n − m ± i N) < N . (6.32)

For example, if m = 1, x(0) shifts to x(1), x(1) shifts to x(2), . . . , x(N − 2) shifts to x(N − 1),

and x(N − 1) shifts back to x(0). Thus, a circular shift of an N -point sequence is equivalent

to a linear shift of its periodic extension. Considering the y(n) defined in Equation (6.31), we

have

Y (k) = e− j(2πk/N)m X (k) = W mk
N X (k). (6.33)

DFT and z-transform: DFT is equal to the z-transform of a sequence x(n) of length N , evaluated

on the unit circle at N equally spaced frequencies ωk = 2πk/N , where k = 0, 1, . . . , N − 1. That

is,

X (k) = X (z)|
z=e j(2π

N)k , k = 0, 1, . . . , N − 1. (6.34)

Circular convolution: If x(n) and h(n) are real-valued N -periodic sequences, y(n) is the circular convo-

lution of x(n) and h(n) defined as

y(n) = x(n) ⊗ h(n), n = 0, 1, . . . , N − 1, (6.35)

where ⊗ denotes circular convolution. The circular convolution in time domain is equivalent to mul-

tiplication in the frequency domain expressed as

Y (k) = X (k)H (k), k = 0, 1, . . . , N − 1. (6.36)

Note that the shorter sequence must be padded with zeros in order to have the same length for computing

circular convolution.

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

312 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

x(n)

x(n − 1)

x(n − 2)

x(n − N + 1) h(n)

h(n − 1)

h(n − 2)

h(n − N + 1)

Figure 6.4 Circular convolution of two sequences using the concentric circle approach

Figure 6.4 illustrates the cyclic property of circular convolution using two concentric circles. To perform

circular convolution, N samples of x(n) are equally spaced around the outer circle in the clockwise

direction, and N samples of h(n) are displayed on the inner circle in the counterclockwise direction

starting at the same point. Corresponding samples on the two circles are multiplied, and the products are

summed to form an output. The successive value of the circular convolution is obtained by rotating the

inner circle of one sample in the clockwise direction, and repeating the operation of computing the sum

of corresponding products. This process is repeated until the first sample of inner circle lines up with the

first sample of the exterior circle again.

Example 6.9: Given two 4-point sequences x(n) = {1, 2, 3, 4} and h(n) = {1, 0, 1, 1}. Using the

circular convolution method illustrated in Figure 6.4, we can obtain

n = 0, y(0) = 1 × 1 + 1 × 2 + 1 × 3 + 0 × 4 = 6

n = 1, y(1) = 0 × 1 + 1 × 2 + 1 × 3 + 1 × 4 = 9

n = 2, y(2) = 1 × 1 + 0 × 2 + 1 × 3 + 1 × 4 = 8

n = 3, y(3) = 1 × 1 + 1 × 2 + 0 × 3 + 1 × 4 = 7

Therefore, we obtain

y(n) = x(n) ⊗ h(n) = {6, 9, 8, 7}.

Note that the linear convolution of sequences x(n) and h(n) results in

y(n) = x(n) ∗ h(n) = {1, 2, 4, 7, 5, 7, 4},

which is also implemented in MATLAB script example6_9.m.

To eliminate the circular effect and ensure that the DFT method results in a linear convolution, the

signals must be zero-padded. Since the linear convolution of two sequences of lengths L and M will result

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

FAST FOURIER TRANSFORMS 313

in a sequence of length L + M − 1, the two sequences must be extended to the length of L + M − 1 or

greater by zero-padding. That is, append the sequence of length L with at least M − 1 zeros, and pad the

sequence of length M with at least L − 1 zeros.

Example 6.10: Consider the same sequences h(n) and x(n) given in Example 6.9. If those

4-point sequences are zero-padded to 8 points as x(n) = {1, 2, 3, 4, 0, 0, 0, 0} and h(n) =
{1, 0, 1, 1, 0, 0, 0, 0}, the resulting circular convolution is

n = 0, y(0) = 1 × 1 + 0 × 2 + 0 × 3 + 0 × 4 + 0 × 0 + 1 × 0 + 1 × 0 + 0 × 0 = 1

n = 1, y(1) = 0 × 1 + 1 × 2 + 0 × 3 + 0 × 4 + 0 × 0 + 0 × 0 + 1 × 0 + 1 × 0 = 2

n = 2, y(2) = 1 × 1 + 0 × 2 + 1 × 3 + 0 × 4 + 0 × 0 + 0 × 0 + 0 × 0 + 1 × 0 = 4

...

We finally have

y(n) = x(n) ⊗ h(n) = {1, 2, 4, 7, 5, 7, 4, 0}.

This result is identical to the linear convolution of the two sequences as given in Example 6.9.

Thus, the linear convolution can be realized by the circular convolution with proper zero-padding.

MATLAB script example6_10.m implements the circular convolution of zero-padded sequences

using DFT.

Zero-padding can be implemented using the MATLAB function zeros. For example, the 4-point

sequence x(n) given in Example 6.9 can be zero-padded to 8 points with the following command,

x = [1, 2, 3, 4, zeros(1, 4)];

where the MATLAB function zeros(1, N) generates a row vector of N zeros.

6.3 Fast Fourier Transforms

The drawback of using DFT for practical applications is its intensive computational requirement. To

compute each X (k) defined in Equation (6.14), we need approximately N complex multiplications

and additions. For computing N samples of X (k) for k = 0, 1, . . . , N − 1, approximately N 2 complex

multiplications and (N 2 − N) complex additions are required. Since a complex multiplication requires

four real multiplications and two real additions, the total number of arithmetic operations required for

computing N -point DFT is proportional to 4N 2, which becomes huge for large N .

The twiddle factor W kn
N is a periodic function with a limited number of distinct values since

W kn
N = W (kn) mod N

N , for kn > N (6.37)

and W N
N = 1. Therefore, different powers of W kn

N have the same value as shown in Equation (6.37).

In addition, some twiddle factors have either real or imaginary parts equal to 1 or 0. By reducing

these redundancies, a very efficient algorithm called the fast Fourier transform (FFT) can be derived,

which requires only N log2 N operations instead of N 2 operations. If N = 1024, FFT requires about 104

operations instead of 106 operations for DFT.

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

314 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

−1

−1

−1

−1

x(0)

x(1)

x(3)

x(5)

x(7)

x(2)

x(4)

x(6)

N/2-point
DFT

N/2-point
DFT

X1(0)

X1(1)

X1(2)

X1(3)

X2(0)

X2(1)

X2(2)

X2(3)

W 8
0

W 8
1

W 8
2

W 8
3

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

Figure 6.5 Decomposition of an N -point DFT into two N/2 DFTs, N = 8

The generic term FFT covers many different algorithms with different features, advantages, and dis-

advantages. Each FFT algorithm has different strengths and makes different trade-offs in terms of code

complexity, memory usage, and computation requirements. In this section, we introduce two classes of

FFT algorithms: decimation-in-time and decimation-in-frequency.

6.3.1 Decimation-in-Time

For the decimation-in-time algorithms, the sequence {x(n), n = 0, 1, . . . , N − 1} is first divided into two

shorter interwoven sequences: the even numbered sequence

x1(m) = x(2m), m = 0, 1, . . . , (N/2) − 1 (6.38)

and the odd numbered sequence

x2(m) = x(2m + 1), m = 0, 1, . . . , (N/2) − 1. (6.39)

Apply the DFT defined in Equation (6.14) to these two sequences of length N/2, and combine the

resulting N/2-point X1(k) and X2(k) to produce the final N -point DFT. This procedure is illustrated in

Figure 6.5 for N = 8.

The structure shown on the right side of Figure 6.5 is called the butterfly network because of its

crisscross appearance, which can be generalized in Figure 6.6. Each butterfly involves just a single

complex multiplication by a twiddle factor W k
N , one addition, and one subtraction.

Wk −1

(m −1)th

stage

mth

stage

N

Figure 6.6 Flow graph for a butterfly computation

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

FAST FOURIER TRANSFORMS 315

−1

−1

−1

−1

−1

−1

−1

−1

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

N/4-point
DFT

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

N/4-point
DFT

N/4-point
DFT

N/4-point
DFT

W 8
0

W 8
2

W 8
0

W 8
0

W 8
1

W 8
2

W 8
3W 8

2

Figure 6.7 Flow graph illustrating second step of N -point DFT, N = 8

Since N is a power of 2, N/2 is an even number. Each of these N/2-point DFTs can be computed by

two smaller N/4-point DFTs. This second step process is illustrated in Figure 6.7.

By repeating the same process, we will finally obtain a set of 2-point DFTs since N is a power of 2.

For example, the N/4-point DFT becomes a 2-point DFT in Figure 6.7 for N = 8. Since the first stage

uses the twiddle factor W 0
N = 1, the 2-point butterfly network illustrated in Figure 6.8 requires only one

addition and one subtraction.

Example 6.11: Consider the 2-point FFT algorithm which has two input samples x(0) and x(1).

The DFT output samples X (0) and X (1) can be computed as

X (k) =
1∑

n=0

x(n)W nk
2 , k = 0, 1.

Since W 0
2 = 1 and W 1

2 = e−π = −1, we have

X (0) = x(0) + x(1) and X (1) = x(0) − x(1).

The computation is identical to the signal-flow graph shown in Figure 6.8.

As shown in Figure 6.7, the input sequence is arranged as if each index was written in binary form and

then the order of binary digits was reversed. This bit-reversal process is illustrated in Table 6.1 for the

case of N = 8. The input sample indices in decimal are first converted to their binary representations,

the binary bit streams are reversed, and then the reversed binary numbers are converted back to decimal

−1

Figure 6.8 Flow graph of 2-point DFT

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

316 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

Table 6.1 Example of bit-reversal process, N = 8 (3 bits)

Input sample index Bit-reversed sample index

Decimal Binary Binary Decimal

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7

values to give the reordered time indices. Most modern DSP processors (such as the TMS320C55x)

provide the bit-reversal addressing mode to efficiently support this process.

For the FFT algorithm shown in Figure 6.7, the input values are no longer needed after the computation

of output values at a particular stage. Thus, the memory locations used for the FFT outputs can be the

same locations used for storing the input data. This observation supports the in-place FFT algorithms

that use the same memory locations for both the input and output numbers.

6.3.2 Decimation-in-Frequency

The development of the decimation-in-frequency FFT algorithm is similar to the decimation-in-time

algorithm presented in the previous section. The first step is to divide the data sequence into two halves,

each of N/2 samples. The next step is to separate the frequency terms X (k) into even and odd samples

of k. Figure 6.9 illustrates the first decomposition of an N -point DFT into two N/2-point DFTs.

Continue the process of decomposition until the last stage consists of 2-point DFTs. The decomposition

and symmetry relationships are reversed from the decimation-in-time algorithm. The bit reversal occurs

at the output instead of the input and the order of the output samples X (k) will be rearranged as Table

6.1. Figure 6.10 illustrates the butterfly representation for the decimation-in-frequency FFT algorithm.

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

N/2-point
DFT

N/2-point
DFT

x1(0)

x1(1)

x1(2)

x1(3)

x2(0)

x2(1)

x2(2)

x2(3)

W 8
0

W 8
1

W 8
2

W 8
3−1

−1

−1

−1

X(0)

X(2)

X(4)

X(6)

X(1)

X(3)

X(5)

X(7)

Figure 6.9 Decomposition of an N -point DFT into two N /2 DFTs

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

IMPLEMENTATION CONSIDERATIONS 317

−1 WN
k

(m − 1)th
stage

mth
stage

Figure 6.10 Butterfly network for decimation-in-frequency FFT algorithm

The FFT algorithms introduced in this chapter are based on two-input, two-output butterfly compu-

tations, and are classified as radix-2 FFT algorithms. It is possible to use other radix values to develop

FFT algorithms. However, these algorithms only work well for some specific FFT lengths. In addition,

these algorithms are more complicated than the radix-2 FFT algorithms and the programs for real-time

implementation are not widely available for DSP processors.

6.3.3 Inverse Fast Fourier Transform

The FFT algorithms introduced in the previous sections can be modified to efficiently compute the inverse

FFT (IFFT). By complex conjugating both sides of Equation (6.18), we have

x∗(n) = 1

N

N−1∑
k=0

X∗(k)W kn
N , n = 0, 1, . . . , N − 1. (6.40)

This equation shows we can use an FFT algorithm to compute the IFFT by first conjugating the DFT

coefficients X (k) to obtain X∗(k), computing the DFT of X∗(k) using an FFT algorithm, scaling the

results by 1/N to obtain x∗(n), and then complex conjugating x∗(n) to obtain the output sequence x(n).

If the signal is real valued, the final conjugation operation is not required.

6.4 Implementation Considerations

Many FFT routines are available in C and assembly programs for some specific DSP processors; however,

it is important to understand the implementation issues in order to use FFT properly.

6.4.1 Computational Issues

The FFT routines accept complex-valued inputs; therefore, the number of memory locations required is

2N for N -point FFT. To use the available complex FFT program for real-valued signals, we have to set

the imaginary parts to zero. The complex multiplication has the form

(a + jb)(c + jd) = (ac + bd) + j(bc + ad),

which requires four real multiplications and two real additions. The number of multiplication and the

storage requirements can be reduced if the signal has special properties. For example, if x(n) is real, only

N/2 samples from X (0) to X (N/2) need to be computed as shown by complex-conjugate property.

In most FFT programs developed for general-purpose computers, the computation of twiddle factors

W kn
N defined in Equation (6.15) is embedded in the program. However, the twiddle factors only need to

be computed once during the program initialization stage. In the implementation of FFT algorithm on

DSP processors, it is preferable to tabulate the values of twiddle factors so that they can be looked up

during the computation of FFT.

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

318 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

The complexity of FFT algorithms is usually measured by the required number of arithmetic oper-

ations (multiplications and additions). In practical real-time implementations with DSP processors, the

architecture, instruction set, data structures, and memory organizations of the processors are critical fac-

tors. For example, modern DSP processors usually provide bit-reversal addressing and a high degree of

instruction parallelism to implement FFT algorithms.

6.4.2 Finite-Precision Effects

From the signal-flow graph of the FFT algorithm shown in Figure 6.7, X (k) will be computed by a

series of butterfly computations with a single complex multiplication per butterfly network. Note that

some butterfly networks with coefficients ±1 (such as 2-point FFT in the first stage) do not require

multiplication. Figure 6.7 also shows that the computation of N -point FFT requires M = log2 N stages.

There are N/2 butterflies in the first stage, N /4 in the second stage, and so on. Thus, the total number of

butterflies required is

N

2
+ N

4
+ · · · + 2 + 1 = N − 1. (6.41)

The quantization errors introduced at the mth stage are multiplied by the twiddle factors at each sub-

sequent stage. Since the magnitude of the twiddle factor is always unity, the variances of the quantization

errors do not change while propagating to the output.

The definition of DFT given in Equation (6.14) shows that we can scale the input sequence with the

condition

|x(n)| <
1

N
(6.42)

to prevent the overflow at the output because |e− j(2π/N)kn| = 1. For example, in a 1024-point FFT, the input

data must be shifted right by 10 bits (1024 = 210). If the original data is 16 bits, the effective wordlength

of the input data is reduced to only 6 bits after scaling. This worst-case scaling substantially reduces the

resolution of the FFT results.

Instead of scaling the input samples by 1/N at the beginning of the FFT, we can scale the signals at

each stage. Figure 6.6 shows that we can avoid overflow within the FFT by scaling the input at each stage

by 0.5 because the outputs of each butterfly involve the addition of two numbers. This scaling process

provides a better accuracy than the scaling of input by 1/N .

An alternative conditional scaling method examines the results of each FFT stage to determine whether

to scale the inputs of that stage. If all of the results in a particular stage have magnitude less than 1, no

scaling is necessary at that stage. Otherwise, scale the inputs to that stage by 0.5. This conditional scaling

technique achieves much better accuracy, however, at the cost of increasing software complexity.

6.4.3 MATLAB Implementations

As introduced in Section 3.2.6, MATLAB provides the function fft with syntax

y = fft(x);

to compute the DFT of x(n) in the vector x. If the length of x is a power of 2, the fft function employs an

efficient radix-2 FFT algorithm. Otherwise, it uses a slower mixed-radix FFT algorithm or even a DFT.

An alternative way of using fft function is

y = fft(x, N);

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

IMPLEMENTATION CONSIDERATIONS 319

60

50

40

30

M
ag

n
it

u
d
e

20

10

10 20 30

Frequency index, k

Spectrum of 50 Hz sinewave

40 50 60
0

Figure 6.11 Spectrum of 50 Hz sinewave

to specify N -point FFT. If the length of x is less than N, the vector x is padded with trailing zeros to length

N. If the length of x is greater than N, the fft function only performs the FFT of the first N samples.

The execution time of the fft function depends on the input data type and the sequence length. If the

input data is real valued, it computes a real power-of-2 FFT algorithm that is faster than a complex FFT

of the same length. The execution is fastest if the sequence length is exactly a power of 2. For example,

if the length of x is 511, the function y = fft(x, 512) will be computed faster than fft(x) which

performs 511-point DFT. It is important to note that the vectors in MATLAB are indexed from 1 to N
instead of from 0 to N − 1 as given in the DFT and IDFT definitions.

Example 6.12: Consider a sinewave of frequency f = 50 Hz expressed as

x(n) = sin(2π f n/ fs), n = 0, 1, . . . , 127,

where the sampling rate fs = 256 Hz. We analyze this sinewave using a 128-point FFT given in

the MATLAB script (example6_12.m), and display the magnitude spectrum in Figure 6.11. It

shows the frequency index k = 25 corresponding to the spectrum peak. Substituting the associated

parameters into Equation (6.22), we verified that the line spectrum is corresponding to 50 Hz.

The MATLAB function ifft implements the IFFT algorithm as

y = ifft(x);

or

y = ifft(x,N);

The characteristics and usage of ifft are the same as those for fft.

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

320 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

6.4.4 Fixed-Point Implementation Using MATLAB

MATLAB provides a function qfft for quantizing an FFT object to support fixed-point implementation.

For example, the following command,

F = qfft

constructs a quantized FFT object F with default values. We can change the default settings by

F = qfft('Property1',Value1, 'Property2',Value2, ...)

to create a quantized FFT object with specific property/value pairs.

Example 6.13: We can change the default 16-point FFT to 128-point FFT using the following

command:

F = qfft('length',128)

We then obtain the following quantized FFT object in the command window:

F =
Radix = 2

Length = 128
CoefficientFormat = quantizer('fixed', 'round', 'saturate', [16 15])

InputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
OutputFormat = quantizer('fixed', 'floor', 'saturate', [16 15])

MultiplicandFormat = quantizer('fixed', 'floor', 'saturate', [16 15])
ProductFormat = quantizer('fixed', 'floor', 'saturate', [32 30])

SumFormat = quantizer('fixed', 'floor', 'saturate', [32 30])
NumberOfSections = 7

ScaleValues = [1]

This shows that the quantized FFT is a 128-point radix-2 FFT for the fixed-point data and

arithmetic. The coefficients, input, output, and multiplicands are represented using Q15 format

[16 15], while the product and sum use Q30 format [32 30]. There are seven stages for N =
128, and no scaling is applied to the input at each stage by the default setting ScaleValues =

[1]. We can set a scaling factor 0.5 at the input of each stage as follows:

F.ScaleValues = [0.5 0.5 0.5 0.5 0.5 0.5 0.5];

Or, set different values at specific stages using different scaling factors.

Example 6.14: Similar to Example 6.12, we used a quantized FFT to analyze the spectrum of

sinewave. In example6_14a.m, we first generate the same sinewave as in Example 6.12, then use

the following functions to compute the fixed-point FFT with Q15 format:

FXk = qfft('length',128); % Create quantized FFT object
qXk = fft(FXk, xn); % Compute Q15 FFT in xn vector

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

IMPLEMENTATION CONSIDERATIONS 321

When we run the MATLAB script, we receive the following warning messages reported in

MATLAB command window:

Warning: 1135 overflows in quantized fft.
Max Min NOverflows NUnderflows NOperations

Coefficient 1 -1 7 6 254
Input 0.9999 -0.9999 0 0 128

Output 2 -2 16 32 256
Multiplicand 2 -2 1063 91 3584

Product 1 -1 0 0 3584
Sum 2.414 -2.414 56 0 4480

Without proper scaling, the FFT has 1135 overflows, and thus the FFT results are wrong.

We can modify the code by setting the scaling factor 0.5 at each stage as follows (see exam-

ple6_14b.m):

FXk = qfft('length',128); % Create quantized FFT object
FXk.ScaleValues = [0.5 0.5 0.5 0.5 0.5 0.5 0.5]; % Set scaling
factors
qXk = fft(FXk, xn); % Compute Q15 FFT of xn vector

When we run the modified program (example6_14b.m), there are no warnings or errors. The

spectrum plot displayed in Figure 6.12 shows that we can perform FFT properly using 16-bit

processors with adequate scaling factor at each stage.

60

50

40

30

M
ag

n
it

u
d
e

20

10

10 20 30

Frequency index, k

Spectrum stimation using quantized FFT

40 50 60
0

Figure 6.12 Sinewave spectrum computed using the quantized 16-bit FFT

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

322 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

6.5 Practical Applications

In this section, we will introduce two important FFT applications: spectral analysis and fast convolution.

6.5.1 Spectral Analysis

The inherent properties of the DFT directly affect its performance on spectral analysis. The spectrum

estimated from a finite number of samples is correct only if the signal is periodic and the sample set

exactly covers one or multiple period of signal. In practice, we may have to break up a long sequence

into smaller segments and analyze each segment individually using the DFT.

As discussed in Section 6.2, the frequency resolution of N -point DFT is fs/N . The DFT coefficients

X (k) represent frequency components that are equally spaced at frequencies fk as defined in Equation

(6.22). One cannot properly represent a signal component that falls between two adjacent samples in the

spectrum, because its energy will spread to neighboring bins and distort their spectral amplitude.

Example 6.15: In Example 6.12, the frequency resolution (fs/N) is 2 Hz using a 128-point FFT

and sampling rate 256 Hz. The line component at 50 Hz can be represented by X (k) at k = 25 as

shown in Figure 6.11.

Consider the case of adding another sinewave at frequency 61 Hz (see example6_15.m). Figure

6.13 shows both spectral components at 50 and 61 Hz. However, the frequency component at 61 Hz

(between k = 30 and k = 31) does not show a line component because its energy spreads into

adjacent frequency bins.

60

50

40

30

M
ag

n
it

u
d
e

20

10

10 20 30

Frequency index, k

Spectra of 50 and 61 Hz sinewaves

40 50 60
0

50Hz

61Hz

Figure 6.13 Spectra of sinewaves at 50 and 61 Hz

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

PRACTICAL APPLICATIONS 323

A solution to this spectral leakage problem is to have a finer resolution fs/N by using a larger FFT

size N . If the number of data samples is not sufficiently large, the sequence may be expanded to length

N by adding zeros to the tail of true data. This process is simply the interpolation of the spectral curve

between adjacent frequency components.

Other problems relate to the FFT-based spectral analysis including aliasing, finite data length, spectral

leakage, and spectral smearing. These issues will be discussed in the following section.

6.5.2 Spectral Leakage and Resolution

The data set that represents the signal of finite length N can be obtained by multiplying the signal with

a rectangular window expressed as

xN (n) = w(n)x(n) =
{

x(n), 0 ≤ n ≤ N − 1

0, otherwise
, (6.43)

where the rectangular function w(n) is defined in Equation (4.33). As the length of the window increases,

the windowed signal xN (n) becomes a better approximation of x(n), and thus X (k) becomes a better

approximation of the DTFT X (ω).

The time-domain multiplication given in Equation (6.43) is equivalent to the convolution in the fre-

quency domain. Thus, the DFT of xN (n) can be expressed as

X N (k) = W (k) ∗ X (k) =
N∑

l=−N

W (k − l)X (k), (6.44)

where W (k) is the DFT of the window function w(n), and X (k) is the true DFT of the signal x(n).

Equation (6.44) shows that the computed spectrum X N (k) consists of the true spectrum X (k) convoluted

with the window function’s spectrum W (k). Therefore, the computed spectrum of the finite-length signal

is corrupted by the rectangular window’s spectrum.

As discussed in Section 4.2, the magnitude response of the rectangular window consists of a mainlobe

and several smaller sidelobes. The frequency components that lie under the sidelobes represent the sharp

transition of w(n) at the endpoints. The sidelobes introduce spurious peaks into the computed spectrum,

or to cancel true peaks in the original spectrum. This phenomenon is known as spectral leakage. To avoid

spectral leakage, it is necessary to use different windows as introduced in Section 4.2.3 to reduce the

sidelobe effects.

Example 6.16: If the signal x(n) consists of a single sinusoid cos(ω0n), the spectrum of the

infinite-length sampled signal is

X (ω) = 2πδ(ω ± ω0), −π ≤ ω ≤ π, (6.45)

which consists of two line components at frequencies ±ω0. However, the spectrum of the windowed

sinusoid can be obtained as

X N (ω) = 1

2
[W (ω − ω0) + W (ω + ω0)], (6.46)

where W (ω) is the spectrum of the window function.

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

324 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

Equation (6.46) shows that the windowing process has the effect of smearing the original sharp spectral

line δ(ω − ω0) at frequency ω0 and replacing it with W (ω − ω0). Thus, the power has been spread

into the entire frequency range by the windowing operation. This undesired effect is called spectral

smearing. Thus, windowing not only distorted the spectrum due to leakage effects, but also reduced

spectral resolution.

Example 6.17: Consider a signal consisting of two sinusoidal components expressed as x(n) =
cos(ω1n) + cos(ω2n). The spectrum of the windowed signal is

X N (ω) = 1

2
[W (ω − ω1) + W (ω + ω1) + W (ω − ω2) + W (ω + ω2)], (6.47)

which shows that the sharp spectral lines are replaced with their smeared versions. If the frequency

separation, �ω = |ω1 − ω2|, of the two sinusoids is

�ω ≤ 2π

N
(6.48)

or

� f ≤ fs

N
, (6.49)

the mainlobe of the two window functions W (ω − ω1) and W (ω − ω2) overlap. Thus, the two

spectral lines in X N (ω) are not distinguishable. MATLAB script example6_17.m uses 128-point

FFT for signal with sampling rate 256 Hz. This example shows that two sinewaves of frequencies

60 and 61 Hz are mixed. From Equation (6.49), the frequency separation 1 Hz is less than the

frequency resolution 2 Hz, thus these two sinewaves are overlapped as shown in Figure 6.14.

70

50

60

40

30

M
ag

n
it

u
d
e

20

10

10 20 30

Frequency index, k

Spectra of mixing 60 and 61 Hz sinewaves

40 50 60
0

Figure 6.14 Spectra of mixing sinewaves at 60 and 61 Hz

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

PRACTICAL APPLICATIONS 325

To guarantee that two sinusoids appear as two distinct ones, their frequency separation must satisfy

the condition

�ω >
2π

N
or � f >

fs

N
. (6.50)

Thus, the minimum DFT length to achieve a desired frequency resolution is given as

N >
fs

� f
= 2π

�ω
. (6.51)

In summary, the mainlobe width determines the frequency resolution of the windowed spectrum. The

sidelobes determine the amount of undesired frequency leakage. The optimum window used for spectral

analysis must have narrow mainlobe and small sidelobes. The amount of leakage can be substantially

reduced using nonrectangular window functions introduced in Section 4.2.3 at the cost of decreased

spectral resolution. For a given window length N , windows such as rectangular, Hanning, and Hamming

have relatively narrow mainlobe compared with Blackman and Kaiser windows. Unfortunately, the first

three windows have relatively high sidelobes, thus having more leakage. There is a trade-off between

frequency resolution and spectral leakage in choosing windows for a given application.

Example 6.18: Consider the 61 Hz sinewave in Example 6.15. We can apply the Kaiser window

with N = 128 and β = 8.96 to the signal using the following commands:

beta = 8.96;
wn = (kaiser(N,beta))'; % Kaiser window
x1n = xn.*wn; % Generate windowed sinewave

The magnitude spectra of sinewaves with the rectangular and Kaiser windows are shown in Figure

6.15 by the MATLAB script example6_18.m. This shows that the Kaiser window can effectively

reduce the spectral leakage. Note that the gain for using Kaiser window has been scaled up by

2.4431 in order to compensate the energy loss compared with using rectangular window. The time-

and frequency-domain plots of the Kaiser window with length N = 128 and β = 8.96 are shown

in Figure 6.16 using WinTool.

For a given window, increasing the length of the window reduces the width of the mainlobe, which

leads to better frequency resolution. However, if the signal changes frequency content over time, the

window cannot be too long in order to provide a meaningful spectrum.

6.5.3 Power Spectrum Density

Consider a sequence x(n) of length N whose DFT is X (k), the Parseval’s theorem can be expressed as

E =
N−1∑
n=0

|x(n)|2 = 1

N

N−1∑
k=0

|X (k)|2. (6.52)

The term |X (k)|2 is called the power spectrum that measures the power of signal at frequency fk .

Therefore, squaring the DFT magnitude spectrum |X (k)| produces a power spectrum, which is also

called the periodogram.

The power spectrum density (PSD) (power density spectrum or simply power spectrum) characterizes

stationary random processes. The PSD is very useful in the analysis of random signals since it provides

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

326 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

60

50

40

30

M
ag

n
it

u
d
e

20

10

10 20 30

Frequency index, k

Spectrum of 61 Hz sinewave

40 50 60
0

Kaiser window

Rectangular window

Figure 6.15 Spectra obtained using rectangular and Kaiser windows

a meaningful measure for the distribution of the average power in such signals. There are different

techniques for estimating the PSD. Since the periodogram is not a consistent estimate of the true PSD,

the averaging method can reduce statistical variation of the computed spectra.

One way of computing the PSD is to decompose x(n) into M segments, xm(n), of N samples each.

These signal segments are spaced N/2 samples apart; i.e., there is 50 % overlap between successive

segments. In order to reduce spectral leakage, each xm(n) is multiplied by a nonrectangular window

Time domain Frequency domain

20 40 60

Samples

Leakage Factor: 0 % Mainlobe width (−3dB): 0.025391Relative sidelobe attenuation: −66 dB

80 100 120

1

0.8

0.6

0.4A
m

p
li

tu
d
e

0.2

0

40

20

0

−20

−40

M
ag

n
it

u
d
e

(d
B

)

−60

−80

−100

−120
0 0.2 0.4

Normalized frequency (×π rad/sample)

0.6 0.8

Figure 6.16 Kaiser window of N = 128 and β = 8.96

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

PRACTICAL APPLICATIONS 327

(such as Hamming) function w(n) of length N . The PSD is a weighted sum of the periodograms of the

individual overlapped segment.

The MATALAB Signal Processing Toolbox provides the function psd to estimate the PSD of the signal

given in the vector x using the following statement:

h = spectrum.periodogram; % Create a periodogram object
psd(h,x,'Fs',Fs); % Plots the two-sided PSD by default

where Fs is the sampling frequency.

Example 6.19: Consider the signal x(n) which consists of two sinusoids (140 and 150 Hz) and

noise. This noisy signal is generated by example6_19.m adapted from the MATLAB Help menu.

The PSD can be computed by creating the following periodogram object:

Hs=spectrum.periodogram;

The psd function can also display the PSD (Figure 6.17) as follows:

psd(Hs,xn,'Fs',fs,'NFFT',1024)

Note that we can specify the window used for computing PSD. For example, we can use Hamming

window as follows:

Hs = spectrum.periodogram('Hamming');

0
−80

−70

−60

−50

−40

P
ow

er
/f

re
q
u
en

cy
 (

d
B

/H
z)

−30

−20

−10

0

0.05 0.1 0.15 0.2 0.25

Frequency (kHz)

Power spectral density estimate via periodogram

0.3 0.35 0.4 0.45 0.5

140Hz

150Hz

Figure 6.17 PSD of two sinewaves embedded in noise

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

328 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

For a time-varying signal, it is more meaningful to compute a local spectrum that measures spectral

contents over a short-time interval. We use a sliding window to break up a long sequence into several

short blocks x ′
m(n) of N samples, and then perform the FFT to obtain the time-dependent frequency

spectrum at each segment m as follows:

Xm(k) =
N−1∑
n=0

x ′
m(n)W kn

N , k = 0, 1, . . . , N − 1. (6.53)

This process is repeated for the next block of N samples. This technique is called the short-term Fourier

transform, since Xm(k) is just the spectrum of the short segment of xm(n) that lies inside the sliding

window w(n). This form of time-dependent Fourier transform has several applications in speech, sonar,

and radar signal processing.

Equation (6.53) shows that Xm(k) is a two-dimensional sequence. The index k represents frequency,

and the block index m represents segment (or time). Since the result is a function of both time and

frequency, a three-dimensional graphical display is needed. This is done by plotting |Xm(k)| using gray-

scale (or color) images as a function of both k and m. The resulting three-dimensional graphic is called

the spectrogram. The spectrogram uses the x-axis to represent time and the y-axis to represent frequency.

The gray level (or color) at point (m, k) is proportional to |Xm(k)|.
The Signal Processing Toolbox provides a function spectrogram to compute spectrogram. This

MATLAB function has the form

B = spectrogram(a,window,noverlap,nfft,Fs);

where B is a matrix containing the complex spectrogram values |Xm(k)|, and other arguments are defined

in the function psd. More overlapped samples make the spectrum move smoother from block to block. It

is common to pick the overlap to be around 25 %. The spectrogram function with no output arguments

displays the scaled logarithm of the spectrogram in the current graphic window.

Example 6.20: The MATLAB program example6_20.m loads the speech file timit2.asc,

plays it using the function soundsc, and displays the spectrogram as shown in Figure 6.18. The

color bar on the right side indicates the signal strength in dB. The color corresponding to the

lower power in the figure represents the silence and the color corresponding to the higher power

represents the speech signals.

6.5.4 Fast Convolution

As discussed in Chapter 4, FIR filtering is a linear convolution of filter impulse response h(n) with the input

sequence x(n). If the FIR filter has L coefficients, we need L real multiplications and L − 1 real additions

to compute each output y(n). To obtain L output samples, the number of operations (multiplication and

addition) needed is proportional to L2. To take advantage of efficient FFT and IFFT algorithms, we can

use the fast convolution algorithm illustrated in Figure 6.19 for FIR filtering. Fast convolution provides

a significant reduction in computational requirements for higher order FIR filters, thus it is often used to

implement FIR filtering in applications having a large number of data samples.

It is important to note that the fast convolution shown in Figure 6.19 produces the circular convolution

discussed in Section 6.2.3. In order to produce a linear convolution, it is necessary to append zeros to

the signals as shown in Example 6.10. If the data sequence x(n) has finite duration M , the first step is

to pad data sequence and coefficients with zeros to a length corresponding to an allowable FFT size N

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

PRACTICAL APPLICATIONS 329

Figure 6.18 Spectrogram of speech signal

(≥ L + M − 1), where L is the length of h(n). The FFT is computed for both sequences to obtain X (k)

and H (k), the corresponding complex products Y (k) = X (k)H (k) are calculated, and the IFFT of Y (k)

is used to obtain y(n). The desired linear convolution is contained in the first L + M − 1 terms of these

results. Since the filter impulse response h(n) is known as a priori, the FFT of h(n) can be precalculated

and stored as fixed coefficients.

For many applications, the input sequence is very long as compared to the FIR filter length L . This is

especially true in real-time applications, such as in audio signal processing where the FIR filter order is

extremely high due to high-sampling rate and input data is very long. In order to use the efficient FFT

and IFFT algorithms, the input sequence must be partitioned into segments of N (N > L and N is a size

supported by the FFT algorithm) samples, process each segment using the FFT, and finally assemble

the output sequence from the outputs of each segment. This procedure is called the block-processing

operation. The cost of using this efficient block processing is the buffering delay. More complicated

x(n)

h(n) H(k)

X(k)

Y(k) y(n)

FFT

IFFT

FFT

Figure 6.19 Fast convolution algorithm

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

330 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

xm−1 (n) N − 1

ym+1 (n)

ym−1 (n)

xm+1 (n)

xm (n)

ym (n)

m − 1

m − 1

m + 1

m + 1

m

m

L

L

discarded

0

Figure 6.20 Overlap data segments for the overlap-save technique

algorithms have been devised to have both zero latency as direct FIR filtering and computational efficiency

[10].

There are two techniques for the segmentation and recombination of the data: the overlap-save and

overlap-add algorithms.

Overlap-Save Technique

The overlap-save process overlaps Linput samples on each segment. The output segments are truncated to

be nonoverlapping and then concatenated. The following steps describe the process illustrated in Figure

6.20:

1. Apply N -point FFT to the expanded (zero-padded) impulse response sequence to obtain H ′(k), where

k = 0, 1, . . . , N − 1. This process can be precalculated off-line and stored in memory.

2. Select N signal samples xm(n) (where m is the segment index) from the input sequence x(n) based

on the overlap illustrated in Figure 6.20, and then use N -point FFT to obtain Xm(k).

3. Multiply the stored H ′(k) (obtained in Step 1) by the Xm(k) (obtained in Step 2) to get

Ym(k) = H ′(k)Xm(k), k = 0, 1, . . . , N − 1. (6.54)

4. Perform N -point IFFT of Ym(k) to obtain ym(n) for n = 0, 1, . . . , N − 1.

5. Discard the first L samples from each IFFT output. The resulting segments of (N − L) samples are

concatenated to produce y(n).

Overlap-Add Technique

The overlap-add process divides the input sequence x(n) into nonoverlapping segments of length (N − L).

Each segment is zero-padded to produce xm(n) of length N . Follow the Steps 2–4 of the overlap-save

method to obtain N -point segment ym(n). Since the convolution is the linear operation, the output sequence

y(n) is the summation of all segments.

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

OVERLAP-ADD TECHNIQUE 331

MATLAB implements this efficient FIR filtering using the overlap-add technique as

y = fftfilt(b, x);

The fftfilt function filters the input signal in the vector x with the FIR filter described by the

coefficient vector b. The function chooses an FFT and a data block length that automatically guarantees

efficient execution time. However, we can specify the FFT length N by using

y = fftfilt(b, x, N)

Example 6.21: The speech data timit2.asc (used in Example 6.20) is corrupted by a tonal

noise at frequency 1000 Hz. We design a bandstop FIR filter with edge frequencies of 900 and

1100 Hz, and filter the noisy speech using the following MATLAB script (example6_21.m):

Wn = [900 1100]/4000; % Edge frequencies
b = fir1(128, Wn, 'stop'); % Design bandstop filter
yn = fftfilt(b, xn); % FIR filtering using fast convolution
soundsc(yn, fs, 16); % Listen to the filtered signal
spectrogram(yn,kaiser(256,5),200,256,fs,'yaxis') % Spectrogram

MATLAB program example6_21.m plays the original speech first, plays the noisy speech that

is corrupted by the 1 kHz tone, and then shows the spectrogram with the noise component (in

red) at 1000 Hz. In order to attenuate that tonal noise, a bandstop FIR filter is designed (using the

function fir1) to filter the noisy speech using the function fftfilt. Finally, the filter output is

played and its spectrogram is shown in Figure 6.21 with the 1000 Hz tonal noise being attenuated.

Figure 6.21 Spectrogram of bandstop filter output

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

332 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

6.6 Experiments and Program Examples

In the section, we will implement the DFT and FFT algorithms for DSP applications. The computation of

the DFT and FFT involves nested loops, complex multiplication, and complex twiddle-factor generation.

6.6.1 Floating-Point C Implementation of DFT

For multiplying a complex data sample x(n) = xr(n) + j xi(n) and a complex twiddle factor W kn
N =

cos (2πkn/N) − j sin (2πkn/N) = Wr − jWi defined in Equation (6.15), the product can be expressed

as

x(n)W kn
N = xr(n)Wr + xi(n)Wi + j[xi(n)Wr − xr(n)Wi], (6.55)

where the subscripts r and i denote the real and imaginary parts of complex variable. Equation (6.55) can

be rewritten as

X (n) = X r(n) + j X i(n), (6.56)

where

X r(n) = xr(n)Wr + xi(n)Wi (6.57a)

X i(n) = xi(n)Wr − xr(n)Wi. (6.57b)

The C program listed in Table 6.2 uses two arrays, Xin[2*N] and Xout[2*N], to hold the complex input

and output samples. The twiddle factors are computed at run time. Since most of real-world applications

contain only real data, it is necessary to compose a complex data set from the given real data. The simplest

way is to zero out the imaginary part before calling the DFT function.

This experiment computes 128-point DFT of signal given in file input.dat, and displays the spectrum

using the CCS graphics. Table 6.3 lists the files used for this experiment.

Procedures of the experiment are listed as follows:

1. Open the project file, float_dft128.pjt, and rebuild the project.

2. Run the DFT experiment using the input data file input.dat.

3. Examine the results saved in the data array spectrum[] using CCS graphics as shown in Figure

6.22. The magnitude spectrum shows the normalized frequencies at 0.125, 0.25, and 0.5.

4. Profile the code and record the required cycles per data sample for the floating-point implementation

of DFT.

6.6.2 C55x Assembly Implementation of DFT

We write assembly routines based on the C program listed in Table 6.4 to implement DFT on

TMS320C55x. The sine and cosine generators for experiments given in Chapter 3 can be used to gener-

ate the twiddle factors. The assembly function sine_cos.asm (see section ‘Practical Applications’ in

Chapter 3) is a C-callable function that follows the C55x C-calling convention. This function has two

arguments: angle and Wn. The first argument contains the input angle in radians and is passed to the

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 333

Table 6.2 List of floating-point C function for DFT

#include <math.h>
#define PI 3.1415926536
void floating_point_dft(float Xin[], float Xout[])
{

short i,n,k,j;
float angle;
float Xr[N],Xi[N];
float W[2];
for (i=0,k=0;k<N;k++)
{

Xr[k]=0;
Xi[k]=0;
for(j=0,n=0;n<N;n++)
{

angle =(2.0*PI*k*n)/N;
W[0]=cos(angle);
W[1]=sin(angle);
Xr[k]=Xr[k]+Xin[j]*W[0]+Xin[j+1]*W[1];
Xi[k]=Xi[k]+Xin[j+1]*W[0]-Xin[j]*W[1];
j+=2;

}
Xout[i++] = Xr[k];
Xout[i++] = Xi[k];

}
}

C55x assembly routine via the temporary register T0. The second argument is the pointer to Wn passed

by the auxiliary register AR0, for which the computed results will be stored upon return.

The calculation of the angle depends on two variables, k and n, as follows:

Angle = (2π/N)kn. (6.58)

As shown in Figure 3.30, the fixed-point representation of value π for sine–cosine generator is 0x7FFF.

Thus, the angle used to generate the twiddle factors can be expressed as

Angle = (2 · 0x7FFF/N)kn (6.59)

Table 6.3 File listing for experiment exp6.6.1_floatingPoint_DFT

Files Description

float_dft128Test.c C function for testing floating-point DFT experiment

float_dft128.c C function for 128-point floating-point DFT algorithm

float_mag128.c C function computes magnitude of 128 DFT results

float_dft128.h C header file for DFT experiment

float_dft128.pjt DSP project file

float_dft128.cmd DSP linker command file

input.dat Data file

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

334 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

Figure 6.22 Input signal (top) and the magnitude spectrum (bottom)

Table 6.4 List of C55x assembly implementation of DFT

; DFT_128 – 128-point DFT routine
;
; Entry T0: AR0: pointer to complex input buffer
; AR1: pointer to complex output buffer
; Return: None
;

.def dft_128

.ref sine_cos
N .set 128
TWOPIN .set 0x7fff>>6 ; 2*PI/N, N=128

.bss Wn,2 ; Wn[0]=Wr, Wn[1]=Wi

.bss angle,1 ; Angle for sine-cosine function

.text
_dft_128

pshboth XAR5 ; Save AR5
bset SATD
mov #N-1,BRC0 ; Repeat counter for outer loop
mov #N-1,BRC1 ; Repeat counter for inner loop
mov XAR0,XAR5 ; AR5 pointer to sample buffer
mov XAR0,XAR3
mov #0,T2 ; k = T2 = 0
rptb outer_loop-1 ; for(k=0;k<N;k++) {
mov XAR3,XAR5 ; Reset x[] pointer
mov #TWOPIN<<#16,AC0 ; hi(AC0) = 2*PI/N
mpy T2,AC0

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 335

Table 6.4 (continued)

mov #0,AC2 ; Xr[k] = 0
mov #0,AC3 ; Xi[k] = 0
mov #0,*(angle)
mov AC0,T3 ; angle=2*PI*k/N
rptb inner_loop-1 ; for(n=0;n<N;n++) {
mov *(angle),T0 ; T0=2*PI*k*n/N
mov *(angle),AC0
add T3,AC0
mov AC0,*(angle) ; Update angle
amov #Wn,XAR0 ; AR0 is the pointer to Wn
call _sine_cos ; sine_cos(angle, Wn)
bset SATD ; sine_cos turn off FRCT & SATD
macm40 *AR5+,*AR0,AC2 ; XR[k] + Xin[n]*Wr
macm40 *AR5-,*AR0+,AC3 ; XI[k] + Xin[n+1]*Wr
masm40 *AR5+,*AR0,AC3 ; XI[k] + Xin[n+1]*Wr - Xin[n]*Wi
macm40 *AR5+,*AR0-,AC2 ; XR[k] + Xin[n]*Wr + Xin[n+1]*Wi

inner_loop ; End of inner loop
mov hi(AC2<<#-5),*AR1+
mov hi(AC3<<#-5),*AR1+
add #1,T2

outer_loop ; End of outer loop
popboth XAR5
bclr SATD
ret

for n = 0, 1, . . . , N− 1 and k = 0, 1, . . . , N−1. The C55x assembly routine listed in Table 6.4 computes

128-point DFT. This assembly program calls the assembly routine sine_cos to compute the twiddle

factors.

Table 6.5 lists the files used for the C55x assembly DFT experiment. This experiment uses C55x

assembly program to compute 128-point DFT and magnitude spectrum. The zero-overhead loops allow

program to initialize the loop counters BRC0 and BRC1 outside the nested loops. When implementing

nested loops, the inner loop uses BRC1 while the outer loop uses BRC0.

Procedures of the experiments are listed as follows:

1. Open the project file, asm_dft128.pjt, and rebuild the project.

2. Run the DFT project using the input data file input.dat.

Table 6.5 File listing for experiment exp6.6.2_asm_DFT

Files Description

asm_dft128Test.c C function for testing DFT experiment

dft_128.asm Assembly function for 128-point DFT

mag_128.asm Assembly function computes magnitude spectrum

sine_cos.asm Assembly function computes twiddle factors

asm_dft128.h C header file for DFT experiment

asm_dft128.pjt DSP project file

asm_dft128.cmd DSP linker command file

input.dat Data file

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

336 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

3. Examine the results stored in spectrum[] using CCS graphics. It should have the same peaks in

Figure 6.22 with the normalized frequencies at 0.125, 0.25, and 0.5.

4. Profile the C55x assembly language implementation of the DFT and compare the required cycles per

data sample with the floating-point C experiment result obtained in previous experiment.

6.6.3 Floating-Point C Implementation of FFT

This experiment implements the complex, radix-2, decimation-in-time FFT algorithm using floating-

point C. The floating-point FFT function is listed in Table 6.6. The first argument is a pointer to the

complex data array. The second argument passes the number of exponential values of the radix-2 FFT.

The third argument is the pointer to the twiddle factors. The last argument is a flag used to determine if

a scale is needed during the computation of the FFT algorithm. As explained in Section 6.4.2, the input

data is scaled by 0.5 at each FFT stage. The twiddle factors are computed at the end of the function to

reduce computational requirement. This FFT routine can be used for inverse FFT with the scale factors

set to 1.0.

Table 6.6 List of floating-point C FFT function

void fft(complex *X, unsigned short EXP, complex *W, unsigned short SCALE)
{

complex temp; /* Temporary storage of complex variable */
complex U; /* Twiddle factor W^k */
unsigned short i,j;
unsigned short id; /* Index for lower point in butterfly */
unsigned short N=1<<EXP;/* Number of points for FFT */
unsigned short L; /* FFT stage */
unsigned short LE; /* Number of points in sub DFT at stage L

and offset to next DFT in stage */
unsigned short LE1; /* Number of butterflies in one DFT at

stage L. Also is offset to lower point
in butterfly at stage L */

float scale;
scale = 0.5;
if (SCALE == 0)

scale = 1.0;
for (L=1; L<=EXP; L++) /* FFT butterfly */
{

LE=1<<L; /* LE=2^L=points of sub DFT */
LE1=LE>>1; /* Number of butterflies in sub-DFT */
U.re = 1.0;
U.im = 0.;
for (j=0; j<LE1;j++)
{

for(i=j; i<N; i+=LE) /* Do the butterflies */
{

id=i+LE1;
temp.re = (X[id].re*U.re - X[id].im*U.im)*scale;
temp.im = (X[id].im*U.re + X[id].re*U.im)*scale;

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 337

Table 6.6 (continued)

X[id].re = X[i].re*scale - temp.re;
X[id].im = X[i].im*scale - temp.im;
X[i].re = X[i].re*scale + temp.re;
X[i].im = X[i].im*scale + temp.im;

}
/* Recursive compute W^k as U*W^(k-1) */
temp.re = U.re*W[L-1].re - U.im*W[L-1].im;
U.im = U.re*W[L-1].im + U.im*W[L-1].re;
U.re = temp.re;

}
}

}

This experiment also uses the bit-reversal function listed in Table 6.7. This function rearranges the

order of data samples according to the bit-reversal definition in Table 6.1 before the data sample is passed

to the FFT function.

This experiment computes 128-point FFT using floating-point C and displays the magnitude spectrum.

The files used for this experiment are listed in Table 6.8.

Procedures of the experiment are listed as follows:

1. Open the project file, float_fft.pjt, and rebuild the project.

2. Run the FFT experiment using the input data file input_f.dat.

Table 6.7 List of bit-reversal function in C

void bit_rev(complex *X, short EXP)
{

unsigned short i,j,k;
unsigned short N=1<<EXP; /* Number of points for FFT */
unsigned short N2=N>>1;
complex temp; /* Temporary storage of the complex variable */

for (j=0,i=1;i<N-1;i++)
{

k=N2;
while(k<=j)
{

j-=k;
k>>=1;

}
j+=k;
if (i<j)
{

temp = X[j];
X[j] = X[i];
X[i] = temp;

}
}

}

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

338 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

Table 6.8 File listing for experiment exp6.6.3_floatingPoint_FFT

Files Description

float_fftTest.c C function for testing floating-point FFT experiment

fft_float.c C function for floating-point FFT

fbit_rev.c C function performs bit reversal

float_fft.h C header file for floating-point FFT experiment

fcomplex.h C header file defines floating-point complex data type

float_fft.pjt DSP project file

float_fft.cmd DSP linker command file

input_f.dat Data file

3. Examine the results saved in spectrum[] using CCS graphics. The spectrum plot shows the

normalized line frequency at 0.25.

4. Profile the FFT function and record the required cycles per data sample using the floating-point

implementation.

6.6.4 C55x Intrinsics Implementation of FFT

In this experiment, we modify the floating-point C implementation of the FFT with the C55x intrinsics

(see Table 5.4). We will replace the arithmetic operations with intrinsics _lsmpy, _smas, _smac, _sadd,

and _ssub to implement the fixed-point FFT.

The FFT program that uses intrinsics is listed in Table 6.9. This experiment computes 128-point FFT

and displays the magnitude spectrum. The program is a mix of fixed-point C and intrinsics. Its run-time

performance is greatly improved over the floating-point C implementation. Table 6.10 lists the files used

for this experiment.

Table 6.9 Code segment of intrinsics implementation of FFT

for (L=1; L<=EXP; L++) /* FFT butterfly */
{

LE=1<<L; /* LE=2^L=points of sub DFT */
LE1=LE>>1; /* Number of butterflies in sub DFT */
U.re = 0x7fff;
U.im = 0;

for (j=0; j<LE1;j++)
{

for(i=j; i<N; i+=LE) /* Do the butterflies */
{

id=i+LE1;
ltemp.re = _lsmpy(X[id].re, U.re);
temp.re = (_smas(ltemp.re, X[id].im, U.im)>>SFT16);
temp.re = _sadd(temp.re, 1)>>scale; /* Rounding & scale */
ltemp.im = _lsmpy(X[id].im, U.re);
temp.im = (_smac(ltemp.im, X[id].re, U.im)>>SFT16);

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 339

Table 6.9 (continued)

temp.im = _sadd(temp.im, 1)>>scale; /* Rounding & scale */
X[id].re = _ssub(X[i].re>>scale, temp.re);
X[id].im = _ssub(X[i].im>>scale, temp.im);
X[i].re = _sadd(X[i].re>>scale, temp.re);
X[i].im = _sadd(X[i].im>>scale, temp.im);

}
/* Recursive compute W^k as W*W^(k-1) */
ltemp.re = _lsmpy(U.re, W[L-1].re);
ltemp.re = _smas(ltemp.re, U.im, W[L-1].im);
ltemp.im = _lsmpy(U.re, W[L-1].im);
ltemp.im = _smac(ltemp.im, U.im, W[L-1].re);
U.re = ltemp.re>>SFT16;
U.im = ltemp.im>>SFT16;

}
}

Procedures of the experiment are listed as follows:

1. Open the project file, intrinsic_fft.pjt, and rebuild the project.

2. Run the FFT experiment using the data file input_i.dat.

3. Examine the results saved in spectrum[] using CCS graphics. The spectrum plot shows the

normalized line frequency at 0.25.

4. Profile the intrinsics implementation of the FFT and compare the required cycles per data sample

with the floating-point C FFT experiment result obtained in previous section.

6.6.5 Assembly Implementation of FFT and Inverse FFT

In this experiment, we use the C55x assembly routines for computing the same radix-2 FFT algorithm

implemented by the fixed-point C with intrinsics given in the previous experiment. The C55x FFT

assembly routine listed in Table 6.11 follows the C55x C-calling convention. For readability, the assembly

code mimics the C function closely. It optimizes the memory usage but not the run-time efficiency. The

execution speed can be further improved by unrolling the loop and taking advantage of the FFT butterfly

characteristics, but with the expense of the memory.

Table 6.10 File listing for experiment exp6.6.4_intrinsics_FFT

Files Description

intrinsic_fftTest.c C function for testing intrinsics FFT experiment

intrinsic_fft.c C function for intrinsics FFT

ibit_rev.c C function performs fixed-point bit reversal

intrinsic_fft.h C header file for fixed-point FFT experiment

icomplex.h C header file defines fixed-point complex data type

intrinsic_fft.pjt DSP project file

intrinsic_fft.cmd DSP linker command file

input_i.dat Data file

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

340 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

The assembly routine defines local variables as a structure using the stack-relative addressing mode.

The last memory location contains the return address of the caller function. Since the status registers

ST1 and ST3 will be modified by the assembly routine, we use two stack locations to store the contents

of these registers at entry, and they will be restored upon returning to the caller function. The complex

temporary variable is stored in two consecutive memory locations by using a bracket with the numerical

number to indicate the number of memory locations for the integer data type.

Table 6.11 List of C55x assembly implementation of FFT algorithm

.global _fft
ARGS .set 0 ; Number of variables passed via stack

FFT_var .struct ; Define local variable structure
d_temp .short (2) ; Temporary variables (Re, Im)
d_L .short
d_N .short
d_T2 .short ; Used to save content of T2
d_ST1 .short ; Used to save content of ST1
d_ST3 .short ; Used to save content of ST3
d_AR5 .short ; Used to save content of ar5
dummy .short ; Used to align stack pointer
return_addr .short ; Space for routine return address
Size .endstruct
fft .set 0
fft .tag FFT_var

.sect ".text:fft_code"
_fft:

aadd #(ARGS-Size+1),SP ; Adjust stack for local variables
mov mmap(ST1_55),AR2 ; Save ST1,ST3
mov mmap(ST3_55),AR3
mov AR2,fft.d_ST1
mov AR3,fft.d_ST3
mov AR5,(fft.d_AR5) ; Protect AR5
btst @#0,T1,TC1 ; Check SCALE flag set
mov #0x6340,mmap(ST1_55) ; Set CPL,XF,SATD,SXAM,FRCT (SCALE=1)
mov #0x1f22,mmap(ST3_55) ; Set: HINT,SATA,SMUL
xcc do_scale,TC1
mov #0x6300,mmap(ST1_55) ; Set CPL,XF,SATD,SXAM (SCALE=2)

do_scale
mov T2,fft.d_T2 ; Save T2

|| mov #1,AC0
mov AC0,fft.d_L ; Initialize L=1

|| sfts AC0,T0 ; T0=EXP
mov AC0,fft.d_N ; N=1<<EXP
mov XAR1,XCDP ; CDP = pointer to U[]
mov XSP,XAR4
add #fft.d_temp,AR4 ; AR4 = pointer to temp
mov XAR0,XAR1 ; AR1 points to sample buffer
mov T0,T1
mov XAR0,XAR5 ; Copy extended bits to XAR5

outer_loop ; for (L=1; L<=EXP; L++)
mov fft.d_L,T0 ; Note: Since the buffer is

|| mov #2,AC0 ; arranged in re,im pairs

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 341

Table 6.11 (continued)

sfts AC0,T0 ; the index to the buffer
neg T0 ; is doubled

|| mov fft.d_N,AC1 ; But the repeat counters
sftl AC1,T0 ; are not doubled
mov AC0,T0 ; LE=2<<L

|| sfts AC0,#-1
mov AC0,AR0 ; LE1=LE>>1

|| sfts AC0,#-1
sub #1,AC0 ; Init mid_loop counter
mov mmap(AC0L),BRC0 ; BRC0=LE1-1
sub #1,AC1 ; Initialize inner loop counter
mov mmap(AC1L),BRC1 ; BRC1=(N>>L)-1
add AR1,AR0
mov #0,T2 ; j=0

|| rptblocal mid_loop-1 ; for (j=0; j<LE1;j++)
mov T2,AR5 ; AR5=id=i+LE1
mov T2,AR3
add AR0,AR5 ; AR5 = pointer to X[id].re
add #1,AR5,AR2 ; AR2 = pointer to X[id].im
add AR1,AR3 ; AR3 = pointer to X[i].re

|| rptblocal inner_loop-1 ; for(i=j; i<N; i+=LE)
mpy *AR5+,*CDP+,AC0 ; AC0=(X[id].re*U.re

:: mpy *AR2-,*CDP+,AC1 ; -X[id].im*U.im)/SCALE
masr *AR5-,*CDP-,AC0 ; AC1=(X[id].im*U.re

:: macr *AR2+,*CDP-,AC1 ; +X[id].re*U.im)/SCALE
mov pair(hi(AC0)),dbl(*AR4); AC0H=temp.re AC1H=temp.im

|| mov dbl(*AR3),AC2
xcc scale,TC1

|| mov AC2>>#1,dual(*AR3) ; Scale X[i] by 1/SCALE
mov dbl(*AR3),AC2

scale
add T0,AR2

|| sub dual(*AR4),AC2,AC1 ; X[id].re=X[i].re/SCALE-temp.re
mov AC1,dbl(*(AR5+T0)) ; X[id].im=X[i].im/SCALE-temp.im

|| add dual(*AR4),AC2 ; X[i].re=X[i].re/SCALE+temp.re
mov AC2,dbl(*(AR3+T0)) ; X[i].im=X[i].im/SCALE+temp.im

inner_loop ; End of inner loop
amar *CDP+
amar *CDP+ ; Update k for pointer to U[k]

|| add #2,T2 ; Update j
mid_loop ; End of mid-loop

sub #1,T1
add #1,fft.d_L ; Update L
bcc outer_loop,T1>0 ; End of outer loop
mov fft.d_ST1,AR2 ; Restore ST1,ST3,T2
mov fft.d_ST3,AR3
mov AR2,mmap(ST1_55)
mov AR3,mmap(ST3_55)
mov (fft.d_AR5),AR5
mov fft.d_T2,T2
aadd #(Size-ARGS-1),SP ; Reset SP
ret

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

342 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

We also write the bit-reversal function using C55x assembly language for improving run-time effi-

ciency. Table 6.12 lists the assembly implementation of bit-reversal function. To reduce the computation

of the FFT algorithm, we precalculate the twiddle factors using C function w_table.c during the setup

process. In order to use the same FFT routine for the IFFT calculation, two simple changes are made.

First, the conjugating twiddle factors imply the sign change of the imaginary portion of the complex sam-

ples; that is, X[i].im = -X[i].im. Second, the normalization of 1/N is handled in the FFT routine

by setting the scale flag to zero.

Table 6.12 List of assembly implementation of bit-reversal function

.global _bit_rev
.sect ".text:fft_code"

_bit_rev
psh mmap(ST2_55) ; Save ST2
bclr ARMS ; Reset ARMS bit
mov #1,AC0
sfts AC0,T0 ; T0=EXP, AC0=N=2EXP
mov AC0,T0 ; T0=N
mov T0,T1
add T0,T1
mov mmap(T1),BK03 ; Circular buffer size=2N
mov mmap(AR0),BSA01 ; Init circular buffer base
sub #2,AC0
mov mmap(AC0L),BRC0 ; Initialize repeat counter to N-1
mov #0,AR0 ; Set buffer start address
mov #0,AR1 ; as offset = 0
bset AR0LC ; Enable AR0 and AR1 as
bset AR1LC ; circular pointers

|| rptblocal loop_end-1 ; Start bit reversal loop
mov dbl(*AR0),AC0 ; Get a pair of sample

|| amov AR1,T1
mov dbl(*AR1),AC1 ; Get another pair

|| asub AR0,T1
xccpart swap1,T1>=#0

|| mov AC1,dbl(*AR0+) ; Swap samples if j>=i
swap1

xccpart loop_end,T1>=#0
|| mov AC0,dbl(*(AR1+T0B))
loop_end ; End bit reversal loop

pop mmap(ST2_55) ; Restore ST2
ret

The experiment computes 128-point FFT, inverse FFT, and the error between the input and the output

of inverse FFT. The files used for this experiment are listed in Table 6.13.

Procedures of the experiment are listed as follows:

1. Open the project file, asm_fft.pjt, and rebuild the project.

2. Run the FFT experiment using the input data file input.dat.

3. Examine the FFT and IFFT input and output, and check the input and output differences stored in

the array error[].

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 343

Table 6.13 File listing for experiment exp6.6.5_asm_FFT

Files Description

asm_fftTest.c C function for testing assembly FFT experiment

fft.asm Assembly function for FFT

bit_rev.asm Assembly function performs bit reversal

w_table.c C function generates twiddle factors

asm_fft.h C header file for fixed-point FFT experiment

icomplex.h C header file defines fixed-point complex data type

asm_fft.pjt DSP project file

asm_fft.cmd DSP linker command file

input.dat Data file

6.6.6 Implementation of Fast Convolution

This experiment uses the overlap-add technique with the following steps:� Pad M (N − L) zeros to the FIR filter impulse response of length L where N > L , and process the

sequence using an N -point FFT. Store the results in the complex buffer H[N].� Segment the input sequence of length M with L − 1 zeros padded at the end.� Process each segment of data samples with an N -point FFT to obtain the complex array X[N].� Multiply H and X in frequency domain to obtain Y.� Perform N -point IFFT to get the time-domain filtered sequence.� Add the first L samples overlapped with the previous segment to form the output. Combine all the

resulting segments to obtainy(n).

The C program implementation of fast convolution using FFT and IFFT is listed in Table 6.14. The

files used for this experiment are listed in Table 6.15.

Table 6.14 C program section for fast convolution

for (i=0; i<L; i++) /* Copy filter coefficient to work buffer */
{

X[i].re = LP_h[i];
X[i].im = 0;

}
w_table(U,EXP); /* Create Twiddle lookup table for FFT */
bit_rev(X,EXP); /* Bit reversal arrange the coefficient */
fft(X,EXP,U,1); /* FFT to the filter coefficients */

for (i=0; i<N; i++) /* Save frequency domain coefficients */
{

H[i].re = X[i].re <<EXP;
H[i].im = X[i].im <<EXP;

}
/* Start FFT Convolution test */

continues overleaf

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

344 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

Table 6.14 (continued)

j=0;
for (;;)
{

for (i=0; i<M; i++)
{

X[i].re = input[j++];/* Generate input samples */
X[i].im = 0;
re1[i] = X[i].re; /* Display re1[] shows all 3 freq. */
if (j==DATA_LEN)
{

j=0;
}

}
for (i=i; i<N; i++) /* Fill zeros to data buffer */
{

X[i].re = 0;
X[i].im = 0;

}
/* Start FFT convolution*/
bit_rev(X,EXP); /* Arrange sample in bit reversal order */
fft(X,EXP,U,1); /* Perform FFT */
freqflt(X,H,N); /* Perform frequency domain filtering */
bit_rev(X,EXP); /* Arrange sample in bit reversal order */
fft(X,EXP,U,0); /* Perform IFFT */
olap_add(X,OVRLAP,L,M,N);/* Overlap and add algorithm */

}

Procedures of the experiment are listed as follows:

1. Open the project file, fast_convolution.pjt, and rebuild the project.

2. Run the fast convolution experiment using the data file input.dat.

3. Replace different FIR filter coefficients provided in this project and profile the filter run time cycles

for different filter lengths.

Table 6.15 File listing for experiment exp6.6.6_fastconvolution

Files Description

fast_convolution.c C function for testing fast convolution experiment

fft.asm Assembly function for FFT

bit_rev.asm Assembly function performs bit reversal

freqflt.asm Assembly function performs fast convolution

olap_add.asm Assembly function performs overlap-add

w_table.c C function generates twiddle factors

fast_convolution.h C header file for fast convolution filter experiment

icomplex.h C header file defines fixed-point complex data type

fast_convolution.pjt DSP project file

fast_convolution.cmd DSP linker command file

input.dat Data file

firlp8.dat - firlp512.dat Lowpass filter coefficients from 8th to 512th

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 345

Table 6.16 File listing for experiment exp6.6.7_realtime_FFT_DSPBIOS

Files Description

realtime_DSPBIOS.c C function for testing real-time FFT experiment

fft.asm Assembly function for FFT

bit_rev.asm Assembly function performs bit reversal

w_table.c C function generates twiddle factors

plio.c C function for interface PIP with low-level I/O functions

realtime_fft.h C header file for FFT experiment

icomplex.h C header file defines fixed-point complex data type

plio.h C header file for PIP with low-level I/O functions

lio.h C header file for low-level I/O functions

rt_FFT_DSPBIOS.pjt DSP project file

rt_FFT_dspbioscfg.cmd DSP linker command file

rt_FFT_dspbios.cdb DSP/BIOS configuration file

timit2.wav Speech file

tone.wav Tone file

unControl.wav Data file

6.6.7 Real-Time FFT Using DSP/BIOS

This experiment integrates the FFT and IFFT using DSP/BIOS for real-time demonstrations. The C5510

DSK takes input signal from an audio source, applies FFT, and uses the IFFT to convert it back to time

domain for real-time playback. The input signals used for this experiment include speech, pure tone, and

modulated tone. These signals are sampled at 8000 Hz and stored in wave file format. The experiment

uses 128-point FFT. Table 6.16 lists the files used for this experiment.

Procedures of the experiment are listed as follows:

1. Open the project file, rt_FFT_DSPBIOS.pjt, and rebuild the project.

2. Connect the line-in of the DSK with the source audio player and headphone-out to a headphone or

loudspeaker.

Table 6.17 File listing for experiment exp66.8_realtime_fftFilter

Files Description

rt_fftFilter.c C function for testing real-time FFT experiment

fft.asm Assembly function for FFT

bit_rev.asm Assembly function performs bit reversal

freqflt.asm Assembly function performs fast convolution

olap_add.asm Assembly function performs overlap-add

olap_add.c C function controls overlap-add process

plio.c C function for interface PIP with low-level I/O functions

rt_fftFilter.h C header file for fast convolution experiment

icomplex.h C header file defines fixed-point complex data type

plio.h C header file for PIP with low-level I/O functions

lio.h C header file for low-level I/O functions

bandstop_128tap.h FIR filter coefficients

rt_fftFilter.pjt DSP project file

rt_fftFiltercfg.cmd DSP linker command file

rt_fftFilter.cdb DSP/BIOS configuration file

timit2.wav Speech file

timit2_with_tone.wav Data file of speech + tone

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

346 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

(a) Speech signal with 1000 Hz tone interference, 1000 Hz tone at ---16.08 dB.

(b) After FIR filtering, the 1000 Hz tone has been reduced to ---72.75 dB.

Figure 6.23 Fast convolution for removing 1000 Hz interference from speech: (a) speech signal with the 1000 Hz

tone interference, 1000 Hz tone at −16.08 dB; (b) after FIR filtering, the 1000 Hz tone has been reduced to −72.75 dB

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

REFERENCES 347

3. Run the experiment and listen to the playback of audio samples.

4. Repeat the experiment using different audio data files.

6.6.8 Real-Time Fast Convolution

This experiment uses the fast convolution with the DSP/BIOS for real-time FIR filtering. The files used

for this experiment are listed in Table 6.17. The input signals used for this experiment include the speech

files timit2.wav and timit2_with_tone.wav, which adds 1000 Hz tone to timit2.wav. Both wave

files have sampling rate of 8000 Hz. The experiment uses 512-point FFT. The FIR filter was designed by

MATLAB in Example 6.21.

Procedures of the experiment are listed as follows:

1. Open the project file, exp6_rt_fftFilter.pjt.

2. Connect the line-in of the DSK with the audio source and headphone-out to a headphone or loud-

speaker.

3. Open the source file, rt_fftFilter.c, turn off the conditional compile switch

FAST CONVOLUTION, and recompile the project. This will disable the FIR filtering using

fast convolution.

4. Run the project and listen to the audio playback. The 1000 Hz tone interference can be heard clearly

because the filter is set in bypass mode. The magnitude spectrum shown in Figure 6.23(a) shows the

strong presence of 1000 Hz tone.

5. Open the source file rt_fftFilter.c, set the conditional compile switch FAST CONVOLUTION

on, and recompile the project. This will perform the fast convolution as FIR filtering in the project.

6. Rerun the project and listen to the real-time playback of audio samples. The 1000 Hz tone interference

will be reduced as shown in Figure 6.23(b).

References

[1] D. J. DeFatta, J. G. Lucas, and W. S. Hodgkiss, Digital Signal Processing: A System Design Approach, New

York: John Wiley & Sons, Inc., 1988.

[2] N. Ahmed and T. Natarajan, Discrete-Time Signals and Systems, Englewood Cliffs, NJ: Prentice Hall, 1983.

[3] S. M. Kuo and W. S. Gan, Digital Signal Processors, Upper Saddle River, NJ: Prentice Hall, 2005.

[4] L. B. Jackson, Digital Filters and Signal Processing, 2nd Ed., Boston, MA: Kluwer Academic, 1989.

[5] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice Hall,

1989.

[6] S. J. Orfanidis, Introduction to Signal Processing, Englewood Cliffs, NJ: Prentice Hall, 1996.

[7] J. G. Proakis and D. G. Manolakis, Digital Signal Processing – Principles, Algorithms, and Applications, 3rd

Ed., Englewood Cliffs, NJ: Prentice Hall, 1996.

[8] A. Bateman and W. Yates, Digital Signal Processing Design, New York: Computer Science Press, 1989.

[9] S. D. Stearns and D. R. Hush, Digital Signal Analysis, 2nd Ed., Englewood Cliffs, NJ: Prentice Hall, 1990.

[10] W. Tian, Method for Efficient and Zero Latency Filtering in a Long-Impulse-Response System, European patent,

WO0217486A1, Feb. 2002.

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

348 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

[11] Math Works, Inc.,Using MATLAB, Version 6, 2000.

[12] Math Works, Inc., Signal Processing Toolbox User’s Guide, Version 6, 2004.

[13] Math Works, Inc., Filter Design Toolbox User’s Guide, Version 3, 2004.

[14] Math Works, Inc., Fixed-Point Toolbox User’s Guide, Version 1, 2004.

Exercises

1. Compute the Fourier series coefficients of cosine function x(t) = cos (2π f0t).

2. Compute the 4-point DFT of the sequence {1, 1, 1, 1} using the matrix equation given in Equation (6.19).

3. Compute X (0) and X (4) of 8-point DFT of sequence {1, 1, 1, 1, 2, 3, 4, 5}.

4. Prove the symmetry and periodicity properties of the twiddle factors defined as

(a) W k+N/2
N = −W k

N ;

(b) W k+N
N = W k

N .

5. Consider the following two sequences:

x1(n) = 1 and x2(n) = n, 0 ≤ n ≤ 3.

(a) Compute the linear convolution of these two sequences.

(b) Compute the circular convolution of these two sequences.

(c) Show how to pad zeros for these two sequences such that the circular convolution results are the same as

linear convolution in (a).

6. Construct the signal-flow diagram of FFT for N = 16 using the decimation-in-time method.

7. Construct the signal-flow diagram of FFT for N = 8 using the decimation-in-frequency method.

8. Similar to Table 6.1, show the bit-reversal process for 16-point FFT.

9. Consider 1 s of digitized signal with sampling rate 20 kHz. It is desired to have the spectrum with a frequency

resolution of 100 Hz or less. Is this possible? If impossible, what FFT size N should be used?

10. A 1 kHz sinusoid is sampled at 8 kHz. The 128-point FFT is performed to compute X (k). What is the computa-

tional resolution? At what frequency indices k we expect to observe peaks in |X (k)|? Can we observe the line

spectrum?

11. A touch-tone phone with a dual-tone multifrequency (DTMF) transmitter encodes each keypress as a sum of

two sinusoids, with two frequencies taken from each of the following groups:

Vertical group: 697, 770, 852, 941 Hz;

Horizontal group: 1209, 1336, 1477, 1633 Hz.

What is the smallest DFT size N that we can distinguish these two sinusoids from the computed spectrum? The

sampling rate used in telecommunications is 8 kHz.

12. Write a MATLAB script to verify the DFT and IDFT results obtained in Example 6.7.

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

EXERCISES 349

13. Similar to Example 6.9 and given x(n) = {1, 2, 3, 4, 5, 6, 7, 8} and h(n) = {1, 0, 1, 0, 1, 0, 1, 0}. Write MATLAB

scripts that implement the following tasks:

(a) linear convolution;

(b) circular convolution using FFT and IFFT; and

(c) fast convolution with zero padding of two sequences x(n) and h(n).

14. Similar to Example 6.14, compute fixed-point FFT with Q15 format using the scaling factor 1/128 at stage 1.

Does overflow occur? Compare the results with scaling factor 0.5 at the input of each stage.

15. Similar to Example 6.14 but using a zero-mean, variance = 0.5, white noise instead of sinewave, compute

Q15 FFT without scaling. How many overflows occur in the quantized FFT? Try different scaling vectors,

F.ScaleValues, and discuss the difference by using sinewave as input.

16. Similar to Example 6.17, use different techniques to distinguish two sinewaves at 60 and 61 Hz.

17. Write a C or MATLAB program to compute the fast convolution of a long data sequence with a short coefficient

sequence employing the overlap-save method introduced in Section 6.5.4. Compare the results with the MATLAB

function fftfilt that uses overlap-add method.

18. The radix-2 FFT code used in the experiments is written in consideration of minimizing the code size. An

alternative FFT implementation can be more efficient in terms of the execution speed with the expense of using

more program memory. For example, the twiddle factor used by the first stage and the first group of other

stages is constant W 0
N = 1. Therefore, the multiplication operations in these stages can be simplified. Modify

the assembly FFT routine given in Table 6.11 to incorporate this observation. Profile the run-time clock cycles

and record the memory usage. Compare the results with those obtained by the experiment given in Section 6.6.5.

19. The radix-2 FFT is the most widely used algorithm for FFT computation. When the number of data samples

is a power of 2m (i.e., N = 22m = 4m), we can further improve the run-time efficiency by employing the

radix-4 FFT algorithm. Modify the assembly FFT routine given in Table 6.11 to the radix-4 FFT algorithm.

Profile the run-time clock cycles, and record the memory space usage for a 1024-point radix-4 FFT (210 = 45 =
1024). Compare the radix-4 FFT results with the results of 1024-point radix-2 FFT computed by the assembly

routine.

20. Take advantage of twiddle factor W 0
N = 1 to further improve the radix-4 FFT algorithm run-time efficiency.

Compare the results of 1024-point FFT implementation using different approaches.

21. Most of the DSP applications use real input samples, our complex FFT implementation zeros out the imaginary

components of the complex buffer (see experiment given in Section 6.6.5). This approach is simple and easy,

but it is not efficient in terms of the execution speed. For real input, we can split the even and odd samples into

two sequences, and compute both even and odd sequences in parallel. This approach will reduce the execution

time by approximately 50 %. Given a real-value input x(n) of 2N samples, we can define c(n) = a(n) + jb(n),

where two inputs a(n) = x(n) and b(n) = x(n + 1) are real sequences. we can represent these sequences as

a(n) = [c(n) + c∗(n)]/2 and b(n) = − j[c(n) − c*(n)]/2, then they can be written in terms of DFTs as Ak (k) =
[C(k) + C*(N − k)]/2 and Bk (k) = − j[C(k) − C*(N − k)]/2. Finally, the real input FFT can be obtained

by X (k) = Ak (k) + W k
2N Bk (k) and X (k + N) = Ak (k) − W k

2N Bk (k), where k = 0, 1, . . . , N − 1. Modify the

complex radix-2 FFT assembly routine to efficiently compute 2N real input samples.

22. Write a 128-point, decimation-in-frequency FFT function in fixed-point C or intrinsics and verify it using the

experiment given in Section 6.6.4. Then write the FFT function using C55x assembly language and verify it

using the experiment given in Section 6.6.5.

23. The TMS320C55x supports bit-reversal addressing mode. Replace the bit-reversal function with the C55x

bit-reversal addressing mode for the experiment given in Section 6.6.5.

JWBK080-06 JWBK080-Kuo March 8, 2006 11:49 Char Count= 0

350 FREQUENCY ANALYSIS AND FAST FOURIER TRANSFORM

24. Develop an experiment to compute the PSD using the C55x simulator or DSK. Add Hamming window to

compute PSD.

25. Develop an experiment for fast convolution using the overlap-save technique. Verify the fast convolution result

using the data from the experiment given in Section 6.6.6.

26. Develop an experiment and compare the computational load between the experiment given in Section 6.6.6

using fast convolution method and using direct FIR filtering when FIR filter order is 512.

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

7
Adaptive Filtering

We have introduced techniques for design and implementation of time-invariant FIR and IIR filters with

fixed coefficients in Chapters 4 and 5, respectively. In this chapter, we will introduce time-varying adaptive

filters with changing characteristics.

7.1 Introduction to Random Processes

As discussed in Section 3.3, the real-world signals are often random in nature. Some common examples

of random signals are speech, music, and noises. In this section, we will briefly review the important

properties of the random processes and introduce fundamental processing techniques.

The autocorrelation function of the random process x(n) is defined as

rxx (n, k) = E [x(n)x(k)] . (7.1)

This function specifies the statistical relation at different time indices n and k, and gives the degree of

dependence between two random variables of (n − k) units apart.

Example 7.1: Consider a digital white noise x(n) as uncorrelated random variables with

zero-mean and variance σ 2
x . The autocorrelation function is

rxx (n, k) = E [x(n)x(k)] = E [x(n)] E [x(k)]

=
{

0, n �= k
σ 2

x n = k
.

Correlation is a very useful tool for detecting signals that are corrupted by additive random noises,

measuring the time delay between two signals, determining the impulse response of a system, and many

others. Correlation is often used in radar, sonar, digital communications, and other engineering areas.

For example, in radar and sonar applications, the received signal reflected from the target is the delayed

version of the transmitted signal. By measuring the round-trip delay using an appropriate correlation

function, the radar and sonar can determine the distance of the target.

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

351

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

352 ADAPTIVE FILTERING

A random process is stationary if its statistics do not change with time. The most useful and relaxed

form of stationary is the wide-sense stationary (WSS) process that satisfies the following two conditions:

1. The mean of the process is independent of time. That is

E[x(n)] = mx , (7.2)

where the mean mx is a constant.

2. The autocorrelation function depends only on the time difference. That is

rxx (k) = E [x(n + k)x(n)] , (7.3)

where k is the time lag.

Example 7.2: Given the WSS sequence x(n) = anu(n), 0 < a < 1, the autocorrelation function

can be computed as

rxx (k) =
∞∑

n=−∞
x(n + k)x(n) =

∞∑
n=0

an+kan = ak
∞∑

n=0

(a2)n .

Since a < 1, we obtain

rxx (k) = ak

1 − a2
.

The autocorrelation function rxx (k) of a WSS process has the following important properties:

1. The autocorrelation function is an even function. That is,

rxx (−k) = rxx (k). (7.4)

2. The autocorrelation function is bounded by

|rxx (k)| ≤ rxx (0), (7.5)

where rxx (0) = E[x2(n)] is the mean-square value, or the power of random process x(n). In addition,

if x(n) is a zero-mean random process, we have

rxx (0) = E[x2(n)] = σ 2
x . (7.6)

Example 7.3: Considering the sinusoidal signal expressed as x(n) = cos(ωn), find the mean and

the autocorrelation function of x(n):

(a) mx = E [cos(ωn)] = 0,

(b) rxx (k) = E[x(n + k)x(n)] = E[cos(ωn + ωk) cos(ωn)]

= 1

2
E[cos (2ωn + ωk)] + 1

2
cos(ωk) = 1

2
cos(ωk).

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

INTRODUCTION TO RANDOM PROCESSES 353

The crosscorrelation function between two WSS processes x(n) and y(n) is defined as

rxy(k) = E [x(n + k)y(n)] . (7.7)

This crosscorrelation function has the property

rxy(k) = ryx (−k). (7.8)

Therefore, ryx (k) is simply the folded version of rxy(k).

In practice, we may only have one sample sequence {x(n)} available for analysis. In dealing

with finite-duration sequence, the sample mean of x(n) is defined as

m̄x = 1

N

N−1∑
n=0

x(n), (7.9)

where N is the number of samples in the short-time analysis interval. The sample autocorrelation

function is defined as

r̄xx (k) = 1

N − k

N−k−1∑
n=0

x(n + k)x(n), k = 0, 1, . . . , N − 1. (7.10)

In practice, we can only expect good results for lags of no more than 5–10 % of the length of the

signals.

An important random signal is called white noise which has zero mean. Its autocorrelation function is

expressed as

rxx (k) = σ 2
x δ(k), (7.11)

and the power spectrum is given by

Pxx (ω) = σ 2
x , |ω| < π, (7.12)

which is of constant value for all frequencies ω.

Example 7.4: Consider a second-order FIR filter expressed as

y(n) = x(n) + 3x(n − 1) + 2x(n − 2).

The input x(n) is a zero-mean white noise. Find the mean my and the autocorrelation function

ryy(k) of the output y(n):

(a) my = E[y(n)] = E[x(n)] + 3E[x(n − 1)] + 2E[x(n − 2)] = 0,

(b) ryy(k) = E[y(n + k)y(n)]

= 14rxx (k) + 9rxx (k − 1) + 9rxx (k + 1) + 2rxx (k − 2) + 2rxx (k + 2)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
14σ 2

x , if k = 0

9σ 2
x , if k = ±1

2σ 2
x , if k = ±2

0, otherwise

.

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

354 ADAPTIVE FILTERING

MATLAB Signal Processing Toolbox provides the function xcorr for estimating crosscorrelation

function as

c = xcorr(x,y)

where x and y are length N vectors. This function returns the length 2N– 1 crosscorrelation sequence c.

This function also estimates autocorrelation function as

a = xcorr(x)

7.2 Adaptive Filters

The signal degradation in some physical systems is time varying, unknown, or possibly both. For example,

consider a high-speed modem for transmitting and receiving data over telephone channels. It employs a

filter called a channel equalizer to compensate for the channel distortion. Since the dial-up communication

channels have different and time-varying characteristics on each connection, the equalizer must be an

adaptive filter.

Adaptive filters modify their characteristics to achieve certain objectives by automatically updating

their coefficients. Many adaptive filter structures and adaptation algorithms have been developed for dif-

ferent applications. This chapter presents the most widely used adaptive filters based on the FIR filter with

the least-mean-square (LMS) algorithm. These adaptive filters are relatively simple to design and imple-

ment. They are well understood with regard to stability, convergence speed, steady-state performance,

and finite-precision effects.

7.2.1 Introduction to Adaptive Filtering

An adaptive filter consists of two distinct parts – a digital filter to perform the desired filtering, and an

adaptive algorithm to adjust the coefficients (or weights) of the filter. A general form of adaptive filter is

illustrated in Figure 7.1, where d(n) is a desired (or primary input) signal, y(n) is the output of a digital

filter driven by a reference input signal x(n), and an error signal e(n) is the difference between d(n) and

y(n). The adaptive algorithm adjusts the filter coefficients to minimize the mean-square value of e(n).

Therefore, the filter weights are updated so that the error is progressively minimized on a sample-by-

sample basis.

In general, there are two types of digital filters that can be used for adaptive filtering: FIR and IIR

filters. The FIR filter is always stable and can provide a linear-phase response. On the other hand, the IIR

x (n) y (n)

d(n)

e (n)
+

Adaptive
algorithm

Digital
filter

−

Figure 7.1 Block diagram of adaptive filter

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

ADAPTIVE FILTERS 355

y(n)

z−1 z−1

w0(n)

x(n) x(n − 1) x(n − L + 1)

wL−1(n)w1(n)

+

Figure 7.2 Block diagram of FIR filter for adaptive filtering

filter involves both zeros and poles. Unless they are properly controlled, the poles in the filter may move

outside the unit circle and result in an unstable system during the adaptation of coefficients. Thus, the

adaptive FIR filter is widely used for practical real-time applications. This chapter focuses on the class

of adaptive FIR filters.

The most widely used adaptive FIR filter is depicted in Figure 7.2. The filter output signal is computed

as

y(n) =
L−1∑
l=0

wl (n)x(n − l), (7.13)

where the filter coefficients wl (n) are time varying and updated by the adaptive algorithms that will be

discussed next.

We define the input vector at time n as

x(n) ≡ [x(n)x(n − 1) . . . x(n − L + 1)]T , (7.14)

and the weight vector at time n as

w(n) ≡ [w0(n)w1(n) . . . wL−1(n)]T . (7.15)

Equation (7.13) can be expressed in vector form as

y(n) = wT (n)x(n) = xT (n)w(n). (7.16)

The filter output y(n) is compared with the desired d(n) to obtain the error signal

e(n) = d(n) − y(n) = d(n) − wT (n)x(n). (7.17)

Our objective is to determine the weight vector w(n) to minimize the predetermined performance

(or cost) function.

7.2.2 Performance Function

The adaptive filter shown in Figure 7.1 updates the coefficients of the digital filter to optimize some

predetermined performance criterion. The most commonly used performance function is based on the

mean-square error (MSE) defined as

ξ (n) ≡ E[e2(n)]. (7.18)

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

356 ADAPTIVE FILTERING

The MSE function determined by substituting Equation (7.17) into (7.18) can be expressed as

ξ (n) = E[d2(n)] − 2pT w(n) + wT (n)Rw(n), (7.19)

where p is the crosscorrelation vector defined as

p ≡ E[d(n)x(n)]

= [rdx (0)rdx (1) . . . rdx (L − 1)]T , (7.20)

and

rdx (k) ≡ E[d(n + k)x(n)] (7.21)

is the crosscorrelation function between d(n) and x(n). In Equation (7.19), R is the input autocorrelation

matrix defined as

R ≡ E[x(n)xT (n)]

=

⎡⎢⎢⎢⎣
rxx (0) rxx (1) · · · rxx (L − 1)

rxx (1) rxx (0) · · · rxx (L − 2)
... · · · . . .

...

rxx (L − 1) rxx (L − 2) · · · rxx (0)

⎤⎥⎥⎥⎦ , (7.22)

where rxx (k) is the autocorrelation function of x(n) defined in Equation (7.3).

Example 7.5: Consider an optimum filter illustrated in Figure 7.3. If E[x2(n)] = 1,

E[x(n)x(n − 1)] = 0.5, E�d2(n)� = 4, E[d(n)x(n)] = −1, and E[d(n)x(n − 1)] = 1, find ξ .

From Equation (7.22), we have R =
[

1 0.5

0.5 1

]
, and from Equation (7.20), we have p =

[−1

1

]
.

Therefore from Equation (7.19), we obtain

ξ = E[d2(n)] − 2pT w + wT Rw

= 4 − 2
[−1 1

] [
1

w1

]
+ [

1 w1

] [
1 0.5

0.5 1

] [
1

w1

]
= w2

1 − w1 + 7.

e(n)+−

z −1
x(n) x(n − 1)

w1

d(n)

Figure 7.3 A simple optimum filter configuration

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

ADAPTIVE FILTERS 357

The optimum filter w◦ minimizes the MSE function ξ (n). Differentiation of Equation (7.19) with

respect to w and setting the result to 0, we have

Rw◦ = p. (7.23)

This equation provides a solution to the adaptive filtering problem in principle. In many applications, the

computation of solution

w◦ = R−1p (7.24)

requires continuous estimation of R and p since the signal may be nonstationary. In addition, when

the dimension of the autocorrelation matrix is large, the calculation of R−1 may present a significant

computational burden. Therefore, a more useful algorithm using a recursive method for computing w◦

has been developed, which will be discussed in the next section.

By substituting the optimum weight vector in Equation (7.24) for w(n) in Equation (7.19), we obtain

the minimum MSE:

ξmin = E[d2(n)] − pT w◦. (7.25)

Since R is positive semidefinite, the quadratic form on the right-hand side of Equation (7.19) indicates

that any departure of the weight vector w(n) from the optimum w◦ would increase the error above its

minimum value. This feature is very useful when we utilize search techniques in seeking the optimum

weight vector. In such cases, our objective is to develop an algorithm that can automatically search the

error surface to find the optimum weights that minimize ξ (n) using the input signal x(n) and the error

signal e(n).

Example 7.6: Consider an FIR filter with two coefficients w0 and w1, the desired signal d(n) =√
2 sin (nω0) , where n ≥ 0, and the reference signal x(n) = d(n− 1). Find w◦ and ξmin.

Similar to Example 7.5, we can obtain rxx (0) = E[x2(n)] = E[d2(n)] = 1, rxx (1) = cos (ω0),

rxx (2) = cos (2ω0), rdx (0) = rxx (1), and rdx (1) = rxx (2). From Equation (7.24), we have

w◦ = R−1p =
[

1 cos (ω0)

cos (ω0) 1

]−1 [
cos (ω0)

cos (2ω0)

]
=

[
2 cos (ω0)

−1

]
.

From Equation (7.25), we obtain

ξmin = 1 − [
cos (ω0) cos (2ω0)

] [
2 cos (ω0)

−1

]
= 0.

Equation (7.19) is the general expression of the performance function for an adaptive FIR filter with

filter coefficient vector w(n). The MSE is a quadratic function because the weights appear only to the first

and second degrees in Equation (7.19). For each coefficient vector w(n), there is a corresponding value

of MSE. Therefore, the MSE values associated with w(n) form an (L + 1)-dimensional space, which is

commonly called the MSE surface, or the performance surface.

For L = 2, this corresponds to an error surface in a three-dimensional space. The height of ξ (n)

corresponds to the power of the error signal e(n). If the filter coefficients change, the power in the error

signal will also change. Since the error surface is quadratic, a unique filter setting w(n) = w◦ will produce

the minimum MSE, ξmin. In the two-weight case, the error surface is an elliptic paraboloid. If we cut the

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

358 ADAPTIVE FILTERING

paraboloid with planes parallel to the w0 − w1 plane, we obtain concentric ellipses of constant MSEs.

These ellipses are called the error contours.

Example 7.7: Consider an FIR filter with two coefficients w0 and w1. The reference signal x(n)

is a zero-mean white noise with unit variance. The desired signal is given as

d(n) = b0x(n) + b1x(n − 1).

Plot the error surface and error contours.

From Equation (7.22), we obtain R =
[rxx (0) rxx (1)

rxx (1) rxx (0)

]
=

[
1 0

0 1

]
. From Equation (7.20),

we have p =
[rdx (0)

rdx (1)

]
=

[b0

b1

]
. From Equation (7.19), we get

ξ = E[d2(n)] − 2pT w + wT Rw

= (
b2

0 + b2
1

) − 2b0w0 − 2b1w1 + w2
0 + w2

1 .

Let b0 = 0.3 and b1 = 0.5, we have

ξ = 0.34 − 0.6w0 − w1 + w2
0 + w2

1 .

The MATLAB script (example7_7a.m) plots the error surface shown in Figure 7.4 (top) and the

script example7_7b.m plots the error contours shown in bottom of Figure 7.4.

7.2.3 Method of Steepest Descent

As shown in Figure 7.4, the MSE defined by Equation (7.19) is a quadratic function of the weights that can

be pictured as a positive-concave hyperparabolic surface with only one global minimum point. Adjusting

the weights to minimize the error signal involves descending along this surface until reaching the ‘bottom

of the bowl.’ Gradient-based algorithms are based on making local estimates of the gradient and moving

toward the bottom of the bowl. The steepest-descent method reaches the minimum by following the

negative-gradient direction in which the performance surface has the greatest rate of decrease.

The steepest-descent method is an iterative (recursive) technique that starts from some arbitrary initial

weight vector w(0). This technique descends to the bottom of the bowl, w◦, by moving on the error surface

in the direction of the tangent at that point. The mathematical development of the method of steepest

descent can be obtained from a geometric approach using the MSE surface. A specific orientation to the

surface is obtained using the directional derivatives of the surface at that point. The gradient of the error

surface ∇ξ (n) is defined as the vector of these directional derivatives. The concept of steepest descent

can be implemented in the following algorithm:

w(n + 1) = w(n) − μ

2
∇ξ (n), (7.26)

where μ is a convergence factor (or step size) that controls stability and the rate of convergence. The larger

the value of μ, the faster the convergence speed will be. The vector ∇ξ (n) denotes the gradient of the error

function with respect to w(n), and the negative sign updates the weight vector in the negative-gradient

direction. The successive corrections to the weight vector in the direction of the steepest descent of the

performance surface should eventually lead to the optimum value w◦, corresponding to the minimum

MSE ξmin.

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

ADAPTIVE FILTERS 359

−40

−20

−20

−30 30

−15

−10

−10

−5

−20

0

20

40

−40

−20

0

20

20

20

15

5

0

0

10

10

40
0

200

400

600

800

1000

1200

Error contour

Error surface
w

1

w
1

w
0

w
0

M
S

E

Figure 7.4 Performance surface (top) and error contours (bottom), L = 2

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

360 ADAPTIVE FILTERING

When w(n) has converged to w◦, it reaches the minimum point of the performance surface. At this

time when the gradient ∇ξ (n) = 0, the adaptation process defined by Equation (7.26) is stopped and

the weight vector stays at the optimum solution. The convergence can be viewed as a ball placed on the

‘bowl-shaped’ MSE surface at the point [w(0), ξ (0)]. When the ball is released, it would roll toward the

minimum of the surface, the bottom of the bowl, [w◦, ξmin].

7.2.4 The LMS Algorithm

In many practical applications, the statistics of d(n) and x(n) are unknown. Therefore, the method of

steepest descent cannot be used directly since it assumes exact knowledge of the gradient vector. The

LMS algorithm uses the instantaneous squared error, e2(n), to estimate the MSE. That is,

ξ̂ (n) = e2(n). (7.27)

Therefore, the gradient estimate used by the LMS algorithm can be written as

∇ ξ̂ (n) = 2 [∇e(n)] e(n). (7.28)

Since e(n) = d(n) − wT (n)x(n), ∇e(n) = −x(n), the gradient estimate becomes

∇ ξ̂ (n) = −2x(n)e(n). (7.29)

Substituting this gradient estimate into the steepest-descent algorithm of Equation (7.26), we have

w(n + 1) = w(n) + μx(n)e(n). (7.30)

This is the well-known LMS algorithm, or stochastic gradient algorithm. This algorithm is simple and

does not require squaring, averaging, or differentiating.

The LMS algorithm is illustrated in Figure 7.5 and is summarized as follows:

1. Determine L , μ, and w(0), where L is the length of the filter, μ is the step size, and w(0) is the initial

weight vector at time n = 0.

2. Compute the adaptive filter output

y(n) =
L−1∑
l=0

wl (n)x(n − l). (7.31)

x(n) y(n)

d(n)

e(n)

+
−

w(n)

LMS

Figure 7.5 Block diagram of an adaptive filter with the LMS algorithm

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

ADAPTIVE FILTERS 361

3. Compute the error signal

e(n) = d(n) − y(n). (7.32)

4. Update the adaptive weight vector using the LMS algorithm:

wl (n + 1) = wl (n) + μ x(n − l)e(n), l = 0, 1, . . . , L − 1. (7.33)

7.2.5 Modified LMS Algorithms

There are three simplified versions of the LMS algorithm that further reduce the number of multiplications.

However, the convergence rates of these LMS algorithms are slower than the LMS algorithm. The first

algorithm called sign-error LMS algorithm can be expressed as

w(n + 1) = w(n) + μ x(n)sgn[e(n)], (7.34)

where

sgn[e(n)] ≡
⎧⎨⎩

1, e(n) > 0

0, e(n) = 0

−1, e(n) < 0

. (7.35)

This sign operation of error signal is equivalent to a very harsh quantization of e(n). If μ is a negative

power of 2, μ x(n) can be computed with a right shift of x(n). In DSP implementations, however, the

conditional tests require more instruction cycles than the multiplications needed by the LMS algorithm.

The sign operation can be performed on data x(n) instead of error e(n), and it results in the sign-data

LMS algorithm expressed as

w(n + 1) = w(n) + μ e(n)sgn [x(n)] . (7.36)

Since L branch (IF-ELSE) instructions are required inside the adaptation loop to determine the signs

of x(n − i), i = 0, 1, . . . , L− 1, slower throughput than the sign-error LMS algorithm is expected.

Finally, the sign operation can be applied to both e(n) and x(n), and it results in the sign-sign LMS

algorithm expressed as

w(n + 1) = w(n) + μ sgn [e(n)] sgn [x(n)] . (7.37)

This algorithm requires no multiplication, and is designed for VLSI or ASIC implementation to save

multiplications. It is used in the adaptive differential pulse code modulation (ADPCM) for speech

compression.

Some practical applications such as modems and frequency-domain adaptive filtering require complex

operations for maintaining their phase relationships. The complex adaptive filter uses the complex input

vector x(n) and complex coefficient vector w(n) expressed as

x(n) = xr(n) + jxi(n) (7.38)

and

w(n) = wr(n) + jwi(n), (7.39)

where the subscripts r and i denote the real and imaginary, respectively.

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

362 ADAPTIVE FILTERING

The complex output y(n) is computed as

y(n) = wT (n)x(n), (7.40)

where all multiplications and additions are complex operations. The complex LMS algorithm adapts the

real and imaginary parts of w(n) simultaneously, and is expressed as

w(n + 1) = w(n) + μe(n)x∗(n), (7.41)

where ∗ denotes a complex conjugate such that x∗(n) = xr(n) − j xi(n). An example of decomposing

complex calculations into real-number operations can be found in Section 7.6.7 for adaptive channel

equalizer.

7.3 Performance Analysis

In this section, we briefly discuss important properties of the LMS algorithm such as stability, convergence

rate, and excess MSE due to gradient estimation.

7.3.1 Stability Constraint

As shown in Figure 7.5, the LMS algorithm involves the presence of feedback. Thus, the algorithm is

subject to the possibility of becoming unstable. From Equation (7.30), we observe that the parameter μ

determines the step size of correction applied to the weight vector. The convergence of the LMS algorithm

must satisfy

0 < μ <
2

λmax

, (7.42)

where λmax is the largest eigenvalue of the autocorrelation matrix R defined in Equation (7.22).

The computation of λmax is difficult when L is large. In practical applications, it is desirable to estimate

λmax using a simple method. From Equation (7.22), we have

λmax ≤
L−1∑
l=0

λl = Lrxx (0) = LPx , (7.43)

where

Px ≡ rxx (0) = E
[
x2(n)

]
(7.44)

denotes the power of x(n). Therefore, setting

0 < μ <
2

LPx
(7.45)

assures that Equation (7.42) is satisfied.

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

PERFORMANCE ANALYSIS 363

Equation (7.45) provides important information on selecting μ:

1. The upper bound on μ is inversely proportional to filter length L , thus a small μ is used for a higher

order filter.

2. Since μ is inversely proportional to the input signal power, low-power signals can use larger μ. We

can normalize μ with respect to Px for choosing step size that is independent of signal power. The

resulting algorithm is called the normalized LMS (NLMS) algorithm, which will be discussed later.

7.3.2 Convergence Speed

Convergence of the weight vector w(n) from w(0) to w◦ corresponds to the convergence of the MSE

from ξ (0) to ξmin. Therefore, convergence of the MSE toward its minimum value is a commonly used

performance measurement in adaptive systems because of its simplicity. A plot of the MSE versus time

n is referred to as the learning curve. Since the MSE is the performance criterion of the LMS algorithms,

the learning curve is a natural way to describe the transient behavior.

Each adaptive mode has its own time constant, which is determined by μ and the eigenvalue λl

associated with that mode. Thus, the overall convergence is clearly limited by the slowest mode, and can

be approximated as

τmse
∼= 1

μλmin

, (7.46)

where λmin is the minimum eigenvalue of the R matrix. Because τmse is inversely proportional to μ, we

have a large τmse (slow convergence) when μ is small. The maximum time constant τmse = 1/μλmin is a

conservative estimate in practical applications since only large eigenvalues will exert significant influence

on the convergence time.

If λmax is very large, only a small μ can satisfy the stability constraint. If λmin is very small, the time

constant can be very large, resulting in very slow convergence. The slowest convergence occurs for

μ = 1/λmax. Substituting this smallest step size into Equation (7.46) results in

τmse ≤ λmax

λmin

. (7.47)

Therefore, the speed of convergence is dependent on the ratio of the maximum to minimum eigenvalues

of the matrix R.

The eigenvalues λmax and λmin are very difficult to compute if the order of filter is high. An efficient

way is to approximate the eigenvalue spread by the spectral dynamic range expressed as

λmax

λmin

≤ max |X (ω)|2
min |X (ω)|2 , (7.48)

where X (ω) is DTFT of x(n). Therefore, an input signal with a flat spectrum such as a white noise will

have the fast convergence speed.

7.3.3 Excess Mean-Square Error

The steepest-descent algorithm defined in Equation (7.26) requires knowledge of the true gradient ∇ξ (n),

which must be estimated for each iteration. After the algorithm converges, the gradient ∇ξ (n) = 0;

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

364 ADAPTIVE FILTERING

however, the gradient estimator ∇ ξ̂ (n) �= 0. As indicated by Equation (7.26), this will cause w(n) to vary

randomly around w◦, thus producing excess noise at the filter output. The excess MSE, which is caused

by random noise in the weight vector after convergence, can be approximated as

ξexcess ≈ μ

2
LPxξmin. (7.49)

This approximation shows that the excess MSE is directly proportional to μ. The larger step size μ

results in faster convergence at the cost of steady-state performance. Therefore, there is a design trade-off

between the excess MSE and the speed of convergence for determining μ.

The optimal step size μ is difficult to determine. Improper selection of μ might make the convergence

speed unnecessarily slow or introduce more excess MSE in steady state. If the signal is nonstationary

and real-time tracking capability is crucial for a given application, we may choose a larger μ. If the

signal is stationary and convergence speed is not important, we can use a smaller μ to achieve bet-

ter steady-state performance. In some practical applications, we can use a larger μ at the beginning

of the operation for faster convergence, and then change to smaller μ to achieve better steady-state

performance.

The excess MSE, ξexcess, expressed in Equation (7.49) is also proportional to the filter length L , which

means that a larger L results in higher algorithm noise. From Equation (7.45), a larger L implies that a

smaller μ is required, thus resulting in slower convergence. On the other hand, a large L also implies

better filter characteristics. Again, there exists an optimum filter length L for a given application.

7.3.4 Normalized LMS Algorithm

The stability, convergence speed, and fluctuation of the LMS algorithm are governed by the step size μ

and the input signal power. As shown in Equation (7.45), the maximum stable step size μ is inversely

proportional to the filter length L and the signal power. One important technique to optimize the speed

of convergence while maintaining the desired steady-state performance is the NLMS:

w(n + 1) = w(n) + μ(n)x(n)e(n), (7.50)

where μ(n) is a normalized step size that is computed as

μ(n) = α

LP̂x (n)
, (7.51)

where P̂x (n) is an estimate of the power of x(n) at time n, and 0 < α < 2 is a constant.

Some useful implementation considerations are given as follows:

1. Choose P̂x (0) as the best a priori estimate of the input signal power.

2. A software constraint is required to ensure that μ(n) is bounded if P̂x (n) is very small when the signal

is absent.

7.4 Implementation Considerations

In many real-world applications, adaptive filters are implemented on fixed-point processors. It is important

to understand the finite wordlength effects of adaptive filters in meeting design specifications.

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

IMPLEMENTATION CONSIDERATIONS 365

7.4.1 Computational Issues

The coefficient update defined in Equation (7.33) requires L+ 1 multiplications and L additions if we

multiply μ*e(n) outside the loop. Given the input vector x(n) stored in the array x[], the error signal

en, the weight vector w[], the step size mu, and the filter length L, Equation (7.33) can be implemented

in C language as follows:

uen=mu*en; // u*e(n) outside the loop
for (l=0; l<L; l++) // l=0, 1,..., L-1
{

w[l] += uen*x[l]; // LMS update
}

The architecture of most DSP processors has been optimized for convolution operations to compute

filter output y(n) given in Equation (7.31). However, the weight update operations in Equation (7.33)

cannot take the advantage of this special architecture because each update involves loading the weight

value into the accumulator, performing a multiply–add operation, and storing the result back into memory.

We can reduce the computational complexity by skipping part of the weight update. In this case, the update

is performed only for a portion of filter coefficients in one sampling period. The update for remaining

portion may be at the following sampling periods. The computation complexity reduction is traded with

the cost of somewhat slower convergence.

In some practical applications, the desired signal d(n), and thus the error signal e(n), is not available

until several sampling intervals later. In addition, in the implementation of adaptive filters using DSP

processors with pipeline architecture, the computational delay is an inherent problem. The delayed LMS

algorithm can be expressed as

w(n + 1) = w(n) + μe(n −
)x(n −
). (7.52)

The delay in the coefficient adaptation has only a slight influence on the steady-state behavior of

the LMS algorithm. The delayed LMS algorithm with delay
 = 1 is widely used in implementing the

adaptive FIR filtering on the DSP processors with pipeline architecture.

7.4.2 Finite-Precision Effects

This section analyzes finite-precision effects in adaptive filters using fixed-point arithmetic and presents

methods for confining these effects to the acceptable levels. We assume that the input data samples are

properly scaled so that their values lie between −1 and 1. As introduced in Chapter 3, the techniques

used to inhibit the probability of overflow are scaling, saturation arithmetic, and guard bits. For adaptive

filters, the feedback path makes scaling far more complicated. The dynamic range of the filter output is

determined by the time-varying filter coefficients, which are unknown at the design stage.

For the adaptive FIR filter with the LMS algorithm, the scaling of the filter output and coefficients can

be achieved by scaling the ‘desired’ signal, d(n). The scale factor α, where 0 < α ≤ 1, is used to prevent

overflow of the filter coefficients during the weight update. Reducing the magnitude of d(n) reduces the

gain demand on the filter, thereby reducing the magnitude of the weight values. Since α only scales the

desired signal, it does not affect the rate of convergence, which depends on the input signal x(n).

With rounding operations, the finite-precision LMS algorithm can be described as follows:

y(n) = R

[
L−1∑
l=0

wl (n)x(n − l)

]
(7.53)

e(n) = R[αd(n) − y(n)] (7.54)

wl (n + 1) = R [wl (n) + μ x(n − l)e(n)] , l = 0, 1, . . . , L − 1, (7.55)

where R[x] denotes the fixed-point rounding of the quantity x .

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

366 ADAPTIVE FILTERING

When updating weights according to Equation (7.55), the product μx(n − l)e(n) produces a double-

precision number, which is added to the original stored weight value, wl (n), then is rounded to form the

updated value, wl (n + 1).

The power of the roundoff noise is dominated by the error in quantizing filter coefficients, which is

inversely proportional to the step size μ. Although a small value of μ reduces the excess MSE discussed

in Section 7.3.3, it may result in a large quantization error. There is still another factor to consider in

the selection of step size μ. As mentioned in Section 7.2, the adaptive algorithm is aimed at minimizing

the error signal, e(n). As the weight vector converges, the error signal decreases. The LMS algorithm

modifies the current parameter settings by adding a correction term, R [μ x(n − l)e(n)]. Adaptation will

stop because this update term will be rounded to zero when the correction term is smaller in magnitude

than the LSB. This phenomenon is known as ‘stalling’ or ‘lockup’. This problem can be solved by using

sufficient number of bits, and/or using a large step size μ, which still guarantees convergence of the

algorithm. However, this will increase excess MSE.

We may use the leaky LMS algorithm to reduce numeric errors accumulated in the filter coefficients. The

leaky LMS algorithm prevents overflow in finite-precision implementation by providing a compromise

between minimizing the MSE and constraining the energy of the adaptive filter. The leaky LMS algorithm

can be expressed as

w(n + 1) = νw(n) + μ x(n)e(n), (7.56)

where ν is the leakage factor with 0 < ν ≤ 1. The leaky LMS algorithm not only prevents unconstrained

weight overflow, but also limits the output power in order to avoid nonlinear distortion.

It can be shown that leakage is equivalent to adding low-level white noise. Therefore, this approach

results in some degradation in adaptive filter performance. The value of the leakage factor is determined

as a compromise between robustness and loss of performance. The excess error power due to the leakage

is proportional to [(1 − ν)/μ]2. Therefore, (1 − ν) should be kept smaller than in order to maintain an

acceptable level of performance.

7.4.3 MATLAB Implementations

MATLAB Filter Design Toolbox provides a function adaptfilt to support adaptive filtering. The syntax

of this function is

h = adaptfilt.algorithm(input1,input2,...)

This function returns an adaptive filter object h that uses the adaptive filtering technique specified by

algorithm. The algorithm string determines which adaptive filter algorithm the adaptfilt object

implements. The LMS-type algorithms are summarized in Table 7.1. The adaptive FIR filter objects use

different LMS algorithms to determine filter coefficients. For example,

h = adaptfilt.lms(l,stepsize,leakage,coeffs,states)

constructs an adaptive FIR filter h with the LMS algorithm. The input parameter l is the filter length

L; stepsize is the step size μ, a nonnegative scalar (defaults to 0.1); leakage is the leakage factor,

which must be a scalar between 0 and 1 (defaults to 1 providing no leakage). If the leakage factor is less

than 1, the leaky LMS algorithm is implemented. The input vector coeffs is the initial filter coefficient

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

IMPLEMENTATION CONSIDERATIONS 367

Table 7.1 Adaptive FIR filter objects with various LMS algorithms

Object.Algorithm Description

adaptfilt.lms Direct-form, LMS algorithm

adaptfilt.sd Direct-form, sign-data LMS algorithm

adaptfilt.se Direct-form, sign-error LMS algorithm

adaptfilt.ss Direct-form, sign-sign LMS algorithm

adaptfilt.nlms Direct-form, normalized LMS algorithm

adaptfilt.dlms Direct-form, delayed LMS algorithm

adaptfilt.blms Block-form, LMS algorithm

with default to all zeros, and states vector consists of initial filter states. It defaults to a vector of all

zeros. Some default parameters can be changed with

set(h,paramname,paramval)

Example 7.8: Given the primary signal x(n) as normally distributed random numbers. This signal

is filtered by an FIR filter with coefficient vector b = {0.1, 0.2, 0.4, 0.2, 0.1} to generate the desired

signal d(n). The following MATLAB script (example7_8.m, adapted from the MATLAB Help
menu) implements an adaptive FIR filter with the LMS algorithm shown in Figure 7.5:

x = randn(1,128); % Primary signal x(n)
b = [0.1,0.2,0.4,0.2,0.1]; % A system to be identified
d = filter(b,1,x); % Desired signal d(n)
mu = 0.05; % Step size mu
h = adaptfilt.lms(5,mu); % LMS algorithm
[y,e] = filter(h,x,d); % Adaptive filtering
plot(1:128,[d;y;e]); % Plot d(n), y(n), and e(n)

In the code, the filter length is L = 5 and the step size is μ = 0.05. The desired signal d(n), output

signal y(n), and error signal e(n) are plotted in Figure 7.6. It shows that the filter output y(n)

is gradually approximated to d(n), thus the difference (error) signal e(n) is converged to zero in

about 80 iterations.

In example7_8.m, we use the adaptive filtering syntax

[y,e] = filter(h,x,d);

which filters the input vector x through an adaptive filter object h, uses d for the desired signal, produces

the output vector y and the error vector e. The vectors x, d, and y must have the same length.

We can use the function maxstep (defaults to 0) to determine a reasonable range of step size values

for the signals being processed. The syntax

mumax = maxstep(h,x);

predicts a bound on the step size to provide convergence of the mean values of the adaptive filter

coefficients.

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

368 ADAPTIVE FILTERING

20

A
m

p
li

tu
d
e

Adaptive FIR filtering

Time index

40 60 80 100 120

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Desired

Output

Error

Figure 7.6 Performance of adaptive FIR filter with the LMS algorithm

7.5 Practical Applications

There are four classes of adaptive filtering applications: system identification, inverse modeling, predic-

tion, and interference canceling. The essential difference among these applications is the configuration

of signals x(n), d(n), y(n), and e(n).

7.5.1 Adaptive System Identification

System identification is an approach to model an unknown system. The paradigm of adaptive system

identification is illustrated in Figure 7.7, where P(z) is an unknown system to be identified by an adaptive

filter W (z). By exciting both P(z) and W (z) with the same excitation signal x(n) and minimizing the

difference of output signals y(n) and d(n), we can determine the characteristics of P(z).

As shown in Figure 7.7, the estimation error is given as

e(n) = d(n) − y(n)

=
L−1∑
l=0

[p(l) − wl (n)] x(n − l), (7.57)

where p(l) is the impulse response of the unknown plant. By choosing each wl (n) close to each p(l), the

error will be minimized. For using white noise as the excitation signal, minimizing e(n) will force the

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

PRACTICAL APPLICATIONS 369

x(n) y(n)

d(n)

e(n)
+

−Digital
filter, W(z)

LMS
algorithm

Unknown
system, P(z)

Signal
generator

Figure 7.7 Block diagram of adaptive system identification using the LMS algorithm

wl (n) to approach p(l), that is,

wl (n) ≈ p(l), l = 0, 1, . . . , L − 1. (7.58)

When the difference between the physical system response d(n) and the adaptive model response

y(n) has been minimized, the adaptive model approximates P(z) from the input/output viewpoint. When

the plant is time varying, the adaptive algorithm has the task of keeping the modeling error small by

continually tracking time variations of the plant dynamics.

Example 7.9: Assume that the excitation signal x(n) shown in Figure 7.7 is normally distributed

random signal. This signal is applied to an unknown system P(z) that is simulated by an FIR

filter with coefficient vector b = {0.05, –0.1, 0.15, –0.2, 0.25, –0.2, 0.15, –0.1, 0.05}. The MAT-

LAB script (example7_9.m, adapted from the MATLAB Help menu) implements the adaptive

system identification using the FIR filter of length L = 9 with the LMS algorithm. As shown in

Figure 7.8, the adaptive filter coefficients are equal to the unknown FIR system’s coefficients after

the convergence of the algorithm. In this case, the adaptive model W (z) exactly identifies the

unknown system P(z).

7.5.2 Adaptive Linear Prediction

Linear prediction estimates the values of signal at a future time. This technique has been successfully

applied to a wide range of applications such as speech coding and separating signals from noise. As

illustrated in Figure 7.9, the adaptive predictor consists of an adaptive filter in which the coefficients

wl (n) are updated by the LMS algorithm. The predictor output y(n) is expressed as

y(n) =
L−1∑
l=0

wl (n)x(n −
 − l), (7.59)

where
 is the number of delay samples. The coefficients are updated as

w(n + 1) = w(n) + μ x(n −
)e(n), (7.60)

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

370 ADAPTIVE FILTERING

Unknown system

Adaptive model

1 2 3 4 5

Coefficient #

6 7 8 9

0.25

0.2

0.15

0.1

0.05

0

C
o
ef

fi
ci

en
t

v
al

u
e

−0.05

−0.1

−0.15

−0.2

Figure 7.8 Converged adaptive filter coefficients

where x(n −
) = [x(n −
) x(n −
 − 1) . . . x(n −
 − L + 1)]T is the delayed reference signal vec-

tor, and e(n) = x(n) − y(n) is the prediction error. Proper selection of the prediction delay
 allows

improved frequency estimation performance for multiple sinusoids in white noise.

Now consider the adaptive predictor for enhancing an input of M sinusoids embedded in white noise,

which is of the form

x(n) = s(n) + v(n)

=
M−1∑
m=0

Am sin(ωmn + φm) + v(n), (7.61)

x(n)

y(n) e(n)

+
−Digital

filter W(z)

LMS

z − Δ

y(n)

Broadband
output

Narrowband
output

Figure 7.9 Block diagram of an adaptive predictor

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

PRACTICAL APPLICATIONS 371

where v(n) is white noise with uniform noise power σ 2
v . In this application, the structure shown in

Figure 7.9 is called the adaptive line enhancer, which efficiently tracks the sinusoidal components in

the received signal x(n) and separates these narrowband signals s(n) from broadband noise v(n). This

technique is very effective in practical applications when the signal and noise parameters are unknown

and/or time varying.

As shown in Figure 7.9, we want the highly correlated components of x(n) to appear in y(n). This

is accomplished by adjusting the weights to minimize the mean-square value of the error signal e(n).

This causes an adaptive filter W (z) to form multiple bandpass filters centered at the frequencies of the

sinusoidal components. The wideband noise component in the input is rejected, while the phase difference

(caused by
) of the narrowband signals is readjusted so that they can cancel correlated components in

d(n) to minimize the error signal e(n). In this case, the output y(n) is the enhanced signal, which contains

multiple sinusoids as expressed in Equation (7.61).

Example 7.10: Assume that the signal x(n) shown in Figure 7.9 consists of desired sinewave that

is corrupted by white noise. The adaptive line enhancer with
 = 1 can be used to decorrelate the

white noise component, thus enhancing the sinewave. This example is implemented in MATLAB

script example7_10.m. The enhanced output y(n) and the error signal e(n) are plotted in

Figure 7.10. As shown in the figure, the error signal is gradually reduced to the broadband white

noise, while the enhanced signal is converged to the desired sinewave.

In many digital communications and signal detection applications, the desired broadband signal v(n)

is corrupted by an additive narrowband interference s(n). From a filtering viewpoint, the objective of an

50 100 150

Time index

200 250

Adaptive line enhancer

1

0.5

0

A
m

p
li

tu
d
e

−0.5

−1

Output

Error

Figure 7.10 Performance of adaptive line enhancer

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

372 ADAPTIVE FILTERING

+
−

Noise
source

y(n)

Signal
source

LMS

Primary
sensor

Reference
sensor

d(n)

x(n)
W(z)

e(n)
z−Δ

Figure 7.11 Basic concept of adaptive noise canceling

adaptive filter is to form a notch filter at the frequency of interference, thus suppressing the narrowband

noise. The error signal e(n) in Figure 7.9 consists of desired broadband signals. In this application, the

desired output from the overall interference suppression filter is e(n).

7.5.3 Adaptive Noise Cancelation

The widespread use of cellular phones has significantly increased the use of communication devices in

high-noise environments. Intense background noise, however, often corrupts speech and degrades the

performance of many communication systems. The widely used adaptive noise canceler employs an

adaptive filter with the LMS algorithm to cancel the noise component embedded in the primary signal.

As illustrated in Figure 7.11, the primary sensor is placed close to the signal source to pick up the desired

signal. The reference sensor is placed close to the noise source to sense only the noise.

A block diagram of the adaptive noise cancelation system is illustrated in Figure 7.12, where P(z)

represents the transfer function between the noise source and the primary sensor. The canceler has two

inputs: the primary input d(n) and the reference input x(n). The reference input x(n) contains noise only.

The primary input d(n) consists of signal s(n) plus noise x ′(n); i.e., d(n) = s(n) + x ′(n). The noise x ′(n)

is highly correlated with x(n) since they are derived from the same noise source. The objective of the

adaptive filter is to use the reference input x(n) to estimate the noise x ′(n). The filter output y(n), which

x(n) y(n)

d(n)

e(n)

+

−Digital
filter

Adaptive
algorithm

s(n) +

x' (n)

P(z)

+

Figure 7.12 Block diagram of adaptive noise canceler

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

PRACTICAL APPLICATIONS 373

Oringinal s(n)

Adaptive noise cancellation

Desired d(n)

Enhanced e(n)

1

0.8

0.6

0.4

0.2

A
m

p
li

tu
d
e

0

−0.2

−0.4

−0.6

−0.8

20 40 60

Time index

80 100 120

Figure 7.13 The enhanced sinewave given in e(n) approaches to the original s(n)

is an estimate of noise x ′(n), is then subtracted from the primary channel signal d(n), producing e(n) as

the desired signal plus reduced noise.

Example 7.11: As shown in Figure 7.12, assume s(n) is a sinewave, x(n) is a white noise,

and P(z) is a simple FIR system. We use the adaptive FIR filter with the LMS algorithm for

noise cancelation, which is implemented in the MATLAB script example7_11.m. The adaptive

filter will approximate P(z), and thus its output y(n) will converge to x′(n) in order to cancel it.

Therefore, the error signal e(n) will gradually approach the desired sinewave s(n), as shown in

Figure 7.13.

To apply the adaptive noise cancelation effectively, the reference noise picked up by the reference sensor

must be highly correlated with the noise components in the primary signal. This condition requires a close

spacing between the primary and reference sensors. Unfortunately, it is also critical to avoid the signal

components from the signal source being picked up by the reference sensor. This ‘crosstalk’ effect will

degrade the performance of adaptive noise cancelation because the presence of the signal components

in reference signal will cause the adaptive noise cancelation to cancel the desired signal along with the

undesired noise.

Crosstalk problem may be eliminated by placing the primary sensor far away from the reference sensor.

Unfortunately, this arrangement requires a large-order filter in order to obtain adequate noise reduction.

Furthermore, it is not always feasible to place the reference sensor far away from the signal source. The

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

374 ADAPTIVE FILTERING

second method for reducing crosstalk is to place an acoustic barrier (oxygen masks used by pilots in

aircraft cockpit, for example) between the primary and reference sensors. However, many applications

do not allow an acoustic barrier between sensors, and a barrier may reduce the correlation of the noise

component in the primary and reference signals. The third technique is to control the adaptive algorithm

to update filter coefficients only during the silent intervals in the speech. Unfortunately, this method

depends on a reliable speech activity detector that is very application dependent. This technique also fails

to track the environment changes during the speech periods. In recent years, microphone array techniques

are used to improve the performance of the noise cancelation.

7.5.4 Adaptive Notch Filters

In certain situations, the primary input is a broadband signal corrupted by undesired narrowband (si-

nusoidal) interference. The conventional method of eliminating such sinusoidal interference is using a

notch filter that is tuned to the frequency of the interference. To design the filter, we need the precise

frequency of the interference. The adaptive notch filter has the capability to track the frequency of the

interference, and thus is especially useful when the interfering sinusoid drifts in frequency.

A single-frequency adaptive notch filter with two adaptive weights is illustrated in Figure 7.14. The

input signal is a cosine signal

x(n) = x0(n) = A cos(ω0n). (7.62)

A 90◦ phase shifter is used to produce the quadrature signal

x1(n) = A sin(ω0n). (7.63)

For a sinusoidal signal, two filter coefficients are needed.

The LMS algorithm employed in Figure 7.14 is summarized as

y(n) = w0(n)x0(n) + w1(n)x1(n). (7.64)

The reference input is used to estimate the composite sinusoidal interfering signal contained in the

primary input d(n). The center frequency of the notch filter is equal to the frequency of the primary

90°
phase shift

d(n)x1(n)

w0(n)
w1(n)

+

++
− e(n)

LMS

y(n)

x1(n)

x0(n)

x0(n)

Figure 7.14 Single-frequency adaptive notch filter

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

PRACTICAL APPLICATIONS 375

sinusoidal noise. Therefore, the noise at that frequency is attenuated. This adaptive notch filter provides

a simple method for eliminating sinusoidal interference.

Example 7.12: For a stationary input and sufficiently small μ, the convergence speed of the LMS

algorithm is dependent on the eigenvalue spread of the input autocorrelation matrix. For L = 2

and the reference input given in Equation (7.62), the autocorrelation matrix can be expressed as

R = E

[
x0(n)x0(n) x0(n)x1(n)

x1(n)x0(n) x1(n)x1(n)

]
= E

[
A2 cos2(ω0n) A2 cos(ω0n) sin(ω0n)

A2 sin(ω0n) cos(ω0n) A2 sin2(ω0n)

]
=

[
A2/2 0

0 A2/2

]
.

This equation shows that because of the 90◦ phase shift, x0(n) is orthogonal to x1(n) and the

off-diagonal terms in the R matrix is zero. The eigenvalues λ1 and λ2 of the R matrix are identical

and equal to A2/2. Therefore, the system has very fast convergence since the eigenvalue spread

equals 1. The time constant of the adaptation is approximated as

τmse ≤ 1

μλ
= 2

μA2
,

which is determined by the power of the reference sinewave and the step size μ.

7.5.5 Adaptive Channel Equalization

In digital communications, the transmission of high-speed data through a channel is limited by intersymbol

interference caused by distortion in the transmission channel. High-speed data transmission through

channels with severe distortion can be achieved in several ways, such as (1) by designing the transmit

and receive filters so that the combination of filters and channel results in an acceptable error from the

combination of intersymbol interference and noise; and (2) by designing an equalizer in the receiver that

counteracts the channel distortion. The second method is the most commonly used technology for data

transmission applications.

As illustrated in Figure 7.15, the received signal y(n) is different from the original signal x(n) because

it was distorted by the overall channel transfer function C(z), which includes the transmit filter, the

transmission medium, and the receive filter. To recover the original signal x(n), we need to process

y(n) using the equalizer W (z), which is the inverse of the channel’s transfer function C(z) in order to

compensate for the channel distortion. That is, we have to design the equalizer

W (z) = 1

C(z)
, (7.65)

i.e., C(z)W (z) = 1 such that x̂(n) = x(n).

In practice, the telephone channel is time varying and is unknown in the design stage due to variations

in the transmission medium. Thus, we need an adaptive equalizer that provides precise compensation over

the time-varying channel. As shown in Figure 7.15, an adaptive filter requires the desired signal d(n) for

computing the error signal e(n) for the LMS algorithm. In theory, the delayed version of the transmitted

signal x(n −
) is the desired response for the adaptive equalizer W (z). However, since the adaptive filter

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

376 ADAPTIVE FILTERING

−
C(z) W(z)

LMS

z −Δ d(n)

+x(n) y(n) x̂(n) e(n)

Figure 7.15 Cascade of channel with an ideal adaptive channel equalizer

is located in the receiver, the desired signal generated by the transmitter is not available at the receiver.

The desired signal may be generated locally in the receiver using two methods. During the training stage,

the adaptive equalizer coefficients are adjusted by transmitting a short training sequence. This known

transmitted sequence is also generated in the receiver and is used as the desired signal d(n) for the LMS

algorithm. After the short training period, the transmitter begins to transmit the data sequence. In the

data mode, the output of the equalizer x̂(n) is used by a decision device (slicer) to produce binary data.

Assuming that the output of the decision device is correct, the binary sequence can be used as the desired

signal d(n) to generate the error signal for the LMS algorithm.

Example 7.13: The adaptive channel equalizer shown in Figure 7.15 is implemented using

MATLAB script example7_13.m. We used a simple FIR filter to simulate the channel C(z), and

the adaptive FIR filter with the LMS algorithm as equalizer. The delay used to generate d(n) is

half of the filter length of W (z), that is, L/2. As shown in Figure 7.16, the error signal e(n) is

minimized such that the adaptive filter approximates the inverse of channel.

Figure 7.16 The error signal e(n) is minimized after convergence of adaptive channel equalizer

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 377

MATLAB Communications Toolbox provides many functions to support equalizers: dfe constructs

a decision feedback equalizer object; equalize equalizes signal using an equalizer object; lineareq

constructs a linear equalizer object; mlseeq equalizes linearly modulated signal using Viterbi algorithm;

and reset(equalizer) resets equalizer object.

7.6 Experiments and Program Examples

We will conduct adaptive filtering experiments in this section using adaptive FIR filters based on the

LMS-type algorithms.

7.6.1 Floating-Point C Implementation

The block diagram of adaptive filter with the LMS is shown in Figure 7.5. The floating-point C imple-

mentation of the adaptive filter with the LMS algorithm is listed in Table 7.2.

Table 7.2 C implementation of adaptive filter with the LMS algorithm

void float_lms(LMS *lmsObj)
{

LMS *lms=(LMS *)lmsObj;
double *w,*x,y,ue;
short j,n;

n = lms->order;
w = &lms->w[0];
x = &lms->x[0];

// Update signal buffer
for(j=n-1; j>0; j--)
{

x[j] = x[j-1];
}
x[0] = lms->in;
// Compute filter output - Equation (7.31)
y = 0.0;
for(j=0; j<n; j++)
{

y += w[j] * x[j];
}
lms->out = v;
// Compute error signal - Equation (7.32)
lms->err = lms->des - y;
// Coefficients update - Equation (7.33)
ue = lms->err * lms->mu;
for(j=0; j<n ; j++)
{

w[j] += ue * x[j];
}

}

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

378 ADAPTIVE FILTERING

0 100 200 300 400 500 600 700 800

−1.5

−1

−0.5

0

0.5

1

1.5

× 104 Error signal

A
m

p
li

tu
d

e

Samples

Figure 7.17 Error signal of the adaptive filter in floating-point C implementation

The input signal x(n) is a sinewave corrupted by a white noise. The desired signal d(n) is also a

sinewave. The noise is removed from the input data file. This experiment uses an adaptive FIR filter with

length 128 and step size 0.005. The adaptive filter reaches the steady state after 500 iterations as shown

in Figure 7.17. Table 7.3 lists the files used for this experiment.

Procedures of the experiment are listed as follows:

1. Open the project file, float_lms.pjt, and rebuild the project.

2. Run the experiment using the data files input.pcm and desired.pcm.

3. Play both the input and output data files and compare the results.

4. For a given filter length, change the step size and plot the error signal to evaluate the convergence

speed with different step sizes.

Table 7.3 File listing for experiment exp7.6.1_floatingPoint_LMS

Files Description

float_lmsTest.c C function for testing LMS adaptive filter

float_lms.c C function for floating-point LMS algorithm

float_lms.h C header file

float_lms.pjt DSP project file

float_lms.cmd DSP linker command file

input.pcm Input signal file

desired.pcm Desired signal file

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 379

5. Fix the step size that achieves the fastest convergence speed, change the filter length to observe the

excess MSE in steady state and find the proper filter length for the chosen step size that generates

the lowest MSE.

6. Verify that the selected step size and filter length are the optimum by plotting the error signals similar

to Figure 7.17.

7.6.2 Fixed-Point C Implementation of Leaky LMS Algorithm

In this experiment, we use Q15 format for fixed-point C implementation of the leaky LMS algorithm

defined in Equation (7.56). The x(n) and d(n) used for this experiment are the same as the previous

experiment. When the rounding is not considered in the implementation, the adaptive filter may diverge

as shown in Figure 7.18. The use of the leaky LMS algorithm can improve the stability, but a smaller

leaky factor can also result in higher steady-state error level. Figure 7.19 shows the result of using leaky

factor of 0.99. When we choose the leaky factor of 0.999, the MSE is close to the floating-point C

implementation as shown in Figure 7.17. The fixed-point C implementation is listed in Table 7.4. The

files used for this experiment are listed in Table 7.5.

Procedures of the experiment are listed as follows:

1. Open the project file, fixPoint_leaky_lms.pjt, and rebuild the project.

2. Run the leaky LMS algorithm experiment using the data files input.pcm and desired.pcm.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

−1.5

−1

−0.5

0

0.5

1

1.5

× 104

A
m

p
li

tu
d

e

Samples

Error signal without leaky factor and rounding

Figure 7.18 Error signal of fixed-point LMS algorithm without rounding and leaky factor

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

380 ADAPTIVE FILTERING

0 100 200 300 400 500 600 700 800
−1.5

−1

−0.5

0

0.5

1

1.5
× 104

A
m

p
li

tu
d

e

Samples

Error signal with leaky factor = 0.99

Figure 7.19 Fixed-point leaky LMS algorithm with leaky factor = 0.99

3. Compare the fixed-point C results with the floating-point C results obtained in previous experiment

in terms of convergence speed and steady-state MSE.

4. To evaluate the finite wordlength effects of the fixed-point implementation, remove rounding by

setting the defined constant, ROUND, to 0 in the header file and rerun the project. Display the error

signal to see if the adaptive filter has diverged. If the LMS algorithm is diverged, identify the key

positions where rounding is necessary to stabilize the fixed-point LMS algorithm.

5. With rounding enabled, adjust the leaky factor, LEAKY, in the header file to find the largest possible

step size that provides the fastest convergence and lowest excess MSE. Will this experiment reach

the similar performance as the floating-point C implementation in previous experiment?

6. Profile the fixed-point C implementation of the leaky LMS algorithm. How many cycles per data

sample are required?

7.6.3 ETSI Implementation of NLMS Algorithm

In this experiment, we will introduce the ETSI (European Telecommunications Standard Institute) op-

erators (functions) provided by the C55x compiler. These ETSI operators are very useful for developing

DSP applications such as the GSM (global system for mobile communications) standards including

speech coders. The original ETSI operators are fixed-point C functions. The C55x compiler supports

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 381

Table 7.4 C code for fixed-point leaky LMS algorithm

void fixPoint_leaky_lms(LMS *lmsObj)
{

LMS *lms=(LMS *)lmsObj;
long ue,temp32;
short j,n;
short *x,*w;

n = lms->order;
w = &lms->w[0];
x = &lms->x[0];

// Update data delay line
for(j=n-1; j>0; j--)
{

x[j] = x[j-1];
}
x[0] = lms->in;
// Get adaptive filter output - Equation (7.31)
temp32 = (long)w[0] * x[0];
for(j=1; j<n; j++)
{

temp32 += (long)w[j] * x[j];
}
lms->out = (short)((temp32+ROUND)>>15);
// Compute error signal - Equation (7.32)
lms->err = lms->des - lms->out;
// Coefficients update - Equation (7.56)
ue = (long)(((lms->err * (long)lms->mu)+ROUND)>>15);
for(j=0; j<n ; j++)
{

temp32 = (((long)lms->leaky * w[j])+ROUND)>>15;
w[j] = (short)temp32 + (short)(((ue * x[j])+ROUND)>>15);

}
}

ETSI functions by mapping them directly to its intrinsics. Table 7.6 lists the ETSI operators and their

corresponding intrinsics for the C55x.

The C55x implementation of the NLMS algorithm using ETSI operators is listed in Table 7.7.

Table 7.8 lists the files used for this experiment.

Procedures of the experiment are listed as follows:

Table 7.5 File listing for experiment exp7.6.2_fixPoint_LeakyLMS

Files Description

fixPoint_leaky_lmsTest.c C function for testing leaky LMS experiment

fixPoint_leaky_lms.c C function for fixed-point leaky LMS algorithm

fixPoint_leaky_lms.h C header file

fixPoint_leaky_lms.pjt DSP project file

fixPoint_leaky_lms.cmd DSP linker command file

input.pcm Input signal file

desired.pcm Desired signal file

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

382 ADAPTIVE FILTERING

Table 7.6 C55x ETSI functions and corresponding intrinsic functions

ETSI function Intrinsics representation Description

L_add(a,b) _lsadd((a),(b)) Add two 32-bit integers with SATD set,

producing a saturated 32-bit result.

L_sub(a,b) _lssub((a),(b)) Subtract b from a with SATD set,

producing a saturated 32-bit result.

L_negate(a) _lsneg(a) Negate the 32-bit value with

saturation._lsneg (0x80000000)=>
0x7FFFFFFF

L_deposite_h(a) (long)(a<<16) Deposit the 16-bit a into the 16 MSB of a

32-bit output and the 16 LSB of the

output are zeros.

L_deposite_l(a) (long)a Deposit the 16-bit a into the 16 LSB of a

32-bit output and the 16 MSB of the

output are sign extended.

L_abs(a) _labss((a)) Create a saturated 32-bit absolute

value._labss(0x8000000)=>
0x7FFFFFFF (SATD is set.)

L_mult(a,b) _lsmpy((a),(b)) Multiply a and b and shift the result left by

1. Produce a saturated 32-bit result.

(SATD and FRCT are set.)

L_mac(a,b,c) _smac((a),(b),(c)) Multiply b and c, shift the result left by 1,

and add it to a. Produce a saturated 32-bit

result. (SATD, SMUL, and FRCT are set.)

L_macNs(a,b,c) L_add_c((a),L_mult((b),(c))) Multiply b and c, shift the result left by 1,

add the 32 bit result to a without

saturation

L_msu(a,b,c) _smas((a),(b),(c)) Multiply b and c, shift the result left by 1,

and subtract it from a. Produce a 32-bit

result. (SATD, SMUL, and FRCT are set.)

L_msuNs(a,b,c) L_sub_c((a),L_mult((b),(c))) Multiply b and c, shift the result left by 1,

and subtract it from a without saturation.

L_shl(a,b) _lsshl((a),(b)) Shift a to left by b and produce a 32-bit

result. The result is saturated if b is less

than or equal to 8. (SATD is set.)

L_shr(a,b) _lshrs((a),(b)) Shift a to right by b and produce a 32-bit

result. Produce a saturated 32-bit result.

(SATD is set.)

L_shr_r(a,b) L_crshft_r((a),(b)) Same as L_shr(a,b) but with rounding.

abs_s(a) _abss((a)) Create a saturated 16-bit absolute

value._abss (0x8000)=> 0x7 FFF

(SATA is set.)

add(a,b) _sadd((a),(b)) Add two 16-bit integers with SATA set,

producing a saturated 16-bit result.

sub(a,b) _ssub((a),(b)) Subtract b from a with SATA set, producing

a saturated 16-bit result.

extract_h(a) (unsigned short)((a)>>16) Extract the upper 16-bit of the 32-bit a.

extract_l(a) (short)a Extract the lower 16-bit of the 32-bit a.

round(a) (short)_rnd(a)>>16 Round a by adding 215. Produce a 16-bit

saturated result. (SATD is set.)

mac_r(a,b,c) (short)(_smacr((a),
(b),(c))>>16)

Multiply b and c, shift the result left by 1,

add the result to a, and then round the

result by adding 215. (SATD, SMUL, and

FRCT are set.)

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 383

Table 7.6 (continued)

ETSI function Intrinsics representation Description

msu_r(a,b,c) (short)(_smasr((a),(b),(c))>>16) Multiply b and c, shift the result left by 1,

subtract the result from a, and then

round the result by adding 215. (SATD,

SMUL, and FRCT are set.)

mult_r(a,b) (short)(_smpyr((a),(b))>>16) Multiply a and b, shift the result left by 1,

and round by adding 215 to the result.

(SATD and FRCT are set.)

mult(a,b) _smpy((a),(b)) Multiply a and b and shift the result left

by 1. Produce a saturated 16-bit result.

(SATD and FRCT are set.)

norm_l(a) _lnorm(a) Produce the number of left shifts needed

to normalize a.

norm_s(a) _norm(a) Produce the number of left shifts needed

to normalize a.

negate(a) _sneg(a) Negate the 16-bit value with saturation.

_sneg (0xffff8000)=> 0x00007FFF

shl(a,b) _sshl((a),(b)) Shift a to left by b and produce a 16-bit

result. The result is saturated if b is less

than or equal to 8. (SATD is set.)

shr(a,b) _shrs((a),(b)) Shift a to right by b and produce a 16-bit

result. Produce a saturated 16-bit result.

(SATD is set.)

shr_r(a,b) crshft((a),(b)) Same as shr(a,b)but with rounding.

shift_r(a,b) shr_r((a),-(b)) Same as shl(a,b)but with rounding.

div_s(a,b) divs((a),(b)) Produces a truncated positive 16-bit result

which is the fractional integer division

of a by b, a and b must be positive

and b ≥ a.

1. Open the project file, ETSI_nlms.pjt, and rebuild the project.

2. Run the experiment using data files input.pcm and desired.pcm.

3. Compare the results of ETSI (intrinsics) implementation with the fixed-point C implementation in

terms of convergence speed and steady-state MSE.

4. Profile the ETSI (intrinsics) implementation of the NLMS algorithm. How many cycles per data

sample are needed using the intrinsics?

7.6.4 Assembly Language Implementation of Delayed
LMS Algorithm

The TMS320C55x has a powerful assembly instruction, LMS, for implementing the delayed LMS algo-

rithm. This instruction utilizes the high parallelism of the C55x architecture to perform the following

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

384 ADAPTIVE FILTERING

Table 7.7 Implementation of NLMS algorithm using C55x intrinsics

void intrinsic_nlms(LMS *lmsObj)
{

LMS *lms=(LMS *)lmsObj;
long temp32;
short j,n,mu,ue,*x,*w;

n = lms->order;
w = &lms->w[0];
x = &lms->x[0];

// Update signal buffer
for(j=n-1; j>0; j--)
{

x[j] = x[j-1];
}
x[0] = lms->in;
// Compute normalized mu
temp32 = mult_r(lms->x[0],lms->x[0]);
temp32 = mult_r((short)temp32, ONE_MINUS_BETA);
lms->power = mult_r(lms->power, BETA);
temp32 = add(lms->power, (short)temp32);
temp32 = add(lms->c, (short)temp32);
mu = lms->alpha / (short)temp32;
// Compute filter output - Equation (7.31)
temp32 = L_mult(w[0], x[0]);
for(j=1; j<n; j++)
{

temp32 = L_mac(temp32, w[j], x[j]);
}
lms->out = round(temp32);
// Compute error signal - Equation (7.32)
lms->err = sub(lms->des, lms->out);
// Coefficients update - Equation (7.50)
ue = mult_r(lms->err, mu);
for(j=0; j<n ; j++)
{

w[j] = add(w[j], mult_r(ue, x[j]));
}

}

Table 7.8 File listing for experiment exp7.6.3_ETSI_NLMS

Files Description

ETSI_nlmsTest.c C function for testing NLMS experiment

ETSI_nlms.c C function for NLMS algorithm using ETSI operators

ETSI_nlms.h C header file for experiment

ETSI_nlms.pjt DSP project file

ETSI_nlms.cmd DSP linker command file

input.pcm Input signal file

desired.pcm Desired signal file

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 385

two equations in one cycle:

e(n) = d(n − 1) − y(n − 1)

w(n + 1) = w(n) + μe(n − 1)x(n − 1).

This LMS instruction effectively improves the run-time efficiency of the delayed LMS algorithm. The

LMS instruction uses the previous error e(n − 1) and the previous signal vector x(n − 1) to update the

coefficient vector. Table 7.9 shows the C55x assembly language implementation of the delayed LMS

algorithm using the LMS instruction.

Table 7.9 Implementation of the delayed LMS algorithm

_asm_dlms:
pshboth XAR5 ; AR5 will be used as index into x[]
pshboth XAR7 ; AR7 will be used pointer to e[]
psh T3 ; T3 is needed for LMS instruction

;
; Set up C55x processor for the Q15 format with overflow
;

mov #0,mmap(ST0_55) ; Clear all fields (OVx, C, TCx)
or #4140h,mmap(ST1_55) ; Set CPL, FRCT, SXMD
and #07940h,mmap(ST1_55) ; Clear BRAF, M40, SATD, C16, 54CM, ASM
or #0022h,mmap(ST2_55) ; Set AR1 and AR5 in circular mode
bclr ARMS ; Disable ARMS bit in ST2
bclr SST ; Saturate-on-store is disabled

;
; Set up parameters and pointers for the LMS algorithm
;

mov dbl(*AR0(#2)),XAR3 ; AR3 pointer to des[], large memory model
mov dbl(*AR0(#4)),XAR2 ; AR2 pointer to out[], large memory model
mov dbl(*AR0(#6)),XAR1 ; AR1 pointer to w[], large memory model
mov dbl(*AR0(#8)),XAR4 ; AR4 pointer to x[], large memory model
mov dbl(*AR0(#10)),XAR7 ; AR7 pointer to err[], large memory model
mov *AR0(#12),T0 ; T0 = step
mov *AR0(#13),T1 ; T1 = order
mov *AR0(#14),AC0 ; AC0 = size of data block
mov *AR0(#15),AR5 ; AR5 is index in data array
mov dbl(*AR0),XAR0 ; AR0 point to in[], large memory model
mov mmap(AR4),BSA45 ; BSA45 as start of circular data buffer
mov mmap(AR1),BSA01 ; BSA01 as start of coefficients buffer
mov #0,AR1 ; AR0 to the 1st coefficient in buffer
sub #1,AC0 ; Set block repeat counter
mov mmap(AC0L),BRC0
mov mmap(T1),BK03 ; BK03 with order used with AR2
aadd #1,T1
mov mmap(T1),BK47 ; BK47 = number of data samples (order+1)
asub #3,T1
mov mmap(T1),BRC1 ; Inner loop to number of coefficients-2

;
; Process block data using adaptive filter
;

continues overleaf

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

386 ADAPTIVE FILTERING

Table 7.9 Implementation of the delayed LMS algorithm (continued)

mov #0,AC1 ; Clear AC1 for initial error term
| | rptblocal outer_loop-1

mov hi(AC1),T3 ; Put error in T3
mov *AR0+,*AR5+ ; Get input
mpym *AR5+,T3,AC0 ; Put the 1st update term in AC0

| | mov #0,AC1 ; Clearing FIR value
lms *AR1,*AR5,AC0,AC1 ; AC0 has the update coefficient w[0]

; AC1 is the 1st FIR output out[0]
| | rptblocal inner_loop-1

mov hi(AC0),*AR1+ ; Save the updated coefficient
| | mpym *AR5+,T3,AC0 ; Computing the next update coefficient

lms *AR1,*AR5,AC0,AC1 ; AC0 has the update coefficient w[i]
inner_loop: ; AC1 is update of FIR output out[i]

mov hi(AC0),*AR1+ ; Save the updated coefficient
| | mov rnd(hi(AC1)),*AR2+ ; Save the FIR filter output

sub AC1,*AR3+<<#16,AC2 ; AC2 is error amount
| | amar *AR5+ ; Point to oldest data sample

mpyr T0,AC2,AC1 ; Update mu_error term and place in AC1
| | mov hi(AC2),*AR7+ ; Save error term
outer_loop:
;
; Restore registers and DSP processor modes
;

mov AR5,T0 ; Return data x[] index of oldest data
popboth XAR7 ; Restore AR7
popboth XAR5 ; Restore AR5
pop T3

|| bset ARMS ; Set ARMS bit for C-caller
bclr FRCT ; Clear FRCT bit in ST1 return to C-caller
and #0F800h,mmap(ST2_55) ; Reset pointers in linear mode
ret

This experiment is written in block-processing fashion. The nested repeat loops are placed in the

instruction buffer using the repeatlocal instruction, which further improves the real-time performance

of LMS algorithm. As introduced in Chapter 2, the C55x assembly programming supports different

representations for hexadecimal constants. For example, the hex constants #0F800h in Table 7.9 is the

same as C representation using #0xF8000. The files used for this experiment are listed in Table 7.10.

Table 7.10 File listing for exp7.6.4_asm_DLMS

Files Description

asm_dlmsTest.c C function for testing delayed LMS experiment

asm_dlms.asm Assembly function for delayed LMS algorithm

asm_dlms.h C header file

asm_dlms.pjt DSP project file

asm_dlms.cmd DSP linker command file

input.pcm Input signal file

desired.pcm Desired signal file

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 387

Procedures of the experiment are listed as follows:

1. Open the project file, asm_dlms.pjt, and rebuild the project.

2. Run the experiment using data files input.pcm and desired.pcm.

3. Compare the delayed LMS algorithm results with those obtained from the fixed-point C experiment.

4. Adjust block size N, filter length L, and step size STEP in the header file asm_dlms.h to evaluate

convergence speed and steady-state MSE.

5. Profile the delayed LMS algorithm and compare the run-time efficiency with the fixed-point C

implementation and intrinsics implementation in terms of number of cycles per data sample.

7.6.5 Adaptive System Identification

In this section, we will introduce the system identification experiment using the LMS algorithm. The

block diagram of adaptive system identification is given in Figure 7.7. The adaptive system identification

operations can be expressed as:

1. Place the current sample x(n) generated by the signal generator into x[0] of the signal buffer.

2. Compute the adaptive FIR filter output

y(n) =
L−1∑
l=0

wl (n)x(n − l). (7.66)

3. Calculate the error signal

e(n) = d(n) − y(n). (7.67)

4. Update the filter coefficients

wl (n + 1) = wl (n) + μe(n)x(n − l), l = 0, 1, . . . , L − 1. (7.68)

5. Update the signal buffer

x(n − l − 1) = x(n − l), l = L − 2, L − 1, . . . , 1, 0. (7.69)

The adaptive system identification shown in Figure 7.7 can be implemented in C as follows:

// Simulate an unknown system
x1[0]=input; // Get input signal x(n)
d = 0.0;
for (i=0; i<N1; i++) // Compute d(n)

d += (coef[i]*x1[i]);
for (i=N1-1; i>0; i--) // Update signal buffer

x1[i] = x1[i-1]; // of unknown system
// Adaptive system identification operation

x[0]=input; // Get input signal x(n)
y = 0.0;
for (i=0; i<N0; i++) // Compute output y(n)

y += (w[i]*x[i]);

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

388 ADAPTIVE FILTERING

e = d - y2; // Calculate error e(n)
uen = twomu*e; // uen = mu*e(n)
for (i=0; i<N0; i++) // Update coefficients

w[i]+= (uen*x[i]);
for (i=N0-1; i>0; i--) // Update signal buffer

x[i] = x[i-1]; // of adaptive filter

The unknown system for this experiment is an FIR filter with the filter coefficients given in plant[].

The input x(n) is a zero-mean white noise. The unknown system’s output d(n) is used as the desired

signal for the adaptive filter, and the adaptive filter coefficients in w[i]will match closely to the unknown

system response after the convergence of adaptive filter. The adaptive LMS algorithm used for system

identification is listed in Table 7.11.

First, the signal and coefficient buffers are initialized to zero. The random signal used for the experiment

is generated in Ns samples per block. The adaptive filter of the system identification program uses the

unknown plant output d(n) as the desired signal to calculate the error signal. The adaptive filter with

N coefficients in w[] after convergence models the unknown system in the form of an FIR filter. The

files used for this experiment are listed in Table 7.12. This experiment is implemented using block

processing.

Procedures of the experiment are listed as follows:

1. Open the project file, sysIdentify.pjt, and rebuild the project.

2. Run the system identification experiment using the data file x.pcm. The experiment will write the

result in the text file result.txt in the data directory.

3. Compare the system identification result in result.txt with the unknown plant given by

unknow_plant.dat.

4. Use MATLAB to design a bandpass FIR filter and rerun the system identification experiment using

this bandpass FIR filter as the unknown plant.

5. Increase the adaptive filter length L to L = 2N1, where N1 is the length of the unknown system.

Build the project and run the program again. Check the experiment results. Will the adaptive model

identify the unknown plant?

6. Reduce the adaptive filter length to L = N1/2, where N1 is the length of the unknown system. Build

the project and run the program again. Check the experiment results. Will the adaptive model identify

the unknown plant?

7. Use MATLAB to design a second-order bandpass IIR filter and rerun the system identification

experiment using this bandpass IIR filter as an unknown plant. What is system identification result

for the IIR unknown plant?

7.6.6 Adaptive Prediction and Noise Cancelation

As shown in Figure 7.9, the primary signal x(n) consists of the broadband components v(n) and the

narrowband components s(n). The output of adaptive filter is the narrowband signal y(n) ≈ s(n). For

applications such as spread spectrum communications, the narrowband interference can be tracked and

removed by the adaptive filter. The error signal e(n) ≈ v(n) contains the desired broadband signal. We

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 389

Table 7.11 List of C55x assembly code for adaptive system identification

_sysIdentification:
pshm ST1_55 ; Save ST1, ST2, and ST3
pshm ST2_55
pshm ST3_55
mov dbl(*AR0(#2)),XAR1 ; AR1 is desired signal pointer
mov dbl(*AR0(#4)),XAR2 ; AR2 is signal buffer pointer
mov dbl(*AR0(#6)),XAR3 ; AR3 is coefficient buffer pointer
mov *AR0(#8),T0 ; T0 number of samples in input buffer
mov *AR0(#9),T1 ; T1 adaptive filter length
mov mmap(AR3),BSA45
mov mmap(T1),BK47
mov mmap(AR2),BSA23
mov mmap(T1),BK03
mov *AR0(#10),AR3 ; AR3 -> x[] as circular buffer
mov #0,AR4 ; AR4 -> w[] as circular buffer
mov dbl(*AR0),XAR0 ; AR0 is input pointer
or #0x340,mmap(ST1_55 ; Set FRCT,SXMD,SATD
or #0x18,mmap(ST2_55) ; Enable circular addressing mode
bset SATA ; Set SATA
sub #1,T0
mov mmap(T0),BRC0 ; Set sample block loop counter
sub #2,T1
mov mmap(T1),BRC1 ; Counter for LMS update loop
mov mmap(T1),CSR ; Counter for FIR filter loop
rptblocal loop-1 ; for (n=0; n<Ns; n++)
mov *AR0+,*AR3 ; x[n]=in[n]
mpym *AR3+,*AR4+,AC0 ; temp = w[0]*d[0]

| | rpt CSR ; for (i=0; i<N-1; i++)
macm *AR3+,*AR4+,AC0 ; y += w[i]*x[i]
sub *AR1+ <<#16,AC0 ; AC0=-e=y-d[n], AR1 points to d[n]
mpyk #-TWOMU,AC0
mov rnd(hi(AC0)),mmap(T1); T1=mu*e[n]
rptblocal lms_loop-1 ; for(j=0; i<N-2; i++)
mpym *AR3+,T1,AC0 ; AC0=2*mu*e*x[i]
add *AR4<<#16,AC0 ; w[i]+=2*mu*e*x[i]
mov rnd(hi(AC0)),*AR4+

lms_loop
mpym *AR3,T1,AC0 ; w[N-1]+=mu*e*x[N-1]
add *AR4<<#16,AC0
mov rnd(hi(AC0)),*AR4+ ; Store the last w[N-1]

loop
popm ST3_55 ; Restore ST1, ST2, and ST2
popm ST2_55
popm ST1_55
mov AR3,T0 ; Return T0=index
ret

use a fixed delay
 as shown in Figure 7.9. The C55x assembly language implementaiton of the adaptive

predictor is listed in Table 7.13.

In this experiment, we use the leaky LMS algorithm and white noise as the broadband signal. Since the

white noise is uncorrelated, the delay
 = 1 is chosen. Table 7.14 lists the files used for this experiment.

The experiment is written using block processing.

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

390 ADAPTIVE FILTERING

Table 7.12 File listing for exp7.6.5_system_identificaiton

Files Description

system_identificaitonTest.c C function for testing system identification experiment

sysIdentification.asm Assembly function for LMS adaptive filter

unknowFirFilter.asm Assembly function for an FIR unknown plant

system_identify.h C header file

unknow_plant.dat Include file for unknown FIR system coefficients

sysIdentify.pjt DSP project file

sysIdentify.cmd DSP linker command file

x.pcm Input signal file

Table 7.13 C55x assembly implementation of adaptive linear predictor

_adaptivePredictor
aadd #(ARGS-Size+1),SP ; Adjust SP for local variables
mov dbl(*AR0(#2)),XAR1 ; AR1 pointer to y[]
mov dbl(*AR0(#4)),XAR2 ; AR2 pointer to e[]
mov dbl(*AR0(#6)),XAR3 ; AR3 pointer to x[]
mov dbl(*AR0(#8)),XAR4 ; AR4 pointer to w[]
mov *AR0(#10),T0 ; T0 = size of data block
mov *AR0(#11),T1 ; T1 = order
mov mmap(AR4),BSA45 ; Configure for circular buffers
mov mmap(T1),BK47
mov mmap(AR3),BSA23
mov mmap(T1),BK03
mov *AR0(#12),AR3 ; AR3 -> x[] as circular buffer
mov #0,AR4 ; AR4 -> w[] as circular buffer
mov dbl(*AR0),XAR0 ; AR0 point to in[]
mov mmap(ST1_55),AC0 ; Save ST1, ST2, and ST3
mov AC0,ale.d_ST1
mov mmap(ST2_55),AC0
mov AC0,ale.d_ST2
mov mmap(ST3_55),AC0
mov AC0,ale.d_ST3
or #0x340,mmap(ST1_55) ; Set FRCT,SXMD,SATD
or #0x18,mmap(ST2_55) ; Enable circular addressing mode
bset SATA ; Set SATA
sub #1,T0
mov mmap(T0),BRC0 ; Set sample block loop counter
sub #2,T1
mov mmap(T1),BRC1 ; Counter for LMS update loop
mov mmap(T1),CSR ; Counter for FIR filter loop
mov #ALPHA,T0 ; T0=leaky alpha

|| rptblocal loop-1 ; for (n=0; n<Ns; n++)
mpym *AR3+,*AR4+,AC0 ; temp = w[0]*x[0]

|| rpt CSR ; for (i=1; i<N; i++)
macm *AR3+,*AR4+,AC0 ; temp += w[i]*x[i]
mov rnd(hi(AC0)),*AR1 ; y[n] = temp;
sub *AR0,*AR1+,AC0 ; e[n]=in[n]-y[n]
mov rnd(hi(AC0)),*AR2+ ; Save y[n]
mpyk #TWOMU,AC0
mov rnd(hi(AC0)),mmap(T1) ; T1=mu*e[n]
mpym *AR4,T0,AC0

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 391

Table 7.13 (continued)

|| rptblocal lms_loop-1 ; for(j=0; i<N-2; i++)
macm *AR3+,T1,AC0 ; w[i]=alpha*w[i]+mu*e*x[i]
mov rnd(hi(AC0)),*AR4+
mpym *AR4,T0,AC0

lms_loop
macm *AR3,T1,AC0 ; w[N-1]=alpha*w[N-1]+mu*e[n]*x[N-1]
mov rnd(hi(AC0)),*AR4+ ; Store the last w[i]
mov *AR0+,*AR3 ; x[n]=in[n]

loop
mov ale.d_ST1,AR4 ; Restore ST1, ST2, and ST3
mov ar4,mmap(ST1_55)
mov ale.d_ST2,AR4
mov ar4,mmap(ST2_55)
mov ale.d_ST3,AR4
mov AR4,mmap(ST3_55)
aadd #(Size-ARGS-1),SP ; Reset SP
mov AR3,T0 ; Return T0=index
ret

Procedures of the experiment are listed as follows:

1. Open the project file, adaptive_predictor.pjt, and rebuild the project.

2. Run the adaptive predictor experiment using data files (sine_1000hz_8khz.pcm and noise.pcm)

from data directory. The experiment will output the narrowband and broadband signals at files

output.pcm and error.pcm.

3. Verify the adaptive predictor results using MATLAB by plotting the waveform, spectrum, and also

by sound play back.

4. Change the length of the adaptive filter and observe the system performance.

5. Adjust the step size and observe the system performance.

6. Change the leaky factor value and observe the system performance.

7. Can we obtain a similar result without using the leaky LMS algorithm by setting the leaky factor to

0x7fff)?

Table 7.14 File listing for exp7.6.6_adaptive_predictor

Files Description

adaptive_predictorTest.c C function for testing system identification experiment

adaptivePredictor.asm Assembly function for adaptive predictor

adaptive_predictor.h C header file

adaptive_predictor.pjt DSP project file

adaptive_predictor.cmd DSP linker command file

sine_1000hz_8khz.pcm 1 kHz sine data file

noise.pcm Noise data file

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

392 ADAPTIVE FILTERING

Error

Receive
filter

Adaptive
equalizer

Decision
device

Adaptive
algorithm

Training
signal

Decision

Received
signal

Figure 7.20 Simplified block diagram of ITU V.29 modem with adaptive channel equalizer

7.6.7 Adaptive Channel Equalizer

In this experiment, we implement a simplified complex adaptive equalizer for a simplified ITU V.29

modem. According to V.29 recommendation, the V.29 modem operates on the general switched telephone

network lines. The speed is up to 9600 bits/s.

The equalizer for modems can be realized as an adaptive FIR filter. In the absence of noise and inter-

symbol interference, the modem receiving decision logic would be precisely matched to the transmitted

symbols and the error signal will be zero. Figure 7.20 shows the block diagram of a simplified V.29

adaptive channel equalizer.

The decision-directed equalizer is effective only in tracking slow variation in channel response. For

this reason, V.29 recommendation calls for force training using given sequences. The V.29 modem uses

a complex equalizer for passband processing. The complex LMS algorithm defined in Equation (7.40)

and (7.41) can be implemented as follows:

yr(n) =
L−1∑
l=0

[
wr,l (n)xr(n − l) − wi,l (n)xi(n − l)

]
(7.70)

yi(n) =
L−1∑
l=0

[
wr,l (n)xi(n − l) + wi,l (n)xr(n − l)

]
(7.71)

er(n) = dr(n) − xr(n) (7.72)

ei(n) = di(n) − xi(n) (7.73)

wr,l (n + 1) = wr,l (n) − μr[er(n)xr(n − l) − ei(n)xi(n − l)] (7.74)

wi,l (n + 1) = wi,l (n) − μi[er(n)xi(n − l) + ei(n)xr(n − l)]. (7.75)

Force training sequence defined by V.29 recommendation includes two symbols. These symbols are

ordered according to the following random number generator:

1 ⊕ x−6 ⊕ x−7, (7.76)

where ⊕ represents the exclusive-OR operation. When the random number generated is 0, the point (3, 0)

will be transmitted. When the random number is 1, the point (−3, 3) will be transmitted. In the receiver,

a local generator will recreate the identical sequence and use it as the desired signal d(n) for computing

the error signal. The V.29 force training sequence consists of a total of 384 symbols. The fixed-point C

implementation of complex channel equalizer is listed in Table 7.15. The files used for this experiment

are listed in Table 7.16.

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 393

Table 7.15 Fixed-point implementation of complex channel equalizer for V.29 modem

void equalizer(COMPLEX *rx, COMPLEX *out, COMPLEX *error)
{

COMPLEX y,err;
long temp32,urer,urei,uier,uiei;
short j;
// Update data delay line
for(j=EQ_ORDER-1; j>0; j--)
{

x[j] = x[j-1];
}
x[0] = *rx;
// Compute normalized mu from I-symbol
temp32 = (((long)x[0].re * x[0].re)+0x4000)>>15;
temp32 = ((temp32 * ONE_MINUS_BETA)+0x4000)>>15;
power.re = (short)(((power.re * (long)BETA)+0x4000)>>15);
temp32 += (power.re+C);
temp32 >>= 5;
mu.re = ALPHA / (short)temp32;
// Compute normalized mu from Q-symbol
temp32 = (((long)x[0].im * x[0].im)+0x4000)>>15;
temp32 = ((temp32 * ONE_MINUS_BETA)+0x4000)>>15;
power.im = (short)(((power.im * (long)BETA)+0x4000)>>15);
temp32 += (power.im+C);
temp32 >>= 5;
mu.im = ALPHA / (short)temp32;
// Get the real adaptive filter output from complex symbols
temp32 = (long)w[0].re * x[0].re;
temp32 -= (long)w[0].im * x[0].im;
for(j=1; j<EQ_ORDER; j++)
{

temp32 += (long)w[j].re * x[j].re;
temp32 -= (long)w[j].im * x[j].im;

}
y.re = (short)((temp32+ROUND)>>15);
// Get the image adaptive filter output from complex symbols
temp32 = (long)w[0].im * x[0].re;
temp32 += (long)w[0].re * x[0].im;
for(j=1; j<EQ_ORDER; j++)
{

temp32 += (long)w[j].im * x[j].re;
temp32 += (long)w[j].re * x[j].im;

}
y.im = (short)((temp32+ROUND)>>15);
// Compute error term from complex data
err.re = rxDesire[txCnt].re - y.re;
err.im = rxDesire[txCnt++].im - y.im;
// Coefficients update - using complex error and data
urer = (long)(((err.re * (long)mu.re)+ROUND)>>15);
urei = (long)(((err.im * (long)mu.re)+ROUND)>>15);
uier = (long)(((err.re * (long)mu.im)+ROUND)>>15);
uiei = (long)(((err.im * (long)mu.im)+ROUND)>>15);
for(j=0; j<EQ_ORDER ; j++)

continues overleaf

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

394 ADAPTIVE FILTERING

Table 7.15 Fixed-point implementation of complex channel equalizer for V.29 modem (continued)

{
temp32 = (long)urer * x[j].re;
temp32 -= (long)urei * x[j].im;
temp32 = (short)((temp32+ROUND)>>15);
w[j].re -= (short)temp32;

}
for(j=0; j<EQ_ORDER ; j++)
{

temp32 = (long)uiei * x[j].re;
temp32 += (long)uier * x[j].im;
temp32 = (short)((temp32+ROUND)>>15);
w[j].im -= (short)temp32;

}
// Return the output and error
*error = err;
*out = y;

}

Procedures of the experiment are listed as follows:

1. Open the project file, channel_equalizer.pjt, and rebuild the project.

2. Run the adaptive channel equalizer experiment. This experiment will output the error signal to file

error.bin in the data directory.

3. Plot the error signal to verify the convergence of the equalizer.

4. Change the filter length and observe the behavior of adaptive equalizer.

7.6.8 Real-Time Adaptive Line Enhancer Using DSK

In this experiment, we will port the adaptive predictor experiment in Section 7.6.6 to the C5510 DSK to

examine the real-time behavior. There are two signal files: one is a single tone corrupted by white noise,

and the other consists of repeated telephone digits corrupted by white noise. The input data files can be

played back via an audio player that supports WAV file format. The DSK takes the input, processes it,

and sends the output to a headphone or loudspeaker for play back. Figure 7.21 shows the spectrum of the

input signal, and Figure 7.22 is the output captured in real time by an audio sound card. It can be seen

Table 7.16 File listing for exp7.6.7_channel_equalizer

Files Description

eqTest.c C function for testing adaptive equalizer experiment

adaptiveEQ.c C function for implementing adaptive equalizer

channel.c C function simulates communication channel

signalGen.c C function generates training sequence

complexEQ.h C header file

channel_equalizer.pjt DSP project file

channel_equalizer.cmd DSP linker command file

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 395

Figure 7.21 Spectrum of the signal corrupted by broadband noise

Figure 7.22 Spectrum of the adaptive line predictor output. The broadband noise has been reduced

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

396 ADAPTIVE FILTERING

Table 7.17 File listing for exp7.6.8_realtime_predictor

Files Description

rt_realtime_predictor.c C function for testing line enhancer experiment

adaptivePredictor.asm Assembly function for adaptive line enhancer

plio.c C function interfaces PIP with low-level I/O functions

adaptive_predictor.h C header file for experiment

plio.h C header file for PIP driver

lio.h C header file for interfacing PIP with low-level drivers

rt_adaptivePredictor.pjt DSP project file

rt_adaptivePredictorcfg.cmd DSP linker command file

rt_adaptivePredictor.cdb DSP/BIOS configuration file

tone_1khz_8khz_noise.wav Data file – tone with noise

multitone_noise_8khz.wav Data file – multitone with noise

from Figure 7.22 that the wideband noise has been greatly reduced by the 128-tap adaptive line enhancer.

The files used for this experiment are listed in Table 7.17.

Procedures of the experiment are listed as follows:

1. Open the project file, rt_adaptivePredictor.pjt, and rebuild the project.

2. Run the adaptive line enhancer using the C5510 DSK. Connect the audio player output to the DSK

line-in. Use a headphone to listen to the result from the DSK headphone output.

3. Change the adaptive filter length, step size, and evaluate the behavior changes of the adaptive line

enhancer.

4. Capture the input and output signals using a digital scope and evaluate the adaptive filter performance

by examining the time-domain waveform and frequency-domain noise level before and after applying

the adaptive line enhancer.

References

[1] S. T. Alexander, Adaptive Signal Processing, New York: Springer-Verlag, 1986.

[2] M. Bellanger, Adaptive Digital Filters and Signal Analysis, New York: Marcel Dekker, 1987.

[3] P. M. Clarkson, Optimal and Adaptive Signal Processing, Boca Raton, FL: CRC Press, 1993.

[4] C. F. N. Cowan and P. M. Grant, Adaptive Filters, Englewood Cliffs, NJ: Prentice Hall, 1985.

[5] J. R. Glover, Jr., ‘Adaptive noise canceling applied to sinusoidal interferences,’ IEEE Trans. Acoust., ASSP-25,

pp. 484–491, Dec. 1977.

[6] S. Haykin, Adaptive Filter Theory, 2nd Ed., Englewood Cliffs, NJ: Prentice Hall, 1991.

[7] S. M. Kuo and C. Chen, ‘Implementation of adaptive filters with the TMS320C25 or the TMS320C30,’ in Digital
Signal Processing Applications with the TMS320 Family, vol. 3, P. Papamichalis, Ed., Englewood Cliffs, NJ:

Prentice Hall, 1990, pp. 191–271, Chap. 7.

[8] S. M. Kuo and D. R. Morgan, Active Noise Control Systems – Algorithms and DSP Implementations, New York:

John Wiley & Sons, Inc., 1996.

[9] L. Ljung, System Identification: Theory for the User, Englewood Cliffs, NJ: Prentice Hall, 1987.

[10] J. Makhoul, ‘Linear prediction: A tutorial review,’ Proc. IEEE, vol. 63, pp. 561–580, Apr. 1975.

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

EXERCISES 397

[11] J. R. Treichler, C. R. Johnson, Jr., and M. G. Larimore, Theory and Design of Adaptive Filters, New York: John

Wiley & Sons, Inc., 1987.

[12] B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hern, J. R. Zeidler, E. Dong, and R. C.

Goodlin, ‘Adaptive noise canceling: Principles and applications,’ Proc. IEEE, vol. 63, pp. 1692–1716, Dec. 1975.

[13] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1985.

[14] M. L. Honig and D. G. Messerschmitt, Adaptive Filters: Structures, Algorithms, and Applications, Boston, MA:

Kluwer Academic Publishers, 1986.

[15] MathWorks, Inc., Using MATLAB, Version 6, 2000.

[16] MathWorks, Inc., Signal Processing Toolbox User’s Guide, Version 6, 2004.

[17] MathWorks, Inc., Filter Design Toolbox User’s Guide, Version 3, 2004.

[18] MathWorks, Inc., Fixed-Point Toolbox User’s Guide, Version 1, 2004.

[19] MathWorks, Inc., Communications Toolbox User’s Guide, Version 3, 2005.

[20] ITU Recommendation V.29, 9600 Bits Per Second Modem Standardized for Use on Point-to-Point 4-Wire Leased
Telephone-Type Circuits, Nov. 1988.

Exercises

1. Determine the autocorrelation function of the following signals:

(a) x(n) = A sin(2πn/N),

(b) y(n) = A cos(2πn/N).

2. Find the crosscorrelation functions rxy(k) and ryx (k), where x(n) and y(n) are defined in the Prob-

lem 1.

3. Let x(n) and y(n) be two independent zero-mean WSS random signals. The random signal w(n) is

obtained by using

w(n) = ax(n) + by(n),

where a and b are constants. Express rww(k), rwx (k), and rwy(k) in terms of rxx (k) and ryy(k).

4. Similar to Example 7.7, the desired signal d(n) is the output of the FIR filter with coefficients 0.2,

0.5, and 0.3 when the input x(n) is zero-mean, unit-variance white noise. This white noise is also

used as the input signal for the adaptive FIR filter with L = 3 using the LMS algorithm. Compute

R, p, wo, and minimum MSE.

5. Consider a second-order autoregressive (AR) process defined by

d(n) = v(n) − a1d(n − 1) − a2d(n − 2),

where v(n) is a white noise of zero mean and variance σ 2
v . This AR process is generated by filtering

v(n) using the second-order IIR filter H (z).

(a) Derive the IIR filter transfer function H (z).

(b) Consider a second-order optimum FIR filter shown in Figure 7.3. If the desired signal is d(n), the primary

input x(n) = d(n− 1). Find the optimum weight vector w◦ and the minimum MSE ξmin.

6. Given the two finite-length sequences:

x(n) = {1 3 −2 1 2 −1 4 4 2},

y(n) = {2 −1 4 1 −2 3}.

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

398 ADAPTIVE FILTERING

Using MATLAB function xcorr, compute and plot the crosscorrelation function rxy(k) and the

autocorrelation function rxx (k).

7. Write a MATLAB script to generate the length 1024 signal defined as

x(n) = 0.8 sin (ω0n) + v(n),

where ω0 = 0.1π , v(n) is a zero-mean random noise with variance σ 2
v = 1 (see Section 3.3 for

details). Compute and plot rxx (k), where k = 0, 1, . . . , 127, using MATLAB. Explain this simulation

result using theoretical derivations given in Examples 7.1 and 7.3.

8. Redo Example 7.7 by using x(n) as input to the adaptive FIR filter (L = 2) with the LMS algorithm.

Implement this adaptive filter using MATLAB or C. Plot the error signal e(n), and show the adaptive

weights converged to the derived optimum values.

9. Implement the adaptive system identification technique illustrated in Figure 7.7 using MATLAB or

C program. The input signal is a zero-mean, unit-variance white noise. The unknown system is an

IIR filter defined in Problem 5. Evaluate different filter lengths L and step size μ, and plot e(n) for

these parameters. Find the optimum values that result in fast convergence and low excess MSE.

10. Implement the adaptive line enhancer illustrated in Figure 7.9 using MATLAB or C program. The

desired signal is given by

x(n) =
√

2 sin(ωn) + v(n),

where frequency ω = 0.2π and v(n) is the zero-mean white noise with unit variance. The de-

correlation delay
 = 1. Plot both e(n) and y(n). Evaluate the convergence speed and steady-state

MSE for different parameters L and μ.

11. Implement the adaptive noise cancelation illustrated in Figure 7.11 using MATLAB or C program.

The primary signal is given by

d(n) = sin(ωn) + 0.8v(n) + 1.2v(n − 1) + 0.25v(n − 2)

where v(n) is defined by Problem 5. The reference signal is v(n). Plot e(n) for different values of

L and μ.

12. Implement the single-frequency adaptive notch filter illustrated in Figure 7.14 using MATLAB or

C program. The desired signal d(n) is given in Problem 11, and x(n) is given by

x(n) =
√

2 sin(ωn).

Plot e(n) and the magnitude response of second-order FIR filter after convergence.

13. Use MATALAB to generate primary input signal x(n) = 0.25 cos(2πn f1/ fs) + 0.25 sin(2πn f2/ fs)

and the reference signal d(n) = 0.125 cos(2πn f2/ fs), where fs is sampling frequency, f1 and f2 are

the frequencies of the desired signal and interference, respectively. Implement the adaptive noise

canceler that removed the interference signal.

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

EXERCISES 399

14. Port the functions developed in Problem 13 to DSK. Create a real-time experiment by connecting

the primary input and reference input signals to the DSK stereo-line input. Left channel is the

primary input with interference and the right channel contains only the interference signal. Test the

adaptive noise canceler in real time with DSK.

15. Create a real-time adaptive notch filter experiment using DSK.

16. The system identification experiment is implemented for large memory model. Modify the program

given by Table 7.11 such that this assembly program can be used by both large memory model and

small memory model.

JWBK080-07 JWBK080-Kuo March 8, 2006 19:14 Char Count= 0

400

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

8
Digital Signal Generators

Signal generations are useful for algorithm design, analysis, and real-world DSP applications. In this

chapter, we will introduce different methods for the generation of digital signals and their applications.

8.1 Sinewave Generators

There are several characteristics that should be considered when designing algorithms for generating

sinewaves. These issues include total harmonic distortion, frequency and phase control, memory usage,

computational cost, and accuracy.

Some trigonometric functions can be approximated by polynomials, for example, the cosine and sine

approximation given by Equations (3.90a) and (3.90b). Because polynomial approximations are realized

with multiplications and additions, they can be efficiently implemented on DSP processors. Sinewave gen-

eration using polynomial approximation is presented in Section 3.6.5, and using resonator is introduced

in Chapter 5. Therefore, this section discusses only the lookup-table method for sinewave generation.

8.1.1 Lookup-Table Method

The lookup-table (or table-lookup) method is probably the most flexible technique for generating periodic

waveforms. This technique involves reading a series of stored data values that represent the waveform.

These values can be obtained either by sampling analog signals or by computing the mathematical

algorithms. Usually only one period of the waveform is stored in the table.

A sinewave table containing one period of waveform can be obtained by computing the following

function:

x(n) = sin

(
2πn

N

)
, n = 0, 1, . . . N − 1. (8.1)

These samples are represented in binary form; thus, the accuracy is determined by the wordlength. The

desired sinewave can be generated by reading these stored values from the table at a constant step �.

The data pointer wraps around at the end of the table. The frequency of the generated sinewave depends

on the sampling period T , table length N , and the table address increment � as

f = �

NT
Hz. (8.2)

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

401

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

402 DIGITAL SIGNAL GENERATORS

For a given sinewave table of length N , a sinewave with frequency f and sampling rate fs can be

generated using the pointer address increment

� = N f

fs

(8.3)

with the following constraint to avoid aliasing:

� ≤ N

2
. (8.4)

To generate an L-sample sinewave x(l), where l = 0, 1, . . . , L − 1, we use a circular pointer k such

that

k = (m + l�) mod N , (8.5)

where m determines the initial phase of sinewave. It is important to note that the step � given in Equation

(8.3) may not be an integer; thus, (m + l�) in Equation (8.5) makes k a real number. The values between

neighboring entries can be estimated using the existing table values. An easy solution is to round the

noninteger index k to the nearest integer. A better but more complex method is to interpolate the value

based on the adjacent samples.

The following two errors will cause harmonic distortion:

1. Amplitude quantization errors due to the use of finite wordlength to represent values in the table.

2. Time-quantization errors from synthesizing data values between table entries.

Increasing table size can reduce the time-quantization errors. To reduce the memory requirement, we

can take the advantage of symmetry property since the absolute values of a sinewave repeat four times

in each period. Thus, only one-fourth of the period is required. However, a more complex algorithm will

be needed to track which quadrant of the waveform is generated.

To decrease the harmonic distortion for a given table size, an interpolation technique can be used to

compute the values between table entries. The simple linear interpolation that assumes a value between

two consecutive table entries lies on a straight line between these two values. Suppose the integer part

of the pointer k is i (0 ≤ i < N) and the fractional part is f (0 < f < 1), the interpolated value will be

computed as

x(n) = s(i) + f [s(i + 1) − s(i)] , (8.6)

where [s(i + 1) − s(i)] is the slope of the line between successive table entries s(i) and s(i + 1).

Example 8.1: We use the MATLAB program example8_1.m for generating one period of

200 Hz sinewave with sampling rate 4000 Hz as shown in Figure 8.1. These 20 samples are stored

in a table for generating sinewave with fs = 4 kHz. From Equation (8.3), � = 1 will be used for

generating 200 Hz sinewave and � = 2 for 400 Hz. But, � = 1.5 should be needed for generating

300 Hz.

From Figure 8.1, when we access the lookup table with � = 1.5, we get the first value which is

the first entry in the table as shown by arrow. However, the second value is not available in the table

since it is in between the second and third entries. Therefore, the linear interpolation results in the

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

SINEWAVE GENERATORS 403

1

0.8

0.6

0.4

0.2

−0.2

−0.4

−0.6

−0.8

−1

0

A
m

p
li

tu
d
e,

 A

0 2 4 6 8 10 12 14 16 18 20

Time index, n

200 Hz sinewave sampled at 4000Hz

Figure 8.1 One period of sinewave, where sinewave samples are marked by ‘o’

average of these two entries. To generate 250 Hz sinewave, � = 1.25, and we can use Equation

(8.6) for computing sample values with noninteger index.

Example 8.2: A cosine/sine function generator using table-lookup method with 1024-point cosine

table can be implemented using the following TMS320C55x assembly code (cos_sin.asm):

; cos_sin.asm - Table lookup sinewave generator with
; 1024-point cosine table range (0, π)
;

; Prototype: void cos_sin(short, short *, short *)
; Entry: arg0: T0 - alpha
; arg1: AR0 - pointer to cosine
; arg2: AR1 - pointer to sine

.def _cos_sin

.ref tab_0_PI

.sect "cos_sin"

_cos_sin
mov T0,AC0 ; T0=a
sfts AC0,#11 ; Size of lookup table
mov #tab_0_PI, T0 ; Table based address

|| mov hi(AC0),AR2
mov AR2,AR3

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

404 DIGITAL SIGNAL GENERATORS

abs AR2 ; cos(-a) = cos(a)
add #0x200,AR3 ; 90 degree offset for sine
and #0x7ff,AR3 ; Modulo 0x800 for 11-bit
sub #0x400,AR3 ; Offset 180 degree for sine
abs AR3 ; sin(-a) = sin(a)

|| mov *AR2(T0),*AR0 ; *AR0=cos(a)
mov *AR3(T0),*AR1 ; *AR1=sin(a)
ret
.end

In this example, we use a one-half period table (0 − π) to reduce memory usage. Obviously,

a sine function generator using a full table (0 − 2π) can be easily implemented with only a few

lines of assembly code, while a function generator using a one-fourth table (0 − π/2) will be more

complicated. The implementation of sinewave generator for the C5510 DSK using the table-lookup

technique will be presented in Section 8.4.

8.1.2 Linear Chirp Signal

A linear chirp signal is a waveform whose instantaneous frequency changes linearly with time between

two specified frequencies. It is a waveform with the lowest possible peak to root-mean-square amplitude

ratio in the desired frequency band. The digital chirp waveform is expressed as

c(n) = A sin[φ(n)], (8.7)

where A is a constant amplitude and φ(n) is a quadratic phase in the form of

φ(n) = 2π

[
fLn +

(
fU − fL

2(N − 1)

)
n2

]
+ α, 0 ≤ n ≤ N − 1, (8.8)

where N is the total number of points in a single chirp. In Equation (8.8), α is an arbitrary constant phase

factor, and fL and fU are the normalized lower and upper frequency limits, respectively. The waveform

periodically repeats with

φ(n + k N) = φ(n), k = 1, 2, (8.9)

The instantaneous normalized frequency is defined as

f (n) = fL +
(

fU − fL

N − 1

)
n, 0 ≤ n ≤ N − 1. (8.10)

This expression shows that the instantaneous frequency goes from f (0) = fL at time n = 0 to f (N − 1) =
fU at time n = N − 1.

Because of the complexity of the linear chirp signal generator, it is more convenient to generate a chirp

sequence by computer and store it in a lookup table for real-time applications. An alternative solution is

to generate the table during DSP system initialization process. The lookup-table method introduced in

Section 8.1.1 can be used to generate the desired signal using the stored table.

MATLAB Signal Processing Toolbox provides the function y = chirp(t, f0, t1, f1) for gen-

erating linear chirp signal at the time instances defined in array t, where f0 is the frequency at time 0

and f1 is the frequency at time t1. Variables f0 and f1 are in Hz.

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

NOISE GENERATORS 405

Figure 8.2 Spectrogram of chirp signal from 0 to 300 Hz

Example 8.3: Compute the spectrogram of a chirp signal with the sampling rate 1000 Hz. The

signal sweeps from 0 to 150 Hz in 1 s. The MATLAB code is listed as follows (example8_3.m,

adapted from MATLAB Help menu):

Fs = 1000; % Define variables
T = 1/Fs;
t = 0:T:2; % 2 seconds at 1 kHz sample rate
y = chirp(t,0,1,150); % Start at DC, cross 150 Hz at t=1 second
spectrogram(y,256,250,256,1E3,'yaxis')

The spectrogram of generated chirp signal is illustrated in Figure 8.2.

8.2 Noise Generators

Random numbers are used in many practical applications for simulating noises. Although we cannot

produce perfect random numbers by using digital hardware, it is possible to generate a sequence of

numbers that are unrelated to each other. Such numbers are called pseudo-random numbers. In this

section, we will introduce random number generation algorithms.

8.2.1 Linear Congruential Sequence Generator

The linear congruential method is widely used by random number generators, and can be expressed as

x(n) = [ax(n − 1) + b]mod M , (8.11)

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

406 DIGITAL SIGNAL GENERATORS

Table 8.1 C program for generating linear congruential sequence

/*
* URAN - Generation of floating-point pseudo-random numbers
*/
static long n=(long)12357; // Seed x(0) = 12357
float uran()
{

float ran; // Random noise r(n)
n=(long)2045*n+1L; // x(n)=2045*x(n-1)+1
n-=(n/1048576L)*1048576L;//x(n)=x(n)-INT[x(n)/1048576]*1048576
ran=(float)(n+1L)/(float)1048577; //r(n)=FLOAT[x(n)+1]/1048577
return(ran); // Return r(n) to the main function

}

where the modulo operation (mod) returns the remainder after division by M . The constants a, b, and M
can be chosen as

a = 4K + 1, (8.12)

where K is an odd number such that a is less than M , and

M = 2L (8.13)

is a power of 2, and b can be any odd number. Equations (8.12) and (8.13) guarantee that the period of

the sequence given by Equation (8.11) has full-length M .

A good choice of these parameters are M = 220 = 1 048 576, a = 4(511) + 1 = 2045, and x(0) =
12 357. Since a random number generator usually produces samples between 0 and 1, we can normalize

the nth random sample as

r (n) = x(n) + 1

M + 1
(8.14)

so that the random samples are greater than 0 and less than 1. A floating-point C function (uran.c) that

implements the random number generator defined by Equations (8.11) and (8.14) is listed in Table 8.1.

A fixed-point C function (rand.c) that is more efficient for a fixed-point DSP processor was provided

in Section 3.6.6.

Example 8.4: The following TMS320C55x assembly code (rand_gen.asm) implements an

M = 216 (65 536) random number generator:

; rand16_gen.asm - 16-bit zero-mean random number generator
;
; Prototype: int rand16_gen(int *)
;
; Entry: arg0 - AR0 pointer to seed value
; Return: T0 - Random number

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

NOISE GENERATORS 407

b15 b14 b13 b12 b11 b10

x2

b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

x1

x

XOR

XOR

XOR

Figure 8.3 16-bit pseudo-random number generator

C1 .equ 0x6255
C2 .equ 0x3619

.def _rand16_gen

.sect "rand_gen"
_rand16_gen

mov #C1,T0
mpym *AR0,T0,AC0 ; Seed=(C1*seed+C2)
add #C2,AC0
and #0xffff,AC0 ; Seed%=0x10000
mov AC0,*AR0
sub #0x4000,AC0 ; Zero-mean random number
mov AC0,T0
ret
.end

8.2.2 Pseudo-Random Binary Sequence Generator

A shift register with feedback from specific bit locations can also generate a repetitive pseudo-random

sequence. The schematic of a 16-bit generator is shown in Figure 8.3, where the functional operator

labeled ‘XOR’ performs the exclusive-OR operation of its two binary inputs. The sequence itself is

determined by the position of the feedback bits on the shift register. In Figure 8.3, x1 is the output of b0

XOR with b2, x2 is the output of b11 XOR with b15, and x is the output of x1 XOR with x2.

Each output from the sequence generator is the entire 16-bit of the register. After the random number

is generated, every bit in the register is shifted left by 1 bit (b15 is lost), and then x is shifted into b0

position. A shift register of length 16 bits can readily be accommodated by a single word on 16-bit DSP

processors. It is important to recognize, however, that sequential words formed by this process will be

correlated. The maximum sequence length before repetition is

L = 2M − 1, (8.15)

where M is the number of bits of the shift register.

Example 8.5: The pseudo-random number generator given in Table 8.2 (pn_sequence.c) re-

quires at least 11 C statements to complete the computation. The following TMS320C55x assembly

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

408 DIGITAL SIGNAL GENERATORS

Table 8.2 C program for generating pseudo-random sequence

//
// Pseudo-random sequence generator
//
static short shift_reg;
short pn_sequence(short *sreg)
{

short b2,b11,b15;
short x1,x2; /* x2 also used for x */

b15 = *sreg >>15;
b11 = *sreg >>11;
x2 = b15^b11; /* First b15 XOR b11 */
b2 = *sreg >>2;
x1 = *sreg ^b2; /* Second b2 XOR b0 */
x2 = x1^x2; /* Final x1 XOR x2 */
x2 &= 1;
*sreg = *sreg <<1;
*sreg = *sreg | x2; /* Update the shift register */
x2 = *sreg-0x4000; /* Zero-mean random number */
return x2;

}

program (pn_gen.asm) computes the same sequence in 11 cycles:

; pn_gen.asm - 16-bit pseudo-random sequence generator
;
; Prototype: int pn_gen(int *)
;
; Entry: arg0 - AR0 pointer to the shift register
; Return: T0 - Random number

BIT15 .equ 0x8000 ; b15
BIT11 .equ 0x0800 ; b11
BIT2 .equ 0x0004 ; b2
BIT0 .equ 0x0001 ; b0

.def _pn_gen

.sect "rand_gen"
_pn_gen

mov *AR0,AC0 ; Get register value
bfxtr #(BIT15| BIT2),AC0,T0 ; Get b15 and b2
bfxtr #(BIT11| BIT0),AC0,T1 ; Get b11 and b0
sfts AC0,#1

|| xor T0,T1 ; XOR all 4 bits
mov T1,T0
sfts T1,#-1
xor T0,T1 ; Final XOR
and #1,T1
or T1,AC0
mov AC0,*AR0 ; Update register
sub #0x4000,AC0,T0 ; Zero-mean random number

|| ret
.end

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

PRACTICAL APPLICATIONS 409

8.3 Practical Applications

In this section, we will introduce some real-world applications that are related to the sinewave and random

number generators.

8.3.1 Siren Generators

An interesting application of chirp signal generator is to generate sirens. The electronic sirens are often

produced by a generator inside the vehicle compartment. This generator drives either a 60- or 100-W

loudspeaker in a light bar mounted on the vehicle roof. The actual siren characteristics (bandwidth and

duration) vary slightly from manufacturers. The wail type of siren sweeps between 800 and 1700 Hz with

a sweep period of approximately 4.92 s. The yelp siren has similar characteristics to the wail but with a

period of 0.32 s.

Example 8.6: We modify the chirp signal generator given in Example 8.3 for generating sirens.

The MATLAB code example8_6.m generates wail type of siren and plays it using soundsc

function.

8.3.2 White Gaussian Noise

The MATLAB Communication Toolbox provides wgn function for generating white Gaussian noise

(WGN) that is widely used for modeling communication channels. We can specify the power of the noise

in dBW (decibels relative to 1-watt), dBm, or linear units. We can generate either real or complex noise.

For example, the command below generates a vector of length 50 containing real-valued WGN whose

power is 2 dBW:

y1 = wgn(50,1,2);

The function assumes that the load impedance is 1 �.

Example 8.7: A WGN channel adds white Gaussian noise to the signal that passes through it. To

model a WGN channel, use the awgn function as follows:

y = awgn(x,snr)

This command adds white Gaussian noise to the vector signal x. The scalar snr specifies the

signal-to-noise ratio in dB. If x is complex, then awgn adds complex noise. This syntax assumes

that the power of x is 0 dBW.

The following MATLAB script (example8_7.m, adapted from MATAB Help menu) adds white

Gaussian noise to a square wave signal. It then plots the original and noisy signals in Figure 8.4:

t = 0:.1:20;
x = square(t); % Create square signal
y = awgn(x,10,'measured'); % Add white Gaussian noise
plot(t,x,t,y) % Plot both signals
legend('Original signal','Signal with AWGN');

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

410 DIGITAL SIGNAL GENERATORS

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2
50 10 15 20

Time

A
m

p
li

tu
d
e

Original signal

Signal with AWGN

Figure 8.4 A square wave corrupted by white Gaussian noise

Note that in the code, square(t) generates a square wave with period 2π for the elements of

time vector t with peaks of +1 to −1 instead of a sinewave.

8.3.3 Dual-Tone Multifrequency Tone Generator

A common application of sinewave generator is the touch-tone telephones and cellular phones that use

the dual-tone multifrequency (DTMF) transmitter and receiver. DTMF also finds widespread uses in

electronic mail systems and automated telephone servicing systems in which the user can select options

from a menu by sending DTMF signals from a telephone.

Each key-press on the telephone keypad generates the sum of two tones expressed as

x(n) = cos (2π fLnT) + cos (2π fHnT) , (8.16)

where T is the sampling period, and the two frequencies fL and fH uniquely define the key that was

pressed. Figure 8.5 shows the matrix of the frequencies used to encode the 16 DTMF symbols defined

by ITU Recommendation Q.23. The values of these eight frequencies have been chosen carefully so that

they do not interfere with speech.

The low-frequency group (697, 770, 852, and 941 Hz) selects the row frequencies of the 4 × 4 keypad,

and the high-frequency group (1209, 1336, 1477, and 1633 Hz) selects the column frequencies. A pair

of sinusoidal signals with fL from the low-frequency group and fH from the high-frequency group will

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

PRACTICAL APPLICATIONS 411

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

1209 1336 1477 1633Hz

941Hz

852Hz

770Hz

697Hz

Figure 8.5 Telephone keypad matrix

represent a particular key. For example, the digit ‘3’ is represented by two sinewaves at frequencies 697

and 1477 Hz.

The generation of dual tones can be implemented using two sinewave generators connected in parallel.

The DTMF signal must meet timing requirements for duration and spacing of digit tones. Digits are

required to be transmitted at a rate of less than 10 per second. A minimum spacing of 50 ms between

tones is required, and the tones must be presented for a minimum of 40 ms. A tone-detection scheme

used as a DTMF receiver must have sufficient time resolution to verify correct digit timing. The issues

of tone detection will be discussed later in Chapter 9.

8.3.4 Comfort Noise in Voice Communication Systems

In voice communication systems, the complete suppression of a signal using residual echo suppressor

(will be discussed later in Section 10.5) has an adverse subjective effect. This problem can be solved by

adding a low-level comfort noise. As illustrated in Figure 8.6, the output of residual echo suppressor is

expressed as

y(n) =
{

αv(n), |x(n)| ≤ β

x(n), |x(n)| > β
, (8.17)

x(n)

v(n)

y(n)

α

Noise power
estimator

Noise
generator

> βx(n)

≤ βx(n)

Figure 8.6 Injection of comfort noise with active center clipper

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

412 DIGITAL SIGNAL GENERATORS

Table 8.3 File listing for experiment exp8.4.1_signalGenerator

Files Description

tone.c C function for testing experiment

tone.cdb CCS configuration file for experiment

tonecfg.cmd DSP linker command file

signalGenerator.pjt DSP project file

55xdspx.lib Large memory mode DSK library

dsk5510bslx.lib Large memory mode DSK board support library

where v(n) is an internally generated zero-mean pseudo-random noise, x(n) is the input applied to the

center clipper, and β is the clipping threshold.

In echo cancelation applications, the characteristics of the comfort noise should match the background

noise when neither talker is active. In speech coding applications, the characteristics of the comfort noise

should match the background noise during the silence. In both cases, the algorithm shown in Figure 8.6

is a process of estimating the power of the background noise in x(n) and generating the comfort noise

with same power to replace signals suppressed by the center clipper. Detailed information on residual

echo suppressor and comfort noise generation will be presented in Chapter 10.

8.4 Experiments and Program Examples

This section presents several hands-on experiments including real-time signal generation using the C5510

DSK and DTMF generation using MATLAB.

8.4.1 Sinewave Generator Using C5510 DSK

The objective of this experiment is to use the C5510 DSK with its associated CCS, BSL (board support

library), and AIC23 for generating sinusoidal signals. We will develop our programs based on the tone

example project that is available in the C5510 DSK folder ..\examples\dsk5510\bsl\tone. In this

experiment, we will modify the C program and build the project using CCS for real-time execution on

the C5510 DSK.

Table 8.3 lists the files used for this experiment. Procedures of the experiment are listed as follows:

1. Create a working folder and copy the following files from the DSK folder ..\examples\dsk5510\
bsl\tone into the new folder. In addition, also copy the DSPLIB 55xdspx.lib from the DSK

folder ..\c5500\dsplib and dsk5510bslx.lib from the DSK folder ..\c5500\dsk5510\lib
into the new folder.

2. Start CCS and create a new project in the new folder. Add tone.c, tone.cdb and tonecfg.cmd

into the project. In addition, also add the 55xdspx.lib and dsk5510bslx.lib into the project. We

will need DSPLIB functions to generate sine and random signals. Choose the large memory model

and build the project.

3. Connect a headphone (or a loudspeaker) to the headphone output of the C5510 DSK and run the

program.

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 413

Table 8.4 Code section to generate random signal

#define SINE_TABLE_SIZE 8 // No. of samples
short sinetable[SINE_TABLE_SIZE]; // Vector for random samples
...
for (msec = 0; msec < 5000; msec++)
{

rand16(sinetable, SINE_TABLE_SIZE);

for (sample = 0; sample < SINE_TABLE_SIZE; sample++)
{

/* Send a sample to the left channel */
while (!DSK5510_AIC23_write16(hCodec, sinetable[sample]));
/* Send a sample to the right channel */
while (!DSK5510_AIC23_write16(hCodec, sinetable[sample]));

}
}

In the C source code tone.c, the array sinetable contains 48 samples (which cover exactly one

period) of a precalculated sinewave in Q15 data format shown below:

Int16 sinetable[SINE_TABLE_SIZE] = {
0x0000, 0x10b4, 0x2120, 0x30fb, 0x3fff, 0x4dea, 0x5a81, 0x658b,
0x6ed8, 0x763f, 0x7ba1, 0x7ee5, 0x7ffd, 0x7ee5, 0x7ba1, 0x76ef,
0x6ed8, 0x658b, 0x5a81, 0x4dea, 0x3fff, 0x30fb, 0x2120, 0x10b4,
0x0000, 0xef4c, 0xdee0, 0xcf06, 0xc002, 0xb216, 0xa57f, 0x9a75,
0x9128, 0x89c1, 0x845f, 0x811b, 0x8002, 0x811b, 0x845f, 0x89c1,
0x9128, 0x9a76, 0xa57f, 0xb216, 0xc002, 0xcf06, 0xdee0, 0xef4c

};

The sampling rate of CODEC is default at 48 kHz, thus the CODEC outputs 48 000 samples per

second. Since the time interval between two consecutive samples is T = 1/48 000 s, each period of

sinewave contains 48 samples, and the period of sinewave is 48/48 000 = 1/1000 s = 1 ms. Therefore, the

frequency of the generated sinewave is 1000 Hz. Since each period of sinewave is 1/1000 s, the program

generates 5000 periods, and it lasts for 5 s.

8.4.2 White Noise Generator Using C5510 DSK

In this experiment, we use the C55x DSPLIB function rand16 to generate eight samples of random

signal for 8 kHz sampling rate (or 48 samples if the sampling rate is 48 kHz). Instead of writing a new

program, we will modify tone.c from the previous experiment and rename it as noise.c. Partial of the

modified C code that uses the array sinetable[] for storing random numbers is listed in Table 8.4.

The files used for this experiment are listed in Table 8.5.

Procedures of the experiment are listed as follows:

1. Create a DSP project for the noise experiment.

2. Run the experiment and listen to the noise generated by the C5510 DSK.

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

414 DIGITAL SIGNAL GENERATORS

Table 8.5 File listing for experiment exp8.4.2_noiseGenerator

Files Description

noise.c C function for testing experiment

tone.cdb CCS configuration file for experiment

tonecfg.cmd DSP linker command file

noiseGeneration.pjt DSP project file

55xdspx.lib Large memory mode DSK library

dsk5510bslx.lib Large memory mode DSK board support library

3. Modify the experiment such that the noise generated will be sampled at 8 kHz.

4. Modify the experiment to generate 2 s of random noise at 8 kHz sampling rate.

8.4.3 Wail Siren Generator Using C5510 DSK

In this experiment, we will use the table-lookup method to implement a wail siren using the C5510 DSK.

The modified C code using the array sirentable[] for storing siren data values is listed in Table 8.6.

There is a limitation for this experiment running on the C5510 DSK. In Example 8.6, the sweeping of

data numbers from 800 to 1700 Hz at 8 kHz sampling rate requires a table of 39 360 entries. We will not

be able to access the complete table because the addressing range of 16-bit C55x is limited to 32 767. To

Table 8.6 Code section for siren generator

#define SIREN_TABLE_SIZE 19680 /* Length of siren table */

Int16 sirentable[SIREN_TABLE_SIZE]={
#include "wailSiren.h"

};
/* Generate 10-sweep of siren wave */
for (i=0; i<10; i++)
{

for (sample = 0; sample < SIREN_TABLE_SIZE; sample++)
{

data = sirentable[sample]; // Get two samples each time
/* Send first sample to the left channel */
while (!DSK5510_AIC23_write16(hCodec, (data&0xff)<<8));

/* Send first sample to the right channel */
while (!DSK5510_AIC23_write16(hCodec, (data&0xff)<<8));

/* Send second sample to the left channel */
while (!DSK5510_AIC23_write16(hCodec, data&0xff00));

/* Send second sample to the right channel */
while (!DSK5510_AIC23_write16(hCodec, data&0xff00));

}
}

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 415

Table 8.7 File listing for experiment exp8.4.3_sirenGenerator

Files Description

siren.c C function for testing experiment

tone.cdb CCS configuration file for experiment

tonecfg.cmd DSP linker command file

sirenGenerator.pjt DSP project file

55xdspx.lib Large memory mode DSK library

dsk5510bslx.lib Large memory mode DSK board support library

resolve this problem, we generate 8-bit siren data and pack two 8-bit data into one 16-bit word. In this

way, we can use a table of 19 680 entries for the 4.92 s of wail siren. The demo program is modified, so

each data read will take two 8-bit data and they are unpacked and played by the DSK. Table 8.7 lists the

files used for this experiment.

Procedures of the experiment are listed as follows:

1. Create a DSP project for the siren experiment.

2. Write a C or MATLAB program to generate siren lookup table in 8-bit data and two 8-bit data packed

formats.

3. Set the AIC23 sampling rate to 8 kHz.

4. Run the experiment and listen to the siren signal generated.

8.4.4 DTMF Generator Using C5510 DSK

In this experiment, we will implement DTMF signal generation using the C5510 DSK. We modify the

previous table-lookup experiment to create a DTMF generator with 8-kHz sampling frequency. The ITU

Q23 recommendation defines the DTMF signaling with eight frequencies, four lower frequencies for the

rows and four high frequencies for the columns as shown in Figure 8.5. The ITU Q.24 recommendation

specifies the duration of the DTMF signal and silence interval between DTMF signals.

We generate eight tables for eight DTMF frequencies. Each table has 800 entries for 100-ms duration.

The following C code can be used to generate the sinewave tables:

w = 2.0*PI*f/Fs;
for(n=0; n<800; n++)
{

cosine[n] = (short)(cos(w*n)*16383); // Q14 format
}

In the code, f is the DTMF frequency and Fs is the sampling frequency. Table 8.8 lists the partial code

for DTMF tone generation.

This experiment can generate a series of DTMF signals from a given digit string. The DTMF tones

are separated by 60 ms of silence. The files used for this experiment are listed in Table 8.9.

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

416 DIGITAL SIGNAL GENERATORS

Table 8.8 Code section of DTMF signal generation

for (sample = 0; sample <DTMF_TABLE_SIZE; sample++)
{

data = ptrFh[sample] + ptrFl[sample];
/* Send data to the left channel */
while (!DSK5510_AIC23_write16(hCodec, data));
/* Send data to the right channel */
while (!DSK5510_AIC23_write16(hCodec, data));

}
for (sample = 0; sample <600; sample++)
{

/* Send data to the left channel */
while (!DSK5510_AIC23_write16(hCodec, 0));
/* Send data to the right channel */
while (!DSK5510_AIC23_write16(hCodec, 0));

}

Procedures of the experiment are listed as follows:

1. Create a DSP project for the DTMF experiment. Configure the DSK to 8 kHz sampling rate.

2. Write a C or MATLAB program to generate eight sinewave lookup tables according to the frequencies

given in Figure 8.5.

3. Build and run the experiment. Listen to the generated DTMF tones. Change the DTMF string in

different order or combination, rerun the experiment, and evaluate the DTMF generator.

8.4.5 DTMF Generator Using MATLAB Graphical User Interface

In this experiment, we will use MATLAB graphical user interface (GUI) and its callback functions to

develop a DTMF generator. The files used for this experiment are listed in Table 8.10. Use the following

Table 8.9 File listing for experiment exp8.4.4_DTMFGenerator

Files Description

dtmfGenerator.c C function for testing experiment

dtmfGenerator.cdb CCS configuration file for experiment

dtmfGeneratorcfg.cmd DSP linker command file

dtmfGenerator.pjt DSP project file

tone697.h DTMF tone lookup table

tone770.h DTMF tone lookup table

tone852.h DTMF tone lookup table

tone941.h DTMF tone lookup table

tone1209.h DTMF tone lookup table

tone1336.h DTMF tone lookup table

tone1477.h DTMF tone lookup table

tone1633.h DTMF tone lookup table

55xdspx.lib Large memory mode DSK library

dsk5510bslx.lib Large memory mode DSK board support library

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 417

Table 8.10 File listing for experiment exp8.4.5_MatlabDTMFGen

Files Description

DTMFGenerator.m MATLAB GUI controls experiment

DTMFGenerator.fig MATLAB GUI graphic file for experiment

procedures to create the MATLAB DTMF generator:

1. To start MATLAB GUI design, enter the command guide from MATLAB command window and

choose Blank GUI from the MATLAB Create New GUI menu. The GUI design tool will be shown

as in Figure 8.7.

2. Select the Push button from the tool menu and enter it to create 16 buttons as shown. Rename the

push buttons to 1, 2, . . . C, D as shown in Figure 8.7 from Property Inspector. We can also change

the letter font and color.

3. When the design of GUI looks satisfied, save it as DTMFGenerator.fig. A MATLAB file DTM-

FGenerator.m will be saved automatically. The file DTMFGenerator.m consists of 16 callback

functions that represent to the 16 buttons of the DTMF generator.

4. Edit the DTMFGenerator.m to add code for each button. For example, the following MATLAB code

is added to the callback function of button ‘5’.

disp('5 is pushed.')
fl=770;fh=1336; % "5"
key=dtmfGen(fl,fh); % Call DTMF generator

Figure 8.7 MATLAB GUI design

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

418 DIGITAL SIGNAL GENERATORS

5. Add the following function to DTMFGenerator.m. This function takes low and high frequencies

and generates a DTMF tone of duration 100 ms. The sound function is used to play back the DTMF

tone:

function x=dtmfGen(fl, fh)
fs = 8000;
N = [0:1/fs:0.1];
x = 0.5*(cos(2*pi*fl*N)+cos(2*pi*fh*N));
sound(x,fs)

6. Enter DTMFGenerator from the MATLAB command window to start DTMF generator. Push the

buttons and listen to the generated audio signal.

References

[1] S. M. Kuo and D. R. Morgan, Active Noise Control Systems – Algorithms and DSP Implementations, New York:

John Wiley & Sons, Inc., 1996.

[2] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd Ed., Reading, MA:

Addison-Wesley, 1981.

[3] N. Ahmed and T. Natarajan, Discrete-Time Signals and Systems, Englewood Cliffs, NJ: Prentice Hall, 1983.

[4] Math Works, Inc., Using MATLAB, Version 6, 2000.

[5] Math Works, Inc., Signal Processing Toolbox User’s Guide, Version 6, 2004.

[6] S. J. Orfanidis, Introduction to Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1996.

[7] A Bateman and W. Yates, Digital Signal Processing Design, New York: Computer Science Press, 1989.

[8] J. Hartung, S. L. Gay, and G. L. Smith, Dual-tone Multifrequency Receiver Using the WE DSP16 Digital Signal
Processor, Application Note, AT&T, 1988.

[9] Analog Devices, Digital Signal Processing Applications Using the ADSP-2100 Family, Englewood Cliffs, NJ:

Prentice Hall, 1990.

[10] P. Mock, ‘Add DTMF generation and decoding to DSP-uP designs,’ Digital Signal Processing Applications with
the TMS320 Family, Texas Instruments, 1986, Chap. 19.

[11] Texas Instruments, Inc., DTMF Tone Generation and Detection on the TMS320C54x, Literature no. SPRA096A,

1999.

[12] ITU-T Recommendation Q.23, Technical Features of Push-Button Telephone Sets, 1993.

[13] ITU-T Recommendation Q.24, Multifrequency Push-Button Signal Reception, 1993.

Exercises

1. For the tone generation experiment presented in Section 8.4.1, the default sampling rate for CODEC is 48 kHz.

We can set different sampling frequencies using the function DSK5510_AIC23_setFreq() available in

the BSL dsk5510bslx.lib. For example, we can use the following command to set sampling rate to 8 kHz:

DSK5510_AIC23_setFreq(hCodec, DSK5510_AIC23_FREQ_8KHZ);

Now, modify the C program tone.c (used for experiment in Section 8.4.1) by inserting this line of code to set the

sampling rate to 8 kHz. Build a new project and perform a real-time testing. After the program is run, compare

the sound effects for the sampling rates at 8 and 48 kHz. Where in the file tone.c should you add the code to

change AIC23 CODEC frequency? What is the frequency of sinewave that was generated with 8 kHz sampling

rate? Why? Also, how many seconds the tone last? Why?

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

EXERCISES 419

2. Modify the tone.c to generate 1 kHz tone with 8 kHz sampling rate. Hints: There are many ways and we

briefly introduce the following two methods:

(a) We can recalculate one period of sinewave with eight samples (using MATLAB or hand calculation) to

replace the original 48 samples in sinetable. In this case, be sure to change SINE_TABLE_SIZE from

48 entries to eight elements.

(b) We can use the samesinetablewith 48 samples, but step through the table every six samples by modifying

the outer loop as follows:

for (sample = 0; sample < SINE_TABLE_SIZE; sample=sample+6)

Try both methods and perform real-time testing. Make sure that we generate 1 kHz tone with 8 kHz sampling

rate.

3. We have already learned how to generate a single tone using the pregenerated table:

(a) Try to generate multiple sinewaves at different frequencies using the same table such as the sinetable
in tone.c by stepping through the same table using different steps.

(b) Try to use the DSPLIB function sine(x, r, Nx) to generate an array of sinewave.

4. We can combine both the sinewave and noise generators to generate a sinewave that is embedded in white noise

for future experiments. Pay special attention to overflow problem when we add two Q.15 numbers. How can we

prevent overflow? Build a new project and perform a real-time testing. Try different signal-to-noise ratio and

compare the differences.

5. This is a challenging and practical problem: How to generate a tone (or multiple tones) at any frequency with

any predetermined sampling rate using a table-lookup technique? We may find out that we have to step through

the table with a noninteger step; thus, we have to interpolate a value between two consecutive samples in the

table. We will also find that it is easier and better to design a new sinetable that have more samples (>48)

to cover one period of sinewave.

6. The yelp siren has similar characteristics as the wail siren but its period is 0.32 s. Use the wail siren experiment

as reference to create a yelp siren generator using the table-lookup method.

7. ITU Q.24 recommendation specifies that the DTMF frequency offsets for North America must be no more than

1.5 %. Develop a method to examine all 16 waveform tables used for DTMF generation given in Section 8.4.4.

Are these DTMF tones all within the specified tolerance? If not, how to correct the problem?

8. The DTMF signal generation uses eight tables of 800 entries each. By packing two 8-bit bytes in one 16-bit

word can save half of the data memory used for tables. Compress these eight tables into byte format and rerun

the DTMF experiments.

9. The ITU Q24 allows the high-frequency component of the DTMF tone level to be higher than the low-frequency

component. Redesign the experiment given in Section 8.4.4 such that the level of the high-frequency component

of the DTMF tone generated is 3 dB higher than the low frequency.

10. Add two graph windows to the DTMF GUI in Section 8.4.5. One of these windows is used to display the

time-domain DTMF signal waveform, and the other is used to plot the spectrum of the generated DTMF signal.

JWBK080-08 JWBK080-Kuo March 8, 2006 11:58 Char Count= 0

420

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

9
Dual-Tone Multifrequency
Detection

Dual-tone multifrequency (DTMF) generation and detection are widely used in telephone signaling and

interactive control applications through telephone and cellular networks. In this chapter, we will focus

on the DTMF detection and applications.

9.1 Introduction

DTMF signaling was developed initially for telephony signaling such as dialing and automatic redial.

Modems use DTMF for dialing stored numbers to connect with network service providers. DTMF

has also been used in interactive remote access control with computerized automatic response systems

such as airline’s information systems, remote voice mailboxes, electronic banking systems, as well as

many semiautomatic services via telephone networks. DTMF signaling scheme, reception, testing, and

implementation requirements are defined in ITU Recommendations Q.23 and Q.24.

DTMF generation is based on a 4 × 4 grid matrix shown in Figure 8.5. This matrix represents 16 DTMF

signals including numbers 0–9, special keys ∗ and #, and four letters A–D. The letters A–D are assigned to

unique functions for special communication systems such as the military telephony systems. As discussed

in Chapter 8, the DTMF signals are based on eight specific frequencies defined by two mutually exclusive

groups. Each DTMF signal consists of two tones that must be generated simultaneously. One is chosen

from the low-frequency group to represent the row index, and the other is chosen from the high-frequency

group for the column index.

A DTMF decoder must able to accurately detect the presence of these tones specified by ITU Q.23. The

decoder must detect the DTMF signals under various conditions such as frequency offsets, power level

variations, DTMF reception timing inconsistencies, etc. DTMF decoder implementation requirements

are detailed in ITU-T Q.24 recommendation.

An application of using DTMF signaling for remote access control between individual users and bank

automated electronic database is illustrated in Figure 9.1. In this example, user follows the prerecorded

voice commands to key-in the corresponding information, such as the account number and user authen-

tication, using a touch-tone telephone keypad. User’s inputs are converted to a series of DTMF signals.

The reception end processes these DTMF tones to reconstruct the digits for the remote access control.

The banking system sends the queries, responses, and confirmation messages via voice channel to the

user during the remote access process.

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

421

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

422 DUAL-TONE MULTIFREQUENCY DETECTION

Voice channel

DTMF detection

Voice in

Voice command

Bank account access

Voice out

Voice channel Voice inVoice out

BankDatabase

User

Figure 9.1 A simplified DTMF application used for remote access control

For voice over IP (VoIP) applications, a challenge for DTMF signaling is to pass through the VoIP

networks via speech coders and decoders. When DTMF signaling is used with VoIP networks, the DTMF

signaling events can be sent in data packet types. The procedure of how to carry the DTMF signaling and

other telephony events in real-time transport protocol (RTP) packet is defined by Internet engineering

task force RFC2833 specification.

Besides DTMF tones, there are many other multifrequency tones used in communications. For example,

the call progress tones include dial tone, busy tone, ringing-back tone, and modem and fax tones. The basic

tone detection algorithm and implementation techniques are similar. In this chapter, we will concentrate

on the DTMF detection.

9.2 DTMF Tone Detection

This section introduces methods for detecting DTMF tones used in communication networks. The correct

detection of a DTMF digit requires both a valid tone pair and the correct timing intervals. Since the DTMF

signaling may be used to set up a call and to control functions such as call forwarding, it is necessary to

detect DTMF signaling in the presence of speech.

9.2.1 DTMF Decode Specifications

The implementation of DTMF decoder involves the detection of the DTMF tones, and determination of

the correct silence between the tones. In addition, it is necessary to perform additional assessments to

ensure that the decoder can accurately distinguish DTMF signals in the presence of speech.

For North America, DTMF decoders are required to detect frequencies with a tolerance of ±1.5 %.

The frequencies that are offset by ±3.5 % or greater must not be recognized as DTMF signals. For Japan,

the detection of frequencies has a tolerance of ±1.8 %, and the tone offset is limited to ±3.0 %. This

requirement prevents the detector from falsely detecting speech and other signals as valid DTMF signals.

The receiver must work under the worst-case signal-to-noise ratio of 15 dB with a dynamic range of

25 dB for North America (or 24 dB for Japan). The ITU-T requirements for North America are listed in

the Table 9.1.

Another requirement is the ability to detect DTMF signals when two tones are received at different

levels. This level difference is called twist. The high-frequency tone may be received at a lower level than

the low-frequency tone due to the magnitude response of the communication channel, and this situation

is described as a forward (or standard) twist. Reverse twist occurs when the received low-frequency

tone has lower level than the high-frequency tone. The receiver must operate with a maximum 8 dB of

forward twist and 4 dB of reverse twist. The final requirement is that the receiver must avoid incorrectly

identifying the speech signal as valid DTMF tones. This is referred as talk-off performance.

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

DTMF TONE DETECTION 423

Table 9.1 Requirements of DTMF specified in ITU-T Q.24

Signal frequencies Low group 697, 770, 852, 941 Hz

High group 1209, 1336, 1477, 1633 Hz

Frequency tolerance Operation ≤ 1.5 %

Nonoperation ≥ 3.5 %

Signal duration Operation 40 ms min

Nonoperation 23 ms max

Twist Forward 8 dB max

Reverse 4 dB max

Signal power Operation 0 to −25 dBm

Nonoperation −55 dBm max

Interference by echoes Echoes Should tolerate echoes delayed up to

20 ms and at least 10 dB down

9.2.2 Goertzel Algorithm

The basic principle of DTMF detection is to examine the energy of the received signal and determine

whether a valid DTMF tone pair has been received. The detection algorithm can be implemented using a

DFT or a filterbank. For example, an FFT can calculate the energies of N evenly spaced frequencies. To

achieve the required frequency resolution to detect the DTMF frequencies within ±1.5 %, a 256-point

FFT is needed for 8 kHz sample rate. Since the DTMF detection considers only eight frequencies, it

is more efficient to use a filterbank that consists of eight IIR bandpass filters. In this chapter, we will

introduce the modified Goertzel algorithm as filterbank for DTMF detection.

The DFT can be used to compute eight different X (k) that correspond to the DTMF frequencies as

X (k) =
N−1∑
n=0

x(n)W kn
N . (9.1)

Using the modified Goertzel algorithm, the DTMF decoder can be implemented as a matched filter for

each frequency index k as illustrated in Figure 9.2, where x(n) is the input signal, Hk(z) is the transfer

function of the kth filter, and X (k) is the corresponding filter output.

From Equation (7.4), we have

W −kN
N = e j(2π/N)kN = e j2πk = 1. (9.2)

X (N − 1)HN−1(z)

x (n) Hk (z)

H0 (z)

X (k)

X (0)

Figure 9.2 Block diagram of Goertzel filterbank

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

424 DUAL-TONE MULTIFREQUENCY DETECTION

Multiplying the right-hand side of Equation (9.1) by W −kN
N , we have

X (k) = W −kN
N

N−1∑
n=0

x(n)W kn
N =

N−1∑
n=0

x(n)W −k(N−n)
N . (9.3)

Define the sequence

yk(n) =
N−1∑
m=0

x(m)W −k(n−m)
N . (9.4)

This equation can be interpreted as a convolution between the finite-duration sequence x(n) and the

sequence W −kn
N u(n) for 0 ≤ n ≤ N − 1. Consequently, yk(n) can be viewed as the output of a filter with

impulse response W −kn
N u(n). That is, a filter with impulse response

hk(n) = W −kn
N u(n). (9.5)

Thus, Equation (9.4) can be expressed as

yk(n) = x(n) ∗ W −kn
N u(n). (9.6)

From Equations (9.3) and (9.4), and the fact that x(n) = 0 for n < 0 and n ≥ N , we can show that

X (k) = yk(n)|n=N−1. (9.7)

That is, X (k) is the output of filter Hk(z) at time n = N − 1.

Taking the z-transform of Equation (9.6), we obtain

Yk(z) = X (z)
1

1 − W −k
N z−1

. (9.8)

The transfer function of the kth Goertzel filter is defined as

Hk(z) = Yk(z)

X (z)
= 1

1 − W −k
N z−1

, k = 0, 1, . . . , N − 1. (9.9)

This filter has a pole on the unit circle at the frequency ωk = 2πk/N . Thus, the DFT can be computed

by filtering a block of input data using N filters in parallel as defined by Equation (9.9). Each filter has a

pole at the corresponding frequency of the DFT.

The parameter N must be chosen to ensure that X(k) is the result representing to the DTMF at frequency

fk that meets the requirement of frequency tolerance given by Table 9.1. The DTMF detection accuracy

can be ensured only if we choose the N such that the following approximation is satisfied:

2 fk

fs

∼= k

N
. (9.10)

A block diagram of the transfer function Hk(z) for recursive computation of X (k) is depicted in

Figure 9.3. Since the coefficients W −k
N are complex valued, the computation of each new value of yk(n)

requires four multiplications and additions. All the intermediate values, yk(0), yk(1), . . . , and yk(N − 1),

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

DTMF TONE DETECTION 425

x(n)

WN
−k

yk (n)
Hk (z)

z−1

Figure 9.3 Block diagram of recursive computation of X (k)

must be computed in order to obtain the final output yk(N − 1) = X (k). Therefore, the computation of

X (k) given in Figure 9.3 requires 4N complex multiplications and additions for each frequency index k.

We can avoid the complex multiplications and additions by combining the pairs of filters that have

complex-conjugated poles. By multiplying both the numerator and the denominator of Hk(z) given in

Equation (9.9) by the factor (1 − W k
N z−1), we have

Hk(z) = 1 − W k
N z−1

(1 − W −k
N z−1)(1 − W k

N z−1)

= 1 − e j2πk/N z−1

1 − 2 cos(2πk/N)z−1 + z−2
. (9.11)

This transfer function can be represented as signal-flow diagram shown in Figure 9.4 using the direct-

form II IIR filter. The recursive part of the filter is on the left side, and the nonrecursive part is on the right

side. Since the output yk(n) is required only at time N − 1, we just need to compute the nonrecursive

part of the filter at the (N − 1)th iteration. The recursive part of algorithm can be expressed as

wk(n) = x(n) + 2 cos(2π fk/ fs)wk(n − 1) − wk(n − 2), (9.12)

while the nonrecursive calculation of yk(N − 1) is expressed as

X (k) = yk(N − 1) = wk(N − 1) − e− j2π fk/ fswk(N − 2). (9.13)

Hk (z)

wk (n)x(n)

2 cos(2πfk / fs)

yk (n)

wk (n − 2)

wk (n − 1)

−1

z−1

z−1

−e−j2πf
k
 / f

s

Figure 9.4 Detailed signal-flow diagram of Goertzel algorithm

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

426 DUAL-TONE MULTIFREQUENCY DETECTION

The algorithm can be further simplified by realizing that only the squared X (k) (magnitude) is needed

for tone detections. From Equation (9.13), the squared magnitude of X (k) is computed as

|X (k)|2 = w2
k (N − 1) − 2 cos(2π fk/ fs)wk(N − 1)wk(N − 2) + w2

k (N − 2). (9.14)

This avoids the complex arithmetic given in Equation (9.13), and requires only one coefficient,

2 cos(2π fk/ fs), for computing each |X (k)|2. Since there are eight possible tones, the detector needs

eight filters as described by Equations (9.12) and (9.14). Each filter is tuned to one of the eight frequen-

cies. Note that Equation (9.12) is computed for n = 0, 1, . . . , N − 1, but Equation (9.14) is computed

only once at time n = N − 1.

9.2.3 Other DTMF Detection Methods

Goertzel algorithm is very efficient for DTMF signal detection. However, some real-world applications

may already have other DSP modules that can be used for DTMF detection. For example, some noise

reduction applications use FFT algorithm to analyze the spectrum of noise, and some speech-coding

algorithms use the linear prediction coding (LPC). In these cases, the FFT or the LPC coefficients can

be used for DTMF detection.

DTMF detection embedded in noise cancelation

In noise reduction systems that use spectrum subtraction method (will be introduced in Chapter 12), the

time-domain signal is transformed to frequency domain using the FFT algorithm. Therefore, the FFT

results can be used for DTMF detection as shown in Figure 9.5.

The system shown in Figure 9.5 shares the FFT results for noise cancelation and DTMF detection.

Since frequency information is available from the FFT block, the DTMF detection can be simplified.

All-pole modeling using LPC coefficients

Chapter 11 will introduce many speech-coding algorithms using an all-pole LPC synthesis filter. The

synthesis filter is defined as

1

A(z)
= 1

1 −
p∑

i=1

ai z−i

, (9.15)

FFT
Noise reduction

and IFFT

DTMF
detection

Noise
suppressed
speechNoise

speech

Speech
coding

Mux

DTMF information

To
channel

Encoded
bitNoise cancellation

Figure 9.5 DTMF detection embedded in a noise cancelation system

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

DTMF TONE DETECTION 427

where ai is the short-term LPC coefficient and p is the LPC filter order. The calculation of LPC coefficients

can be found in Section 11.4. This all-pole filter can be further decomposed with several second-order

sections. If the LPC order p is an even number, it can be written as

1

A(z)
= 1

(1 + a11z−1 + a12z−2)(1 + a21z−1 + a22z−2) · · · (1 + aq1z−1 + aq2z−2)
(9.16)

with q = p/2. If p is an odd number with q = (p − 1)/2, the first-order component (1 + aq+1z−1) is

used and Equation (9.16) can be modified as

1

A(z)
= 1

(1 + a11z−1 + a12z−2) · · · (1 + aq1z−1 + aq2z−2)(1 + aq+1z−1)
. (9.17)

We assume that we have LPC coefficients and they are shared between a speech coder and a DTMF

detector.

Example 9.1: Compare the similarity of the FFT spectrum of the DTMF digit ‘5’ and the frequency

response of a 10th-order LPC synthesis filter. The frequencies used for DTMF digit ‘5’ are fL =
770 Hz and fH = 1336 Hz at sampling rate 8000 Hz, and the DTMF signal can be generated by

MATLAB as

x(1 : N) = sin (2π fL(1 : N)) + sin (2π fH(1 : N)) .

Using MATLAB functionlevinson, we can compute the LPC coefficients from its autocorrelation

function based on Equation (9.15) as follows:

lpcOrder=10; % LPC order
w=hamming(N); % Generate hamming window
x=x.*w'; % Windowing
m=0;
while (m<=lpcOrder); % Calculation of auto-correlation
r(m+1)=sum(x(1:(N-m)).*x((1+m):N)); m=m+1;

end;
a=levinson(r,lpcOrder); % Levinson algorithms

The generated LCP coefficients are listed as follows:

a[0] = 1.0000, a[1] = -1.5797, a[2] = 1.4570, a[3] = -0.0021,
a[4] = -0.1805, a[5] = 0.1195, a[6] = 0.3082, a[7] = 0.2145,
a[8] = 0.0230, a[9] = -0.0556, a[10] = 0.1797

Figure 9.6 shows the spectrum of DTMF tones for digit ‘5’ and the spectrum from the LPC coef-

ficients estimation. This example demonstrates that the roots of an all-pole filter, which represents

the dual frequencies of DTMF tones, can be closely located using the LPC modeling.

Example 9.2: The roots of LPC synthesis filter coefficients can be computed using MATLAB

function roots(a). The angles of these roots can be converted from frequency in radian to Hz

using MATLAB function freq=((angle(r)*8000/(2*pi)). The roots and angles are listed in

Table 9.2 and the roots are also plotted in Figure 9.7.

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

428 DUAL-TONE MULTIFREQUENCY DETECTION

50

40

30

20

10

M
ag

n
it

u
d
e

(d
B

)

0

0 500 1000 1500

Frequency (Hz)

Synthesis filter spectrum response

LPC all-pole filter frequency response

Original signal spectrum

2000 2500 3000 3500 4000

−10

−20

Figure 9.6 Comparison of spectrum estimated by LPC

The roots from Example 9.2 are complex-conjugated pairs. These roots represent five real second-

order functions in Equation (9.16). The third and fourth pairs of roots are the most important since

they are very close to the unit circle, and their frequencies are comparable to two frequencies used for

digit ‘5’. The amplitudes of other roots are smaller since they are located inside the unit circle, and their

frequencies are not within the DTMF frequency ranges. The roots with amplitudes close to unity dominate

the magnitude response. For the example using DTMF digit ‘5’, the relative differences in amplitude

estimation are 0.0873 % for 770 Hz and 0.1274 % for 1336 Hz. The estimated frequency differences

are 0.1799 % for 770 Hz and 0.1223 % for 1336 Hz. Examples 9.1 and 9.2 show that the estimated

DTMF frequencies from LPC coefficients are very close to the DTMF frequencies defined by ITU Q.23

recommendation. Thus, the LPC coefficients from speech coders can be used for DTMF detection.

9.2.4 Implementation Considerations

The flow chart of DTMF tone detection algorithm is illustrated in Figure 9.8. At the beginning of each

frame, the state variables x(n), wk(n), wk(n − 1), wk(n − 2), and yk(n) for each of the eight Goertzel

Table 9.2 Roots and angles of 10th-order LPC synthesis filter

Complex roots Amplitude Frequency (Hz)

1 −0.6752 ± j0.2510 0.7204 ±3546.8

2 −0.3481 ± j0.6506 0.7378 ±2625.5

3 0.8225 ± j0.5672 0.9991 ±0768.6

4 0.4964 ± j0.8666 0.9987 ±1337.6

5 0.4942 ± j0.6283 0.7993 ±1151.4

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

DTMF TONE DETECTION 429

Root location1

0.8

0.6

0.4

0.2

0

−0.2

Im
ag

e
p
ar

t

−0.4

−0.6

−0.8

−1

−1 −0.5 0 0.5 1

Roots of synthesis filter

Real part

Conjugate
roots at

1337.6 Hz

Conjugate
roots at

768.6 Hz

Figure 9.7 Plot of roots of 10th-order LPC synthesis filter

filters and the energy are set to zero. For each new sample, the recursive part of filtering defined in

Equation (9.12) is executed. At the end of each frame, i.e., n = N − 1, the squared magnitude |X (k)|2
for each DTMF frequency is computed based on Equation (9.14). Six tests are followed to determine if

a valid DTMF digit has been detected:

Magnitude test: According to ITU Q.24, the maximum signal level transmit to the public network shall

not exceed −9 dBm. This limits an average voice range of −35 dBm for a very weak long-distance

call to −10 dBm for a local call. A DTMF receiver is expected to operate at an average range of −29

to +1 dBm. Thus, the largest magnitude in each band must be greater than a threshold of −29 dBm;

otherwise, the DTMF signal should not be detected. For the magnitude test, the squared magnitude

|X (k)|2 defined in Equation (9.14) for each DTMF frequency is computed. The largest magnitude in

each group is obtained.

Twist test: The tones may be attenuated according to the telephone system’s gains at the tonal frequencies.

Therefore, we do not expect the received tones to have same amplitude, even though they may be

transmitted with the same strength. Twist is defined as the difference, in decibels, between the low-

and high-frequency tone levels. In practice, the DTMF digits are generated with forward twist to

compensate for greater losses at higher frequency within a long telephone cable. For example, Australia

allows 10 dB of forward twist, Japan allows only 5 dB, and North America recommends not more than

8 dB of forward twist and 4 dB of reverse twist.

Frequency-offset test: This test prevents some broadband signals from being detected as DTMF tones.

If the effective DTMF tones are present, the power levels at those two frequencies should be much

higher than the power levels at the other frequencies. To perform this test, the largest magnitude in

each group is compared to the magnitudes of other frequencies in that group. The difference must be

greater than the predetermined threshold in each group.

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

430 DUAL-TONE MULTIFREQUENCY DETECTION

Initialization

Get 8 kHz
input sample

Compute the
recursive part

of the Goertzel
filter for the eight

frequencies

n = N − 1?

Compute the
nonrecursive part
of the Goertzel

filter for the eight
frequencies

Yes

No

Magnitude >
threshold?

Twist normal?

Does frequency
offset pass?

Total-energy
test pass?

Second harmonic
signal too
strong?

Output digit

N

N

N

N

Y

N

N

Y

Y

Y

Y

N

Y

Y

D(m)=D(m − 2)?

D(m)=D(m − 1)?

Figure 9.8 Flow chart for the DTMF tone detector

Total-energy test: Similar to the frequency-offset test, the goal of total-energy test is to reject some

broadband signals to further improve the robustness of a DTMF decoder. To perform this test, three

different constants c1, c2, and c3 are used. The energy of the detected tone in the low-frequency group

is weighted by c1, the energy of the detected tone in the high-frequency group is weighted by c2, and

the sum of the two energies is weighted by c3. Each of these terms must be greater than the summation

of the energy from the rest of the filter outputs.

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

INTERNET APPLICATION ISSUES AND SOLUTIONS 431

Second harmonic test: The objective of this test is to reject speech that has harmonics close to fk so that

they might be falsely detected as DTMF tones. Since DTMF tones are pure sinusoids, they contain

very little second harmonic energy. Speech, on the other hand, contains a significant amount of second

harmonic. To test the level of second harmonic, the detector must evaluate the second harmonic

frequencies of all eight DTMF tones. These second harmonic frequencies (1394, 1540, 1704, 1882,

2418, 2672, 2954, and 3266 Hz) can also be detected using the Goertzel algorithm.

Digit decoder: Finally, if all five tests are passed, the tone pair is decoded and mapped to one of the 16

keys on a telephone touch-tone keypad. This decoded digit is placed in a memory location designated

D(m). If any of the tests fail, then ‘−1’ representing ‘no detection’ is placed in D(m). For a new valid

digit to be declared, the current D(m) must be the same in three successive frames, i.e., D(m − 2) =
D(m − 1) = D(m).

There are two reasons for checking three successive digits at each pass. First, the check eliminates

the need to generate hits every time a tone is present. As long as the tone is present, it can be ignored

until it changes. Second, comparing digits D(m − 2), D(m − 1), and D(m) improves noise and speech

immunity.

9.3 Internet Application Issues and Solutions

Voice coders have been designed for transmission of low-bit-rate signals while retaining reasonable audio

quality and robustness over the networks. However, most of the vocoders overlook the importance of

passing in-band tonal signals including DTMF. The approach for DTMF signaling over the networks can

either use vocoders that are capable of passing in-band tones or use out-of-band signaling.

RFC2833 is a document for carrying DTMF signals and telephony events using RTP packets over the

Internet. A separate RTP payload format is used due to the concern of low-rate vocoders that may not

guarantee to reproduce the tone signals accurately for automatic recognition. The separate RTP payload

format can be considered as the ‘out-of-band’ channel. Using separate payload formats also permits

higher redundancy while maintaining a low-bit rate.

Figure 9.9 shows an example for Internet applications using DTMF generator and detector. The end

user can use an automated computer system that recognizes the DTMF signaling and controls the access

to the database, such as electronic bank accounts, voicemail systems, and automatic billing systems.

Using the separated RTP payload allows the receiving side to recognize the in-band DTMF tones and

regenerate these tones locally if necessary. RFC2833 also covers fax tones, modem tones, country-specific

subscriber line tones, and trunk events.

The RTP payload type for vocoders will be discussed in Chapter 11. The DTMF typically uses dynamic

payload type. The dynamic payload type means the type is negotiated using session description protocol

between the two sides defined in RFC3551. Table 9.3 gives an example of the DTMF packet. The first

12 bytes are RTP header and the last 4 bytes are DTMF event. In the DTMF event data, the first byte

Encoder
Signal

in
Signal

out

DTMF detector

Decoder

DTMF generator

DTMF

IP
network

Voice packet

Figure 9.9 An example of DTMF detection and generation for Internet

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

432 DUAL-TONE MULTIFREQUENCY DETECTION

Table 9.3 Example of RTP packet of DTMF digit ‘1’

80 62 f4 62 00 24 cb ac ac 24 a8 7a 01 08 00 a0
Packet summary lines ; Data
Real-Time Transport Protocol ;

10.. = Version: RFC 1889 Version (2) ; 80
..0. = Padding: False ;
...0 = Extension: False ;
.... 0000 = Contributing source identifiers count: 0 ;
0... = Marker: False ; 62
.110 0010 = Payload type: Unknown (98) ;
Sequence number: 62562 ; f4 62
Timestamp: 2411436 ; 00 24 cb ac
Synchronization source identifier: 2888083578 ; ac 24 a8 7a

RFC 2833 RTP event
Event ID: DTMF One 1 (1) ; 01
0... = End of event: False ; 08
.0.. = Reserved: False ;
..00 1000 = Volume: 8 ;
Event duration: 160 ; 00 a0

0x01 represents the digit ‘1’, the last 6 bits of second byte, 0x08, represent the volume of −8 dBm0, and

the third and fourth bytes, 0x00a0, represent the duration of 160 ms.

9.4 Experiments and Program Examples

In this section, we will use the MATLAB’s CCS Link to connect MATLAB with the C5510 DSK for

experiments on DTMF tone detection.

9.4.1 Implementation of Goertzel Algorithm Using Fixed-Point C

The Goertzel algorithm can be separated into two paths. The recursive path is defined by Equation (9.12).

Table 9.4 lists the implementation of the recursive path in fixed-point C program. In the code, the pointer

d points to the filter’s delay-line buffer. The input is passed to the function by variable in. The variable

coef is the filter coefficient. To prevent overflow, input data is scaled down by 7 bits. Note that the

Table 9.4 C implementation of Goertzel filter’s recursive path

void gFilter (short *d, short in, short coef)
{

long AC0;
d[0] = in >> 7; // Get input with scale down by 7 bit
AC0 = (long) d[1] * coef;
AC0 >>= 14;
AC0 -= d[2];
d[0] += (short)AC0;
d[2] = d[1]; // Update delay-line buffer
d[1] = d[0];

}

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 433

Table 9.5 C implementation of nonrecursive path of Goertzel filter

short computeOutput(short *d, short coef)
{

long AC0, AC1;
AC0 = (long) d[1] * d[1]; // Square d[1]
AC0 += (long) d[2] * d[2]; // Add square d[2]
AC1 = (long) d[1] * coef;
AC1 >>= 14;
AC1 = AC1 * d[2];
AC0 -= AC1;
d[1] = 0;
d[2] = 0;
return ((short)(AC0 >> 14));

}

fixed-point C implementation requires the data type conversion to be cast in long for multiplication, and

the 14-bit shift is used to align the multiplication product to be stored in Q15 format. The recursive path

calculation is carried out for every data sample.

The nonrecursive path of Goertzel filter described by Equation (9.14) is used once for every

other N sample. The calculation of the final Goertzel filter output is implemented in C as shown in

Table 9.5.

Table 9.6 lists the files used for this experiment. The test program DTMFdecodeTest.c opens the test

parameter file param.txt to get the DTMF data filenames. This experiment analyzes the input data file

and reports the detected DTMF digits in the output file DTMFKEY.txt.

Procedures of the experiment are listed as follows:

1. Open C55 project fixedPoint_DTMF.pjt, build, load, and run the program.

2. Examine the DTMF detection results to validate the correctness of the decoding process.

3. Modify DTMF generation experiment given in Section 8.4.4 to generate DTMF signals that can be

used for testing DTMF magnitude level and frequency offset.

Table 9.6 File listing for experiment exp9.4.1_fixedPointDTMF

Files Description

DTMFdecodeTest.c C function for testing experiment

gFilter.c C function computes recursive path

computeOutput.c C function computes nonrecursive path

dtmfFreq.c C function calculates all frequencies

gFreqDetect.c C function maps frequencies to keypad row and column

checkKey.c C function reports DTMF keys

init.c C function for initialization

dtmf.h C header file

fixedPoint_DTMF.pjt DSP project file

fixedPoint_DTMF.cmd DSP linker command file

param.txt Parameter file

DTMF16digits.pcm Data file containing 16 digits

DTMF_with_noise.pcm Data file with noise

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

434 DUAL-TONE MULTIFREQUENCY DETECTION

4. Modify the program to perform the magnitude test as described in Section 9.2.4.

5. Modify the program to perform the frequency test as described in Section 9.2.4.

9.4.2 Implementation of Goertzel Algorithm Using C55x
Assembly Language

The efficient implementation of DTMF detection has been a design challenge for multichannel real-time

applications. This experiment presents the implementation of Goertzel algorithm using the TMS320C55x

assembly language. Table 9.7 lists the assembly routine that implements the Goertzel algorithm. The input

data sample is passed in by register T0. The right-shifted 7 bits scale the input signal to prevent possible

overflow during the filtering process. The Goertzel filter coefficient is stored in register T1. The auxiliary

register AR0 is the pointer to d[3] in the delay-line buffer. The Goertzel filtering routine gFilter is

called for every data sample.

After the recursive path has processed N − 1 samples, the final Goertzel filtering result will be com-

puted at the N th iteration for the nonrecursive path. Table 9.8 shows the assembly routine that computes

the final Goertzel filter output. The caller passes two arguments, the auxiliary register AR0 is the pointer

to the delay line d[3], and register T0 contains the Goertzel filter coefficient of the given frequency. The

final Goertzel filter output is returned to the caller via register T0 at the end of the routine. Table 9.9 lists

the files used for this experiment.

Procedures of the experiment are listed as follows:

1. Open the project asm_DTMF.pjt, build, load, and run the program.

2. Examine the DTMF detection results to validate the correctness of the decoding process.

3. Modify DTMF generation experiment given in Section 8.4.4 to generate DTMF signals that can be

used for testing DTMF twist level and the second harmonics.

Table 9.7 Assembly language implementation of Goertzel filter

.global _gFilter
_gFilter:

mov T0, AC0
sfts AC0, #-7 ; d[0] = in >> 7
mov AC0, *AR0+
mov *AR0+, AR1
mov AR1, HI(AC1)
mpy T1, AC1 ; AC0 = (long) d[1] * coef
sfts AC1, #-14 ; AC0 >>= 14
sub *AR0-, AC1, AR2 ; AC0 -= d[2]
amar *AR0-

|| add AC0, AR2
mov AR2, *AR0+ ; d[0] += (short)AC0
mov AR2, *AR0+ ; d[1] = d[0]
mov AR1, *AR0 ; d[2] = d[1]
ret

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 435

Table 9.8 Assembly routine to compute the Goertzel filter output

.global _computeOutput
_computeOutput:

amar *AR0+
mpym *AR0+, T0, AC1 ; AC1 = (long) d[1] * coef
sfts AC1, #-14 ; AC1 >>= 14;
mov AC1, T0
mpym *AR0-, T0, AC0 ; AC1 = AC1 * d[2]
sqrm *AR0+, AC1 ; AC0 = (long) d[1] * d[1];
sqam *AR0-, AC1 ; AC0 += (long) d[2] * d[2];
sub AC0, AC1 ; AC0 -= AC1

|| mov #0, *AR0+ ; d[1] = 0
sfts AC1, #-14, AC0

|| mov #0, *AR0 ; d[2] = 0
mov AC0, T0 ; out = (short)(AC0 >> 14);
ret

4. Use CCS profile tool to compare the number of cycles used between this assembly implementation

and fixed-point C implementation given in Section 9.4.1.

9.4.3 DTMF Detection Using C5510 DSK

In this experiment, we will use MATLAB Link for CCS with the C5510 DSK to conduct the DTMF

detection experiment. The flow of experiment is shown in Figure 9.10. Some of the frequently used CCS

control commands that MATLAB supports are listed in Table 9.10.

We modified the MATLAB script of DTMF generator given in Chapter 8 for this experiment. Go

through the following steps to create a new GUI for DTMF experiment:

1. Start MATLAB and set path to..\experiments\exp9.4.3_MATLABCCSLink. Copy the MATLAB

files DTMFGenerator.m and DTMFGenerator.fig from Chapter 8 to current folder.

Table 9.9 File listing for experiment exp9.4.2_asmDTMF

Files Description

DTMFdecodeTest.c C function for testing experiment

gFilter.asm Assembly function computes recursive path

computeOutput.asm Assembly function computes nonrecursive path

dtmfFreq.asm Assembly function calculates all frequencies

gFreqDetect.c C function maps frequencies to keypad

checkKey.c C function reports DTMF keys

init.c C function for initialization

dtmf.h C header file

asm_DTMF.pjt DSP project file

asm_DTMF.cmd DSP linker command file

param.txt Parameter file

DTMF16digits.pcm Data file containing 16 digits

DTMF_with_noise.pcm Data file with noise

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

436 DUAL-TONE MULTIFREQUENCY DETECTION

MATLAB:
Creates
DTMF data
files using
GUI for DSP
experiment

MATLAB:
Open DSP
project, build,
and load DSP
code for the
experiment

C55x DSK:
Reads in
DTMF data
file and
decode
DTMF signal

MATLAB:
Reads
experiment
output and
display the
result

Figure 9.10 MATLAB Link for CCS experiment flow

2. Enter the command guide at MATLAB command window to start Guide Quick Start menu. Choose

Open Exist GUI tab to open fileDTMFGenerator.fig. Add a new button key named Decode DTMF
as shown in Figure 9.11.

3. Save the GUI asDTMF.fig and a new fileDTMF.m. The fileDTMF.m is the same asDTMFGenerator.m

except a new callback function is appended at the end. Table 9.11 shows partial code of the DTMF.m.

The MATLAB files DTMF.fig and DTMF.m are used to control the project to conduct the DSK

experiment.

4. Modify the function dtmfGen() in DTMF.m to include the capability of saving keypress into a PCM

file as the DTMF signal. The modified DTMF generator is listed as follows:

% --- DTMF signal generation
function x=dtmfGen(fl, fh)
fs = 8000;
N = [0:1/fs:0.1];
x = 0.5*(cos(2*pi*fl*N)+cos(2*pi*fh*N));
sound(x,fs)
x = int16(x*16383);
fid=fopen('.\\DTMF\\data\\data.pcm', 'ab'); % Write DTMF data
fwrite(fid, x, 'int16');
x = zeros(1, 400);
fwrite(fid, x, 'int16');
fclose(fid);

Table 9.10 MATLAB Link for CCS functions

MATLAB function CCS command and status

build Build the active project in CCS IDE

ccsboardinfo Obtain information about the boards and simulators

ccsdsp Create the link to CCS IDE

clear Clear the link to CCS IDE

halt Stop execution on the target board or simulator

isrunning Check if the DSP processor is running

load Load executable program file to target processor

read Read global variables linked with CCS Link object

reset Reset the target processor

restart Place program counter to the entry point of the program

run Execute program loaded on the target board or simulator

visible Control the visibility for CCS IDE window

write Write data to global variables linked with CCS Link object

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 437

Figure 9.11 MATLAB GUI for DTMF detection experiment

This modified function records each DTMF signal to a PCM file data.pcm. The duration of each

DTMF signal is 100 ms followed by 50 ms of silence.

5. Add MATLAB Link for CCS code to the DTMF.m. Table 9.12 lists the MATLAB script.

This MATLAB script controls the execution of DSK. The function ccsboardinfo checks the DSP

development system and returns the information regarding the board and processor that it has identified.

Table 9.11 MATLAB script DTMF.m generated by GUI editor

% --- DTMF signal generation
function x=dtmfGen(fl, fh)
fs = 8000;
N = [0:1/fs:0.1];
x = 0.5*(cos(2*pi*fl*N)+cos(2*pi*fh*N));
sound(x,fs)

% --- Executes on button press in pushbutton17
function pushbutton17_Callback(hObject, eventdata, handles)

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

438 DUAL-TONE MULTIFREQUENCY DETECTION

Table 9.12 MATLAB script using Link for CCS to command the C5510 DSK

board = ccsboardinfo; % Get DSP board & processor information
dsp = ccsdsp('boardnum',... % Link DSP with CCS

board.number,
'procnum',
board.proc(1,1).number);

set(dsp,'timeout',100); % Set CCS timeout value to 100(s)
visible(dsp,1); % Force CCS to be visible on desktop
open(dsp,'DTMF\\ccsLink.pjt'); % Open project file
build(dsp,1500); % Build the project if necessary
load(dsp, '.\\DTMF\\Debug\\ccsLink.out',300);

% Load project with timeout 300(s)
reset(dsp); % Reset the DSP processor
restart(dsp); % Restart the program
run(dsp); % Start execution or wait new command
cpurunstatus = isrunning(dsp);
while cpurunstatus == 1, % Wait until processor completes task

cpurunstatus = isrunning(dsp);
end

The ccsdsp function creates the link object to CCS using the information obtained from the function call

to ccsboardinfo. The functions open, build, load, reset, restart, and run are the standard CCS

commands that control the CCS IDE functions and status. The function run consists of several options.

The option main is the same as CCS command Go Main. The option tohaltwill start DSP processor and

run until the program reaches a breakpoint or it is halted. The option tofunc will start and run the DSP

processor until the program reaches the given function. The build function also has multiple options.

The default build function makes an incremental build, while the option allwill perform CCS command

Rebuild All. In this experiment, the function isrunning is used to check if the DSK processing is

completed.

The software for DTMF decoder using MATLAB Link for CCS includes the DSP project, source files,

and MATLAB script files. Table 9.13 lists the files used for this experiment.

Table 9.13 File listing for experiment exp9.4.3_MATLABCCSLink

Files Description

DTMF.m MATLAB script for testing experiment

DTMF.fig MATLAB GUI

DTMFdecodeTest.c DTMF experiment test file

gFilter.asm Assembly function computes recursive path

computeOutput.asm Assembly function computes nonrecursive path

dtmfFreq.asm Assembly function calculates all frequencies

gFreqDetect.c C function maps frequencies to keypad

checkKey.c C function reports DTMF keys

Init.c C function for initialization

dtmf.h C header file

ccsLink.pjt DSP project file

ccsLink.cmd DSP linker command file

dtmfGen.m MATLAB function for DTMF tone generation

dspDTMf.m MATLAB function for commanding C55xCCS

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 439

In this experiment, MATLAB command window will show each key that is pressed and display the

DTMF detection result. Procedures of the experiment are listed as follows:

1. Connect DSK to the computer and power on the DSK.

2. Create and build the DSP project for the experiment. If no errors, exit CCS.

3. Start MATLAB and set the path to the directory ..\exp9.4.3_MATLABCCSLink.

4. Type DTMF at MATLAB command window to display the DTMF experiment GUI.

5. Press several DTMF keys to generate a DTMF sequence.

6. Press the Decode DTMF key on the GUI to start CCS, build the DSP project, and then run the DTMF

decoder.

7. Multichannel DTMF detection is widely used in industries. Modify the experiment such that it per-

forms two-channel DTMF detection in parallel. The input data for the two-channel DTMF detection

can be generated in time-division method. Since this experiment reads the input data from a PCM

data file, we can create two DTMF signaling files and read both of them in for the two-channel

experiment.

9.4.4 DTMF Detection Using All-Pole Modeling

In this experiment, we will present the MATLAB script to show the basic concept of DTMF detection

using the LPC all-pole modeling. Table 9.14 lists the files used for this experiment.

Procedures of the experiment are listed as follows:

1. Copy the MATLAB files DTMF.fig and DTMF.m from the previous experiment to the directory ..\
exp9.4.4_LPC.

2. Modify DTMF.m to replace the Link for CCS function by the code listed in Table 9.15. This function

reads the DTMF data. The all-pole function is implemented using the Levinson algorithm to avoid

direct matrix inversion in computing the autocorrelation and LPC coefficients. The roots of LPC

coefficients are calculated using the MATLAB function roots. Finally, the amplitude and angles

are analyzed and compared to detect DTMF tones.

3. The user interface is the same as the previous experiment. Press DTMF keys to generate a PCM file.

Press the Decode DTMF key to start the decoder.

Table 9.14 File listing for experiment exp9.4.4_LPC

Files Description

DTMF.m MATLAB script for testing experiment

DTMF.fig MATLAB GUI

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

440 DUAL-TONE MULTIFREQUENCY DETECTION

Table 9.15 MATLAB code for LPC all-pole modeling

N=256; % Length of FFT
fs=8000; % Sampling frequency
f=fs*(0:(N/2-1))/N; % Frequency scale for display
KEY = 1:16; % Keypad map lookup table index
% col| row

KEY(1+1) =0016+0001;
KEY(1+2) =0032+0001;
KEY(1+3) =0064+0001;
KEY(1+10)=0128+0001;
KEY(1+4) =0016+0002;
KEY(1+5) =0032+0002;
KEY(1+6) =0064+0002;
KEY(1+11)=0128+0002;
KEY(1+7) =0016+0004;
KEY(1+8) =0032+0004;
KEY(1+9) =0064+0004;
KEY(1+12)=0128+0004;
KEY(1+14)=0016+0008;
KEY(1+0) =0032+0008;
KEY(1+15)=0064+0008;
KEY(1+13)=0128+0008;

% Table lookup for Keys
DIGIT =['0','1','2','3','4','5','6','7','8','9','A','B','C','D','*','#'];

freq = [697 770 852 941 1209 1336 1477 1633];
digi = [1 2 4 8 16 32 64 128];
lpcOrder=10; % LPC order
w=hamming(N); % Generate Hamming window
fid=fopen('.\\data\\data.pcm','r'); % Open the PCM data file
prevDigit = 0;
while ∼ feof(fid)

x = fread(fid,N,'short');
if size(x) ∼ = N

continue;
end
% Check energy
if sum(abs(x)) <= 200000

prevDigit = 0;
else

% Compute autocorrelation
x=x.*w; % Windowing
m=0;
while (m<=lpcOrder);

r(m+1)=sum(x(1:(N-m)).*x((1+m):N)); m=m+1;
end;
a=levinson(r,lpcOrder); % Levinson algorithm
% Calculate root
r=roots(a); % Find roots
amp=abs(r); % Get amplitudes
ang=(angle(r)*fs/pi/2); % Get angles
% Compare with the table

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

REFERENCES 441

Table 9.15 (continued)

AmpThreahold = 0.98; % 0.02%
AngThreahold = 5; % 5 Hz
dtmf =0;
for i=1:2:(lpcOrder)

if abs(amp(i)) >= AmpThreahold
for j = 1:8

if (abs(ang(i)) <= (freq(j)+AngThreahold))
if (abs(ang(i)) >= (freq(j)-AngThreahold))

dtmf = dtmf + digi(j);
end

end
end

end
end
% Check if dtmf detected
dtmfDet=0;
for i=1:16

if dtmf == KEY(i)
dtmfDet =i;

end
end
% Display result
if dtmfDet ∼ = 0

if (DIGIT(dtmfDet) ∼ = prevDigit)
disp(sprintf('%s is detected', DIGIT(dtmfDet)));
prevDigit = DIGIT(dtmfDet);

end
else

prevDigit = 0;
end

end
end
fclose(fid);

4. Validate the DTMF digits displayed on MATLAB command window are correctly decoded.

5. If the all-pole filter order is 4, is it possible to find the root of the filter that matches the DTMF

frequency? Modify the experiment to validate your claim.

References

[1] ITU-T Recommendation Q.23, Technical Features of Push-Button Telephone Sets, 1993.

[2] ITU-T Recommendation Q.24, Multifrequency Push-Button Signal Reception, 1993.

[3] 3GPP TR-T12-26.975 V6.0.0, Performance Characterization of the Adaptive Multi-Rate (AMR) Speech Codec
(Release 6), Dec. 2004.

[4] TI Application Report, DTMF Tone Generation and Detection – An Implementation Using the TMS320C54x,

SPRA 096A, May 2000.

[5] W. Tian and Y. Lu, ‘System and method for DTMF detection using likelihood ratios,’ US Patent no. 6,873,701,

Mar. 2005.

JWBK080-09 JWBK080-Kuo March 8, 2006 12:0 Char Count= 0

442 DUAL-TONE MULTIFREQUENCY DETECTION

[6] Y. Lu and W. Tian, ‘DTMF detection based on LPC coefficients,’ US Patent no. 6,590,972, July 2003.

[7] F. F. Tzeng, ‘Dual-tone multifrequency (DTMF) signaling transparency for low-data-rate vocoder,’ US Patent

no. 5,459,784, Oct. 1995.

[8] R. Rabipour and M. Beyrouti, ‘LPC-based DTMF receiver for secondary signaling,’ US Patent no. 4,853,958,

Aug. 1989.

[9] C. Lee and D.Y. Wong, ‘Digital tone decoder and method of decoding tones using linear prediction coding,’ US

Patent no. 4,689,760, Aug. 1987.

[10] N. Ahmed and T. Natarajan, Discrete-Time Signals and Systems, Englewood Cliffs, NJ: Prentice-Hall, 1983.

[11] MATLAB, Version 7.0.1 Release 14, Sep. 2004.

[12] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice-Hall,

1989.

[13] S. J. Orfanidis, Introduction to Signal Processing, Englewood Cliffs, NJ: Prentice Hall, 1996.

[14] J. G. Proakis and D. G. Manolakis, Digital Signal Processing – Principles, Algorithms, and Applications, 3rd

Ed., Englewood Cliffs, NJ: Prentice Hall, 1996.

[15] A Bateman and W. Yates, Digital Signal Processing Design, New York: Computer Science Press, 1989.

[16] J. Hartung, S. L. Gay, and G. L. Smith, Dual-tone Multifrequency Receiver Using the WE DSP16 Digital Signal
Processor, Application Note, AT&T, 1988.

[17] Analog Devices, Digital Signal Processing Applications Using the ADSP-2100 Family, Englewood Cliffs, NJ:

Prentice Hall, 1990.

[18] P. Mock, Add DTMF Generation and Decoding to DSP-uP Designs, Digital Signal Processing Applications with
the TMS320 Family, Texas Instruments, 1986, Chap. 19.

[19] J. S. Lim and A. V. Oppenheim, ‘Enhancement and bandwidth compression of noisy speech,’ Proc. of the IEEE,

vol. 67, Dec. 1979, pp. 1586–1604.

[20] J. R. Deller, Jr., J. G. Proakis, and J. H. L. Hansen, Discrete-Time Processing of Speech Signals, New York:

MacMillan, 1993.

[21] H. Schulzrinne and S. Petrack, RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals, Request

for Comments 2833 (RFC2833), May 2000.

[22] H. Schulzrinne and S. Casner, RTP Profile for Audio and Video Conferences with Minimal Control, IETF

RFC3551, July 2003.

Exercises

1. According to Table 9.1, DTMF frequency tolerance for operation is ≤1.5 % and nonoperation is ≥3.5 %. Calculate

the operation and nonoperation frequency boundaries of all eight frequencies.

2. For N -point DFT, the frequency resolution is fs
2N = 8000

2N at 8000 Hz sampling rate. In Goertzel algorithm, the

signal frequency fk is approximated by fs
k

2N . If N is not properly selected, the signal frequency fk may be

off more than 1.5 % due to the DFT algorithm. By using the frequency operation tolerance 1.5 %, calculate

N ∈ [180, 256] which makes all eight frequencies meet the requirement.

3. A female voice contains the strong harmonic with pitch frequency of 210 Hz. Which digit may be falsely registered?

Explain why? Assume this DTMF detector meets the frequency tolerance requirement.

4. Besides Goertzel algorithm, an IIR filterbank can be used for DTMF detection. Design a new experiment that

uses eight fourth-order IIR filters for DTMF detection. Profile the performance and compare it with the decoder

that uses the Goertzel algorithm.

5. DTMF digits can also be used for low-rate data communications. One digit can be treaded as a 4-bit symbol.

Assuming each DTMF digit is sent every 80 ms, calculate the bit rate per second.

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

10
Adaptive Echo Cancelation

Adaptive echo cancelation is an important application of adaptive filtering for attenuating undesired

echoes. In addition to canceling the voice echo in long-distance links and acoustic echo in hands-free

speakerphones, adaptive echo cancelers are also widely used in full-duplex data transmission over two-

wire circuits, such as high-speed modems. This chapter focuses on voice echo cancelers for long-distance

networks, VoIP (voice over Internet protocol) applications, and hands-free speakerphones.

10.1 Introduction to Line Echoes

One of the main problems associated with telephone communications is the echo due to impedance

mismatches at various points in the networks. Such echoes are called line (or network) echoes. If the time

delay between the original speech and the echo is short, the echo may not be noticeable. The deleterious

effects of echoes depend upon their loudness, spectral distortion, and delay. In general, longer delay

requires more echo attenuation.

A simplified telecommunication network is illustrated in Figure 10.1, where the local telephone is

connected to a central office by a two-wire line in which both directions of transmission are carried on a

single wire pair. The connection between two central offices uses the four-wire facility, which physically

segregates the transmission by two facilities. This is because long-distance transmission requires ampli-

fication that is a one-way function. The four-wire transmission path may include various equipments,

including switches, cross-connects, and multiplexers. A hybrid (H) located in the central office makes

the conversion between the two-wire and four-wire facilities.

An ideal hybrid is a bridge circuit with the balancing impedance that is exactly equal to the impedance

of the two-wire circuit. Therefore, it will couple all energy on the incoming branch of the four-wire circuit

into the two-wire circuit. In practice, the hybrid may be connected to any of the two-wire loops served

by the central office. Thus, the balancing network can provide only a fixed and compromise impedance

match. As a result, some of the incoming signals from the four-wire circuit leak into the outgoing four-

wire circuit, and return to the source as an echo shown in Figure 10.1. This echo requires special treatment

if the round-trip delay exceeds 40 ms.

Example 10.1: For Internet protocol (IP) trunk applications that use IP packets to relay the time

division multiplex (TDM) traffic, the round-trip delay can easily exceed 40 ms. Figure 10.2 shows

an example of VoIP applications using a gateway in which the voice is converted from the TDM

circuits to the IP packets.

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

443

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

444 ADAPTIVE ECHO CANCELATION

TelephoneTelephone H

Four-wire facility

Two-wire

 facility

Two-wire

facility

Echo

Echo

H

Figure 10.1 Long-distance telecommunication networks

The delay includes vocoders, jitter compensation algorithms, and the network delay. The ITU-

T G.729 CODEC (will be introduced in Chapter 11) is widely used for VoIP applications for

its good performance and low delay. The G.729 algorithm delay is 15 ms. If using 10-ms frame

real-time protocol packet and 10-ms jitter compensation, the round-trip delay of G.729 will be

at least 2 × (15 + 10) = 50 ms without counting the IP network delay and the processing delay.

Such long delay is the reason why adaptive echo cancelation is required for VoIP applications if

one or two ends are connected by TDM circuit.

10.2 Adaptive Echo Canceler

For telecommunication network using echo cancelation, the echo canceler is located in the four-wire

section of the network near the origin of the echo source. The principle of the adaptive echo cancelation

is illustrated in Figure 10.3. We show only one echo canceler located at the left end of network. To

overcome the echoes in a full-duplex communication network, it is desirable to cancel the echoes in both

directions of the trunk. The reason for showing a telephone and two-wire line is to indicate that this side

is called the near-end, while the other side is referred to as the far-end.

Telephone H

Decoder

d(n)

Near-end

Far-end

Jitter
buffer

Encoder

IP network

RTP
packet

Round-trip
delay

Figure 10.2 Example of round-trip delay for VoIP applications

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

ADAPTIVE ECHO CANCELER 445

Telephone H

x(n)

e(n)

LMSW(z)

d(n)

y(n)

Near-end
Far-end

+

−
Σ

Figure 10.3 Block diagram of an adaptive echo canceler

10.2.1 Principles of Adaptive Echo Cancelation

To explain the principle of the adaptive echo cancelation in details, the function of the hybrid shown in

Figure 10.3 can be illustrated in Figure 10.4, where the far-end signal x(n) passing through the echo path

P(z) results in echo r (n). The primary signal d(n) is a combination of echo r (n), near-end signal u(n), and

noise v(n). The adaptive filter W (z) models the echo path P(z) using the far-end speech x(n) as an exci-

tation signal. The echo replica y(n) is generated by W (z), and is subtracted from the primary signal d(n)

to yield the error signal e(n). Ideally, y(n) ≈ r (n) and the residual error e(n) is substantially free of echo.

The impulse response of an echo path is shown in Figure 10.5. The time span over the hybrid is

typically about 4 ms and is called the dispersive delay. Because of the four-wire circuit located between

the location of the echo canceler and the hybrid, the impulse response of echo path has a flat delay. The

flat delay depends on the transmission delay between the echo canceler and the hybrid, and the delay

through the sharp filters associated with frequency division multiplex equipment. The sum of the flat

delay and the dispersive delay is the tail delay.

Assuming that the echo path P(z) is linear, time invariant, and with infinite impulse response p(n), n =
0, 1, . . . ,∞, the primary signal d(n) can be expressed as

d(n) = r (n) + u(n) + v(n)

=
∞∑

l=0

p(l)x(n − l) + u(n) + v(n), (10.1)

x(n)

e(n)

LMSW(z)

y(n)

+

−
ΣΣ

P(z)

r(n)

u(n)+

+

+
v(n)

Telephone

Hybrid

d(n)

Figure 10.4 An echo canceler diagram with details of hybrid function

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

446 ADAPTIVE ECHO CANCELATION

Time, n

Flat
delay

Dispersive delay

Tail delayp(n)

Figure 10.5 Impulse response of an echo path

where the additive noise v(n) is assumed to be uncorrelated with the near-end speech u(n) and the echo

r (n). The adaptive FIR filter W (z) generates an echo estimation

y(n) =
L−1∑
l=0

wl (n)x(n − l), (10.2)

which is used to cancel the echo. The error signal can be expressed as

e(n) = d(n) − y(n)

=
L−1∑
l=0

[p(l) − wl (n)]x(n − l) +
∞∑

l=L

p(l)x(n − l) + u(n) + v(n). (10.3)

The adaptive filter W (z) adjusts its weights wl (n) to mimic the first L-sample impulse response of the

echo path during the process of echo cancelation. The normalized LMS algorithm introduced in Section

7.3.4 is commonly used for adaptive echo cancelation applications. Assuming that disturbances v(n)

and voice u(n) are uncorrelated with x(n), W (z) will converge to P(z), i.e., wl (n) ≈ p(l). As shown in

Equation (10.3), the residual error after the W (z) has converged can be expressed as

e(n) ≈
∞∑

l=L

p(l)x(n − l) + u(n) + v(n). (10.4)

By making the length of W (z) sufficiently long, the residual echo can be minimized. However, as

discussed in Section 7.3.3, the excess mean-square error (MSE) produced by the adaptive algorithm and

finite-precision errors are also proportional to the filter length. Therefore, there is an optimum length L
for echo cancelation.

The number of coefficients required for the FIR filter is determined by the tail delay. As mentioned

earlier, the impulse response of the hybrid (dispersive delay) is relatively short. However, the flat delay

from the echo canceler to the hybrid depends on the physical location of the echo canceler, and the

processing delay of transmission equipments.

10.2.2 Performance Evaluation

The effectiveness of an echo canceler is usually measured by the echo return loss enhancement (ERLE)

defined as

ERLE = 10 log

{
E

[
d2(n)

]
E

[
e2(n)

] }
. (10.5)

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

PRACTICAL CONSIDERATIONS 447

For a given application, the ERLE depends on the step size μ, the filter length L , the signal-to-noise

ratio, and the nature of signal in terms of power and spectral contents. A larger step size provides a faster

initial convergence, but the final ERLE is smaller due to the excess MSE and quantization errors. If the

filter length is long enough to cover the length of echo tail, increasing L will further reduce the ERLE.

The ERLE achieved by an echo canceler is limited by many practical factors. Detailed requirements

of an adaptive echo canceler are defined by ITU-T Recommendations G.165 and G.168, including the

maximum residual echo level, the echo suppression effect on the hybrid, the convergence time, the initial

setup time, and the degradation in a double-talk situation.

The first special-purpose chip for echo cancelation implements a single 128-tap adaptive echo canceler

[5]. In the past, adaptive echo cancelers were implemented using customized devices in order to handle

the heavy computation in real-time applications. Disadvantages of VLSI (very large scale integrated

circuit) implementation are long development time, high development cost, and lack of flexibility to

meet application-specific requirements and improvements such as the standard changed from G.165

to G.168. Therefore, recent activities in the design and implementation of adaptive echo cancelers for

real-world applications are focus on programmable DSP processors.

10.3 Practical Considerations

This section discusses two practical techniques in designing adaptive echo canceler: prewhitening and

delay detection.

10.3.1 Prewhitening of Signals

As discussed in Chapter 7, convergence time of adaptive FIR filter with the LMS algorithm is proportional

to spectral ratio λmax/λmin. Thus, an input signal with flat spectrum such as white noise has faster

convergence rate. Since speech signal is highly correlated with nonflat spectrum, the convergence speed

is slow. The decorrelation (whitening) of input signal will improve the convergence speed.

Figure 10.6 shows a typical prewhitening structure for input signals. The whitening filter FW (z) is used

for both the far-end and near-end signals. This fixed filter could be obtained using the reversed statistical

or temporal averaged spectrum values. One example is the anti-tile filter used to lift up the high-frequency

components since most speech signal’s power is concentrated at the low-frequency region.

Echo path

W(z) W(z)

Update
FW(z)

d(n)

e′(n)
FW(z)

FW(z)

−

e(n)

x(n)

y(n)

NLP

+

Figure 10.6 Block diagram of a signal prewhitening structure

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

448 ADAPTIVE ECHO CANCELATION

W(z)

Update

FW(z)

1/FW(z)

NLP
d(n)

x(n)

e(n)

FW(z)

Echo

Figure 10.7 Block diagram of an adaptive prewhitening structure

The whitening filter can be adaptive based on the far-end signal x(n). In this case, the filter coefficients

update is synchronized for both branches. An equivalent structure of adaptive prewhitening is shown in

Figure 10.7.

The adaptation of the whitening filter coefficients is similar to a perceptive weighting filter, which

will be discussed in Chapter 11. We can use the Levinson–Durbin algorithm to estimate the input signal

spectrum envelope and use the reversed function to filter the signal. The calculation of transfer function

FW (z) is similar to the adaptive channel equalization discussed in Chapter 7. However, two conditions

must be satisfied: the processing should be linear and the filter FW (z) must be reversible.

10.3.2 Delay Detection

As discussed in Section 10.2.1, the initial part of the impulse response of an echo path represents a

transmission delay between the echo canceler and the hybrid. To take advantage of this flat delay, the

structure illustrated in Figure 10.8 was developed. Here, � represents the number of flat-delay samples.

By estimating the number of zero coefficients needed to cover the flat delay, the echo canceler W (z) length

can be shortened by �. This technique effectively reduces the computational requirements. However,

there are three major difficulties: the existence of multiple echoes, the difficulty to estimate the flat delay,

and the delay variation during a call.

Telephone H

x(n)

e(n)

LMSW(z)

d(n)

y(n)

+

−
Σ

z−Δ
x(n − Δ)

Figure 10.8 Adaptive echo canceler with effective flat-delay compensation

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

PRACTICAL CONSIDERATIONS 449

The crosscorrelation function between the far-end signal x(n) and the near-end signal d(n) can be used

to estimate the delay. The normalized crosscorrelation function at time n with lag k can be estimated as

ρ(n, k) = rxd (n, k)√
rxx (n)rdd (n)

, (10.6)

where rxd (n, k) is the crosscorrelation function defined as

rxd (n, k) = 1

L

L−1∑
l=0

x (n − (l + k)) d(n − l), (10.7)

and the autocorrelation for x(n) and d(n) are defined as

rxx (n) = 1

L

L−1∑
l=0

x (n − l) x(n − l), (10.8)

rdd (n) = 1

L

L−1∑
l=0

d(n − l)d(n − l). (10.9)

The typical value of length L is between 128 and 256 for 8 kHz sampling rate.

The flat delay will be the lag k that makes the maximum normalized crosscorrelation function as

defined by Equation (10.6). Unfortunately, this method may have poor performance for speech signals as

shown in Figure 10.9, although it has a good performance for signals with the flat-spectra such as white

noise.

To improve the performance of crosscorrelation method, a bandpass filter using two or three formants

in the passband can be considered. This makes the crosscorrelation technique more reliable by whitening

the input signals over the passband. The multirate filtering (introduced in Section 4.4) can be used to

further reduce the computational load. The normalized crosscorrelation function ρ(n, k) is then computed

using the subband signals u(n) and v(n). With properly chosen bandpass filter and downsampling factor

D, the downsampled subband signals u(n) and v(n) are closer to that of the white noise.

Figure 10.10 shows the performance improvement using a 16-band filterbank. The third subband

signal is decimated by a factor of 16 and the downsampled signal is used to calculate the crosscorrelation

function defined in Equation (10.7). Because of the downsampling operations, the flat-delay estimation

is divided into two steps. The first step finds T0 in the downsampled domain. This delay has a resolution

of the downsampling factor D. The exact delay will be between T0 − D/2 and T0 + D/2. The second

step finds the resolution T1 using the original signal that has maximum value of ρ(n, k). This two-step

approach requires less computation since the first step works at lower sampling rate and the second step

needs to perform only limited fine searches. It requires about 1/D of the crosscorrelation computational

requirements (refer to [4] for details).

Example 10.2: For a typical impulse response of echo path shown in Figure 10.5, calculate the

required number of FIR filter coefficients given that the flat delay is 15 ms, the dispersive segment

is 10 ms, and the sampling rate is 8 kHz. For this specific example, the adaptive echo canceler is

located at tandem switch as shown in Figure 10.11.

Since the flat delay is a pure delay, this part can be implemented using a tapped delay line as

z−� where � = 120. The actual filter length is 80 to cover the 10 ms of dispersive segment. In this

case, the FIR filter coefficients need to compensate only for the dispersive delay of hybrid rather

than the flat delay between the hybrid and the echo canceler. The delay estimation becomes very

important since this flat delay may change for different connections.

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

450 ADAPTIVE ECHO CANCELATION

0 100 200 300 400 500 600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
× 104

Peak around 512

Crosscorrelation between far-end and near-end speech

Time at 8000 Hz sampling rate

C
ro

ss
co

rr
el

at
io

n

Figure 10.9 Crosscorrelation function of a voiced speech

10.4 Double-Talk Effects and Solutions

An extremely important issue of designing adaptive echo cancelers is to handle double talk, which occurs

when the far-end and near-end talkers are speaking simultaneously. In this case, signal d(n) consists of

both echo r (n) and near-end speech u(n) as shown in Figure 10.3. During the double-talk periods, the

error signal e(n) described in Equation (10.4) contains the residual echo, the uncorrelated noise v(n),

and the near-end speech u(n). To correctly identify the characteristics of P(z), d(n) must originate solely

from its input signal x(n).

In theory, the far-end signal x(n) is uncorrelated with the near-end speech u(n), and thus will not

affect the asymptotic mean value of the adaptive filter coefficients. However, the variation in the filter

coefficients about this mean will be increased substantially in the presence of the near-end speech. Thus,

the echo cancelation performance is degraded. An unprotected algorithm may exhibit unacceptable

behavior during double-talk periods.

An effective solution is to detect the occurrence of double talk and then to disable the adaptation of

W (z) during the double-talk periods. Note that only the coefficient adaptation as illustrated in Figure 10.12

is disabled. If the echo path does not change during the double-talk periods, the echo can be canceled by

the previously converged W (z), whose coefficients are fixed during double-talk periods.

As shown in Figure 10.12, the speech detection/control block is used to control the adaptation of

the adaptive filter W (z) and the nonlinear processor (NLP) that is used for reducing residual echo. The

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

DOUBLE-TALK EFFECTS AND SOLUTIONS 451

0 10 20 30 40 50 60
−2

−1

0

1

2

3

4
×104

Single peak around 32

Crosscorrelation between far-end and near-end speech

Time at 500 Hz sampling rate

C
ro

ss
co

rr
el

at
io

n

Figure 10.10 Improved resolution of the crosscorrelation peaks

double-talk detector (DTD), which detects the presence of near-end speech when the far-end speech is

present, is a very critical element in echo cancelers.

The conventional DTD based on the echo return loss (ERL), or hybrid loss, can be expressed as

ρ = 20 log10

{
E [|x(n)|]
E [|d(n)|]

}
. (10.10)

H H
Echo

canceler
Echo

canceler

Long-
delay

channel

−

+
Σ

ΣTx
delay

Rx
delay

Local
switch

Local
loop

Tandem
switch −

+

Figure 10.11 Configuration of echo cancelation with flat delay

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

452 ADAPTIVE ECHO CANCELATION

Telephone H

x(n)

e(n)

LMSW(z)

d(n)

y(n)

+

−
Σ NLP

Detection
and control

To far-end

Figure 10.12 Adaptive echo canceler with speech detectors and nonlinear processor

In several adaptive echo cancelers such as defined by ITU standards, the ERL value is assumed to be

6 dB. Based on this assumption, the near-end speech is present if

|d(n)| >
1

2
|x(n)| . (10.11)

However, we cannot just use the instantaneous absolute values |d(n)| and |x(n)| under the noisy condition.

A modified near-end speech detection algorithm declares the presence of near-end speech if

|d(n)| >
1

2
max {|x(n)| , . . . , |x(n − L + 1)|} . (10.12)

Equation (10.12) compares an instantaneous absolute value |d(n)| with the maximum absolute value of

x(n) over a time window spanning the echo path. The advantage of using an instantaneous power of d(n)

is its fast response to the near-end speech. However, it will increase the probability of false trigger if

noise exists in the network.

A more robust version of speech detector replaces the instantaneous power |x(n)| and |d(n)| with the

short-term power estimates Px (n) and Pd (n). These short-term power estimates are implemented by the

first-order IIR filter as

Px (n) = (1 − α)Px (n − 1) + α |x(n)| (10.13)

and

Pd (n) = (1 − α)Pd (n − 1) + α |d(n)| , (10.14)

where 0 < α << 1. The use of a larger α results in robust detector. However, it also causes slower

response to the presence of near-end speech. With the modified short-term power estimate, the near-end

speech is detected if

Pd (n) >
1

2
max {Px (n), Px (n − 1), . . . , Px (n − L + 1)} . (10.15)

It is important to note that a portion of the initial break-in near-end speech u(n) may not be detected by this

detector. Thus, adaptation would proceed in the presence of double talk. Furthermore, the requirement of

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

NONLINEAR PROCESSOR 453

maintaining a buffer to store L-power estimates increases the memory requirement and the complexity

of algorithm.

The assumption that the ERL is a constant (6 dB) is not always correct. If the ERL is higher than

6 dB, it will take longer time to detect the presence of near-end speech. If the ERL is lower than 6 dB,

most far-end speech will be falsely detected as near-end speech. For practical applications, it is better to

dynamically estimate the time-varying threshold ρ by observing the signal level of x(n) and d(n) when

the near-end speech u(n) is absent.

10.5 Nonlinear Processor

The residual echo can be further reduced using an NLP realized as a center clipper. The comfort noise is

inserted to minimize the adverse effects of the NLP.

10.5.1 Center Clipper

Nonlinearities in the echo path, noise in the circuits, and uncorrelated near-end speech limit the amount of

achievable cancelation for a typical adaptive echo canceler. The NLP shown in Figure 10.12 removes the

last vestiges of the remaining echoes. The most widely used NLP is a center clipper with the input–output

characteristic illustrated by Figure 10.13. This nonlinear operation can be expressed as

y(n) =
{

0, |x(n)| ≤ β

x(n), |x(n)| > β
, (10.16)

where β is the clipping threshold. This center clipper completely eliminates signals below the clipping

threshold β, but leaves signals greater than the clipping threshold unaffected. A large value of β suppresses

all the residual echoes but also deteriorates the quality of the near-end speech. Usually the threshold is

chosen to be equal or to exceed the peak amplitude of return echo.

10.5.2 Comfort Noise

The NLP completely eliminates the residual echo and circuit noise, thus making the connection not ‘real’.

For example, if the near-end subscriber stops talking, the noise level will suddenly drop to zero since it

has been clipped by the NLP. If the difference is significant, the far-end subscriber may think the call has

x(n)

y(n)

−β

0

−β

β

β

Figure 10.13 Input–output relationship of center clipper

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

454 ADAPTIVE ECHO CANCELATION

H

x(n)

e(n)

LMS W(z)

d(n)

y(n)

Near-end

Far-end

+

−

Σ

Noise
update

Comfort
noise

v(n)

Figure 10.14 Implementation of G.168 with comfort noise insertion

been disconnected. Therefore, the complete suppression of a signal using NLP has an undesired effect.

This problem can be solved by injecting a low-level comfort noise when the residual echo is suppressed.

As specified by Test 9 of G.168, the comfort noise must match the signal level and frequency contents

of background noise. In order to match the spectrum, the comfort noise insertion is implemented in

frequency domain by capturing the frequency characteristic of background noise. An alternate approach

uses the linear predictive coding (LPC) coefficients to model the spectral information. In this case, the

comfort noise is synthesized using a pth-order LPC all-pole filter, where the order p is between 6 and 10.

The LPC coefficients are computed during the silence segments. The ITU-T G.168 recommends the level

of comfort noise within ±2 dB of the near-end noise.

An effective way of implementing NLP with comfort noise is shown in Figure 10.14, where the

generated comfort noise v(n) or echo canceler output e(n) is selected as the output according to the

control logic. The background noise is generated with a matched level and spectrum, heard by the far-

end subscriber remaining constant during the call connection, and thus significantly contributing to the

high-grade perceptive speech quality.

10.6 Acoustic Echo Cancelation

There has been a growing interest in applying acoustic echo cancelation for hands-free cellular phones

in mobile environments and speakerphones in teleconferencing. Acoustic echoes consist of three major

components: (1) acoustic energy coupling between the loudspeaker and the microphone; (2) multiple-

path sound reflections of far-end speech; and (3) the sound reflections of the near-end speech signal. In

this section, we focus on the cancelation of the first two echo components.

10.6.1 Acoustic Echoes

Speakerphone has become important office equipment because it provides the convenience of hands-free

conversation. For reference purposes, the person using the speakerphone is the near-end talker and the

person at the other end is the far-end talker. In Figure 10.15, the far-end speech is broadcasted through

one or more loudspeakers inside the room. Unfortunately, the far-end speech played by the loudspeaker

is also picked up by the microphone inside the room, and this acoustic echo is returned to the far end.

The basic concept of acoustic echo cancelation is similar to the line echo cancelation; however, the

adaptive filter of acoustic echo canceler models the loudspeaker-room-microphone system instead of

the hybrid. Thus, the acoustic echo canceler needs to cancel a long echo tail using a much high-order

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

ACOUSTIC ECHO CANCELATION 455

Far-end
signal

Power
amplifier

Preamplifier

Reflection

Direct
coupling

Room

Acoustic
echo

Near-end talker

Figure 10.15 Acoustic echo generated by a speakerphone in a room

adaptive filter. One effective technique is the subband acoustic echo canceler, which splits the full-band

signal into several overlapped subbands and uses an individual low-order filter for each subband.

Example 10.3: To evaluate an acoustic echo path, the impulse responses of a rectangular room

(246 × 143 × 111 in3) were measured. The original data is sampled at 48 kHz, which is then

bandlimited to 400 Hz and decimated to 1 kHz for display purpose. The room impulse response is

stored in the file imp.dat and is shown in Figure 10.16 (example10_3.m):

load imp.dat; % Room impulse response
plot(imp(1:1000)); % Display samples from 1 to 1000

0 100 200 300 400 500

Room impulse response

Time

A
m

p
li

tu
d
e

600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5
× 10−4

Figure 10.16 An example of room impulse response

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

456 ADAPTIVE ECHO CANCELATION

There are three major factors making the acoustic echo cancelation far more challenging than the line

echo cancelation for real-world applications:

1. The reverberation of a room causes a very long acoustic echo tail. The duration of the acoustic echo

path is usually 400 ms in a typical conference room. For example, 3200 taps are needed to cancel

400 ms of echo at sampling rate 8 kHz.

2. The acoustic echo path may change rapidly due to the motion of people in the room, the change in

position of the microphone, and some other factors like doors and/or windows opened or closed, etc.

The acoustic echo canceler requires a faster convergence algorithm to track these fast changes.

3. The double-talk detection is much more difficult since we cannot assume the 6-dB acoustic loss as

the hybrid loss in line echo canceler.

Therefore, acoustic echo cancelers require more computation power, faster convergence speed, and

more sophisticated double-talk detector.

10.6.2 Acoustic Echo Canceler

The block diagram of an acoustic echo canceler is illustrated in Figure 10.17. The acoustic echo path

P(z) includes the transfer functions of the A/D and D/A converters, smoothing and antialiasing lowpass

filters, speaker power amplifier, loudspeaker, microphone, microphone preamplifier, and the room transfer

function from the loudspeaker to the microphone. The adaptive filter W (z) models the acoustic echo path

P(z) and yields an echo replica y(n) to cancel acoustic echo components in d(n).

The adaptive filter W (z) generates a replica of the echo as

y(n) =
L−1∑
l=0

wl (n)x(n − l). (10.17)

This replica is then subtracted from the microphone signal d(n) to generate e(n). The coefficients of the

W (z) filter are updated by the normalized LMS algorithm as

wl (n + 1) = wl (n) + μ(n)e(n)x(n − l), l = 0, 1, . . . , L − 1, (10.18)

where μ(n) is the normalized step size by the power estimation of x(n).

x(n)

e(n)

LMSW(z)

d(n)

y(n)

+

−
Σ

Acoustic
echo path

P(z)

Far-end
talker

NLP

Figure 10.17 Block diagram of an acoustic echo canceler

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

ACOUSTIC ECHO CANCELATION 457

10.6.3 Subband Implementations

Subband and frequency-domain adaptive filtering techniques have been developed to cancel long acoustic

echoes. The advantages of using subband acoustic echo cancelers are (1) the decimation of subband

signals reduces computational requirements, and (2) the signal whitening using normalized step size at

each subband results in fast convergence.

A typical structure of subband echo canceler is shown in Figure 10.18, where Am(z) and Sm(z) are

analysis and synthesis filters, respectively. The number of subbands is M , and the decimation factor can

be a number equal to or less than M . There are M adaptive FIR filtersWm(z), one for each channel.

Usually, these filter coefficients are in complex form with much lower order than the full-band adaptive

filter W (z) shown in Figure 10.17.

The filterbank design with complex coefficients reduces the filter length due to the relaxed antialias-

ing requirement. The drawback is the increased computation load because one complex multiplication

requires four real multiplications. However, complex filterbank is still commonly used because of the

difficulties to design a real coefficient bandpass filter with sharp cutoff and strict antialiasing requirements

for adaptive echo cancelation.

An example of designing a 16-band filterbank with complex coefficients is highlighted as follows:

1. Using the MATLAB to design a prototype lowpass FIR filter with coefficients h(n), n = 0, 1, . . . ,

N − 1, which meets the requirement of the 3-dB bandwidth at π/2M, where M = 16. The magnitude

response of the prototype filter is shown in Figure 10.19(a), and the impulse response is given in

Figure 10.19(b).

x(n)

A1(z) ↓M

Am(z) ↓M

AM(z) ↓M

+
A1(z) ↓M

Am(z) ↓M

AM(z) ↓M

↑M

↑M

↑M

Sm(z)

SM(z)

S1(z)W1(z)

Wm(z)

−

+−

+−

DTD

P(z)

d(n)

WM(z)

Figure 10.18 Block diagram of a subband echo canceler

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

458 ADAPTIVE ECHO CANCELATION

0 500 1000 1500 2000 2500 3000 3500 4000
−120

−100

−80

0

20

−40

−20

−60

0 20 40 60 80 100 120
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a)

Frequency (Hz) Time in sample

Frequency (Hz) Frequency (Hz)

Prototype filter for 16-band frequency response Prototype filter impulse response

Full band frequency response16 band overall anylasis and synthesis filter frequency response

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
−120

−100

−80

−60

−40

−20

0

0 500 1000 1500 2000 2500 3000 3500 4000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c)

M
ag

n
it

u
d

e
(d

B
)

M
ag

n
it

u
d

e
(d

B
)

M
ag

n
it

u
d

e
(d

B
)

A
m

p
li

tu
d

e

(d)

Figure 10.19 Example of filterbank with 16 complex subbands

2. Applying cos
[
π

m−1/2

M

(
n − N+1

2

)]
and sin

[
π

m−1/2

M

(
n − N+1

2

)]
to modulate the prototype filter to

produce the complex-coefficient bandpass filters, Am(z), m = 0, 1, . . . , M − 1, as shown in Figure

10.18. The overall filter’s magnitude response is shown in Figure 10.19(c). In this example, the

synthesis filterbank is identical to the analysis filterbank; i.e., Sm(z) = Am(z) for m = 0, 1, . . . ,

M − 1.

3. Decimating filterbank outputs by M to produce the low-rate signals sm(n), m = 0, 1, . . . , M − 1, for

the far-end and dm(n) for the near-end.

4. Performing the adaptation and echo cancelation for each individual subband with 1/M sampling

rate. This produces error signals em(n), m = 0, 1, . . . , M − 1.

5. The error signals at these M bands are synthesized back to the full-band signal using the bandpass

filters Sm(z). Figure 10.19(d) shows the filterbank performance.

Example 10.4: For the same tail length, compare the computational load between the adaptive

echo cancelers of two subbands (assume real coefficients) and full band. More specifically, given

that the tail length is 32 ms (256 samples at 8 kHz sampling rate), estimate the required number

of multiply–add operations.

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

ACOUSTIC ECHO CANCELATION 459

Subband implementation requires 2 ×128 multiplications and additions for updating coeffi-

cients at half of the sampling rate. In comparison, the full-band adaptive filter needs 256 multi-

plications and additions at sampling rate. This means subband implementation needs only half of

the computations required for a full-band implementation. In this comparison, the computation

load of splitting filter is not counted since this computation load is very small as compared to the

coefficients update using the adaptive algorithm.

10.6.4 Delay-Free Structures

The inherent disadvantage of subband implementations is the extra delay introduced by the filterbank,

which splits the full-band signal into multiple subbands and also synthesizes the processed subband signals

into a full-band signal. Figure 10.20 shows the algorithm delay of subband adaptive echo canceler.

A delay-free subband acoustic echo canceler can be implemented by adding an additional short full-

band adaptive FIR filters W0(z), which covers the first part of the echo path and its length is equal to

the total delay introduced by the analysis/synthesis filters plus the block-processing size. The subband

adaptive filters model the rest of the echo path. Figure 10.21 illustrates the structure of delay-free subband

acoustic echo cancelation.

Example 10.5: For a 16-band subband acoustic echo canceler with delay-free structure, calculate

the minimum filter length of the first FIR filter. Given that the filterbank is a linear phase FIR filter

with 128 taps.

The filterbank (analysis and synthesis) delay is 128 samples and the processing block delay is

16 samples. Therefore, the total delay due to filterbank is 128 + 16 = 144 samples. In this case,

the length of the first FIR filter W0(z) is at least 144.

10.6.5 Implementation Considerations

As shown in Figure 10.8, an effective technique to reduce filter length is to introduce a delay buffer of

� samples at the input of adaptive filter. This buffer compensates for delay in the echo path caused by

the propagation delay from the loudspeaker to the microphone. This technique saves computation since

it effectively covers � impulse response samples without using adaptive filter coefficients. For example,

Far-end

P(z)

d(n)Near-end

S
y
n
th

es
is

fi
lt

er
b
an

k

Echo
cancelation in

subbands

Full-band signal

Algorithm delay

+ −

Analysis
filterbank

Analysis
filterbank

Figure 10.20 Illustration of algorithm delay due to filterbank

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

460 ADAPTIVE ECHO CANCELATION

Far-end

Analysis filterbank

P(z)

d(n)

Analysis
filterbank

S
y
n
th

es
is

fi
lt

er
b
an

k

Echo
cancelation in

subbands

Full-band
signal

…

…

… Full-band
cancelation

Near-end

+
− − −

+

+

Figure 10.21 Structure of delay-free subband acoustic echo canceler

if the distance between the loudspeaker and the microphone is 1.5 m, the measured time delay in the

system is about 4.526 ms based on the sound speed traveling at 331.4 m/s, which corresponds to � = 36

at 8 kHz sampling rate.

As discussed in Chapter 7, if a fixed-point DSP processor is used for implementation and μ is suf-

ficiently small, the excess MSE increases with a larger L , and the numerical errors (due to coefficient

quantization and roundoff) increase with a larger L , too. Furthermore, roundoff error causes early termi-

nation of the adaptation if a small μ is used. In order to alleviate these problems, a larger dynamic range

is required which can be achieved by using floating-point arithmetic. However, floating-point solution

requires a more expensive hardware for implementation.

As mentioned earlier, the adaptation of coefficients must be temporarily stopped when the near-end

talker is speaking. Most double-talk detectors for adaptive line echo cancelers are based on ERL. For

acoustic echo cancelers, the echo return (or acoustic) loss is very small or may be even a gain because of

the use of amplifiers in the system. Therefore, the higher level of acoustic echo makes detection of weak

near-end speech very difficult.

10.6.6 Testing Standards

ITU G.167 specifies the procedure for evaluating the performance of an acoustic echo canceler. As shown

in Figure 10.22, the echo canceler is tested with the input far-end signal Rin and near-end signal Sin, and

the output near-end signal Rout and far-end signal Sout. The performance of echo cancelation is evaluated

based on these signals. Some G.167 requirements are listed as follows:� Initial convergence time: For all the applications, the attenuation of the echo shall be at least 20 dB

after 1 s. This test evaluates the convergence time of adaptive filter. The filter structure, adaptation

algorithm, step size μ, type of input signal, and prewhitening technique may affect this test.� Weighted terminal coupling loss during single talk: For teleconferencing systems and hands-free

communication, its value shall be at least 40 dB on both sides. The value is the difference between

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 461

Rin

e(n)

LMSW(z)

y(n)

+

−
Σ NLP

Rout

Sin
Sout

Gain
control

Figure 10.22 Simplified diagram for G.167 testing

the signal level (in Sout) without echo cancelation and the signal level with echo canceler in steady

state. Test signal is applied to Rin and no other speech signal other than the acoustic return from the

loudspeaker(s) is applied to the microphone.� Weighted terminal coupling loss during double talk: For teleconferencing systems and hands-free

communication, its value shall be at least 25 dB on both sides. After the echo canceler reaches the

steady state, a near-end speech is applied at the Sin for 2 s. The adaptive filter coefficients are frozen

and then the near-end speech is removed. This test evaluates how fast and accurate is the DTD to stop

the coefficient update during the double talk.� Recovery time after echo path variation: For all the applications, the attenuation of the echo should

be at least 20 dB after 1 s. This test evaluates the echo canceler after the double talk; the coefficients

may be affected but the system should not take more than 1 s to update to the optimum level.

One of the interesting observations for the tests specified by ITU-T G. 167 is that the test vectors are

artificial voices according to ITU P.50 standard. These artificial voices are composed using the speech

synthesis model. This makes the test easier with reduced limitation of human resources.

10.7 Experiments and Program Examples

This section presents some echo cancelation modules using MATLAB, C, or C55x programs to further

illustrate the algorithms and examine the performance.

10.7.1 MATLAB Implementation of AEC

This experiment is modified from the lms demo available in the MATLAB Signal Processing Blockset.
Procedures of the experiment are listed as follows:

1. Start MATLAB and change to directory ..\experiments\exp10.7.1_matAec.

2. Run the experiment by typing lms_aec in the MATLAB command window. This starts Simulink

and creates a window that contains the model as shown in Figure 10.23.

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

462 ADAPTIVE ECHO CANCELATION

Figure 10.23 Acoustic echo cancelation demo using Simulink

3. In the lms_aec window shown in Figure 10.23, make sure that:

(a) nLMS module is connected to the Enable1’s position 1;

(b) Manual switch is in silence position; and

(c) nLMS module is connected to the Reset1’s position 0.

If any of the connections is not met, double click the connection to change it.

4. Open the Simulation pull-down menu and click Start to start Simulink.

5. After the algorithm reaches steady state, disable adaptation and freeze the coefficients by changing

the ‘Enable1’ switch to position 0. The adaptive filter coefficients are shown in Figure 10.24(a). In

this experiment, the echo path is simulated by a 128-tap FIR lowpass filter with normalized cutoff

frequency of 0.5. The coefficients of echo canceler in steady state approximate the coefficients of

lowpass filter. Figure 10.24(b) shows the magnitude response of the converged adaptive filter.

6. Figure 10.25(a) shows the near-end signal, error signal, and echo (signal + noise). The differences

between the near-end signal and the error signal indicate the performance of echo cancelation.

7. Switch from silence to near-end signal to add the near-end signal (a sinewave).

8. Figure 10.25(b) shows the output of the echo canceler, which is very close to the near-end signal.

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 463

Figure 10.24 Adaptive filter in steady state: (a) impulse response; (b) frequency response

This experiment can be repeated with different parameters. For example, on double clicking the

nLMS module shown in Figure 10.23, a function parameter configuration window will be displayed

as shown in Figure 10.26. From this window, we can modify the step size, filter length, as well as

leaky factor.

Figure 10.25 Signal waveforms generated by Simulink model: (a) echo only; (b) during double talk

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

464 ADAPTIVE ECHO CANCELATION

Figure 10.26 Configuration of the LMS adaptive filter

9. Try the following configurations and verify their performance. Explain why the echo cancelation

performance becomes worse or better?� Change the echo path from an FIR filter to an IIR filter.� Change the switch from the silence to near-end signal position before disabling the adaptation

with the LMS algorithm.� Change the step size μ from 1.5 to 0.1 and 4, and observe the results.

10. Select the FIR filter length of 256 and the LMS filter length of 64. Explain why the coefficients

cannot match the echo path?

10.7.2 Acoustic Echo Cancelation Using Floating-Point C

An acoustic echo canceler implemented using floating-point C is presented in this experiment. The files

used for this experiment are listed in Table 10.1. The data files used for experiment are captured using a PC

sound card at 8-kHz sampling rate. The conversation is carried out in a room of size 11 × 13 × 9 ft3. The

far-end speech file rtfar.pcm and the near-end speech file rtmic.pcm are captured simultaneously.

The near-end signal picked up by a microphone consists of the near-end speech and acoustic echoes

generated from the far-end speech.

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 465

Table 10.1 File listing for experiment exp10.7.2_floatingPointAec

Files Description

AecTest.c Program for testing acoustic echo canceler

AecInit.c Initialization function

AecUtil.c Echo canceler utility functions

AecCalc.c Main module for echo canceler

Aec.h C header file

floatPoint_aec.pjt DSP project file

floatPoint_aec.cmd DSP linker command file

rtfar.pcm Far-end data file

rtmic.pcm Near-end data file

The adaptive echo canceler operates in four different modes based on the power of far-end and near-end

signals. These four operating modes are defined as follows:

1. Receive mode: Only the far-end speaker is talking.

2. Transmit mode: Only the near-end speaker is talking.

3. Idle mode: Both ends are silence.

4. Double-talk mode: Both ends are talking.

Different operations are required for different modes. For example, the adaptive filter coefficients will

be updated only at the receive mode. Typical operations at different modes are coded in Table 10.2.

Figure 10.27 illustrates the performance of acoustic echo canceler: (a) the far-end speech signal that is

played via a loudspeaker in the room; (b) the near-end signal picked up by a microphone, which consists

of the near-end speech as well as the echoes in the room generated from playing the far-end speech;

and (c) the acoustic echo canceler output to be transmitted to the far-end. It clearly shows that the echo

canceler output contains only the near-end speech. In this experiment, the double talk is not present.

The echo canceler reduces the echo by more than 20 dB. More experiments can be conducted by using

different parameters.

Procedures of the experiment are listed as follows:

1. Use an audio player or MATLAB to play the data files. The rtfar.pcm is transmitted from the

far-end and played by a loudspeaker, which will generate acoustic echo in a room. The rtmic.pcm

is the near-end signal captured by a microphone. We can clearly hear both the near-end speech and

the echo generated from the far-end speech.

2. Open and build the experiment project.

3. Load and run the experiment using the provided data files. Verify the performance of acoustic echo

canceler for removing the echo.

4. Open the C source file AecInit.c, adjust the following adaptive echo canceler parameters, and

rerun the experiment to observe changing behavior:

(a) echo tail length aec->AECorder (up to 1024);

(b) leaky factor aec->leaky (1.0 disables leaky function); and

(c) step size aec->mu.

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

466 ADAPTIVE ECHO CANCELATION

Table 10.2 Partial C code for acoustic echo cancelation

if (farFlag == 1) // There is far-end speech
{

if ((nearFlag == 0) || (trainTime > 0)) // Receive mode
{

/* Receive mode operations */
if (trainTime > 0) // Counter is no expire yet
{

trainTime--; // Decrement the counter
if (txGain > 0.25) txGain -= rampDown; // Ramp down
farEndOut = (float)(txGain*errorAEC); // Attenuate by 12 dB

}
if (errorAECpowM<clipThres) // If ERLE > 18 dB
{ // Enable center clipper

farEndOut = comfortNoise; // and inject comfort noise
}
else // If ERLE < 18 dB
{

if (txGain > 0.25)txGain -= rampDown; // Ramp down
farEndOut = (float)(txGain*errorAEC); // Disable center clipper

} // Attenuated by 12 dB
if (farInPowM < 16000.) // Signal farEndIn is reasonable
{

/* Update AEC coefficients, otherwise skip adaptation*/
temp = (float)((mu*errorAEC) /(spkOutPowM+saveMargin));

// Normalize step size
for (k=0; k<AECorder; ++k)
{

/* Leaky normalized LMS update */
AECcoef[k] = (float)(leaky*AECcoef[k] + temp*AECbuf[k]);

}
}

}
else // Double talk mode
{

/* Double-talk mode operation */
if (txGain > 0.5) txGain -= rampDown; // Ramp down
if (txGain < 0.5) txGain += rampUp; // Ramp up
farEndOut = (float)(txGain*errorAEC); // Attenuate 6 dB

}
}
else // No far-end speech
{ // Transmit mode operation

if (nearFlag == 1)
{

if (txGain < 1) txGain += rampUp;
farEndOut = txGain*microphoneIn; // Full gain at trans-

mit path
}
else // Idle mode operation
{

if (txGain > 0.5) txGain -= rampDown; // Ramp down
if (txGain < 0.5) txGain += rampUp; // Ramp up
farEndOut = (float)(txGain*microphoneIn); // Attenuate 6 dB

}
}

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 467

2

0

−2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(a) Far-end speech signal × 104

× 104

2

0

−2

0 0.5 1 1.5 2 2.5 3 3.5

Residual echo

Near-end speech

4 4.5 5

(c) Acoustic echo canceler output × 104

× 104

2

0

−2

0 0.5 1 1.5 2 2.5 3 3.5

Echo from far-end speechEcho from far-end speech Near-end
speech

4 4.5 5

(b) Near-end mic input × 104

× 104

Figure 10.27 Experiment results of acoustic echo cancelation: (a) far-end speech signal; (b) near-end mic input;

and (c) acoustic echo canceler output

5. Using the knowledge learned from previous experiments, write an assembly program to replace the

adaptive filtering function used by this experiment.

6. Convert the rest of the experiment to fixed-point C implementation. Pay special attention on data

type conversion and fixed-point implementation for C55x processors.

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

468 ADAPTIVE ECHO CANCELATION

Table 10.3 File listing for experiment exp10.7.3_intrinsicAec

Files Description

intrinsic_aec.pjt C55x project file

intrinsic_aec.cmd C55x linker command file

fixPoint_leaky_lmsTest.c Main program

fixPoint_aec_init.c Initialization function

fixPoint_double_talk.c Double-talk detection function

fixPoint_leaky_lms.c Major module for LMS update and filtering

fixPoint_nlp.c NLP function

utility.c Utility function of long division

fixPoint_leaky_lms.h Header file

gsm.h Header file for using intrinsics

linkage.h Header file needed for intrinsics

rtfar.pcm Data file of far-end signal

rtmic.pcm Data file of near-end signal

10.7.3 Acoustic Echo Canceler Using C55x Intrinsics

This experiment shows the implementation of a fixed-point acoustic echo canceler. We use the normalized

LMS algorithm presented in Chapter 7. In addition, we add an NLP function to further attenuate the residue

echoes. The files used for this experiment are listed in Table 10.3.

Fixed-point C implementation of leaky NLMS algorithm using intrinsic functions has been discussed

in Section 7.6.3. Using the same technique, the DTD can be implemented in fixed-point C using the

C55x intrinsics. Table 10.4 lists portion of the C program for far-end speech detection. In the program,

the function aec_power_estimate() is used to estimate the signal power. The variable dt->nfFar

is the noise floor of the far-end signal. If the signal power dt->nfFar is higher than the noise floor, the

speech is detected.

Table 10.4 Partial fixed-point C code for far-end signal detection

// Update noise floor estimate of receiving far-end signal
// temp = |farEndIn|, estimate far-end signal power

temp32a = L_deposit_h(lms->in);
dt->farInPowS = aec_power_estimate(
dt->farInPowS,temp32a,ALPHA_SHIFT_SHORT);
if (dt->nfFar < dt->farInPowS) {

// Onset of speech, slow update using long window
dt->nfFar = aec_power_estimate(

dt->nfFar,temp32a,ALPHA_SHIFT_MEDIUM);
}
else {

dt->nfFar = aec_power_estimate(
dt->nfFar,temp32a,ALPHA_SHIFT_SHORT);
}
// Threshold for far-end speech detector
temp32b = L_mult(extract_h(dt->nfFar),VAD_POWER_THRESH);
temp32b = L_add(temp32b,dt->nfFar);
temp32b = L_add(temp32b,L_deposit_h(SAFE_MARGIN));

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 469

Table 10.4 (continued)

if(temp32b <= L_deposit_h(200))
temp32b = L_deposit_h(200);

// Detect speech activity at far end
if(dt->farInPowS > temp32b) // temp32b = thresFar
{ // Declare far-end speech

dt->farFlag = 1;
// Set hangover time counter
dt->farHangCount = HANGOVER_TIME;

}
else
{

if (dt->farHangCount-- < 0) // Decrement hangover counter
{

dt->farFlag = 0;
dt->farHangCount = 0; // Hangover counter expired

}
}

Procedures of the experiment are listed as follows:

1. Build, load, and run the experiment program.

2. The acoustic echo canceler output is saved in the file named aecout.pcm.

3. Use the CCS graph tool to plot the adaptive filter coefficients, w, of length 512, as shown in Figure

10.28.

4. With the same inputs as shown in Figure 10.27(a) and (b), the processed output by this fixed-point

acoustic echo canceler is shown in Figure 10.29.

Further experiments include writing assembly programs to replace the intrinsics used in this experiment,

and modifying the fixed-point C code to create an adaptive echo canceler using assembly program.

10.7.4 Experiment of Delay Estimation

This experiment uses the MATLAB scripts exp10_7_4.m to find the echo delay based on the crosscor-

relation method. The program is listed in Table 10.5. The MATLAB function xcorr(x,y, 'biased')

is used to calculate the crosscorrelation between the vectors x and y. In this experiment, we use

auco8khz.txt as the far-end data (y vector), delay it by 200 samples, and copy it as the near-end

data (x vector). The crosscorrelation between the vectors x and y is returned to crossxy. The MATLAB

function max() is used to find the maximum value m in the array, which represents the delay between

the far-end and near-end signals.

The files used for this experiment are listed in Table 10.6, and procedures of the experiment are listed

as follows:

1. Running the script, the delay value is estimated and printed as The maximum corssXY(m). This

simple technique works well for estimating a pure delay in noise-free environment.

2. In real applications with noises and multiple echoes, more complicated methods discussed in Section

10.3.2 are needed. The crosscorrelation function is shown in Figure 10.30.

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

Figure 10.28 Adaptive filter coefficients in steady state

Output of fixed-point AEC

Time

A
m

p
li

tu
d
e

2

2 30

0

−2

1 4 5

× 104

× 104

Figure 10.29 The error signal of fixed-point AEC output

Table 10.5 Crosscorrelation method for estimating the delay

% Open data files
fid1 = fopen('.//data//rtfar.pcm', 'rb');
fid2 = fopen('.//data//rtmic.pcm', 'rb');
% Read data files
x = fread(fid1, 'int16');
y = fread(fid2, 'int16');
% crossxy(m) = cxy(m-N), m=1, ..., 2N-1
crossxy = xcorr(x(1:800),y(1:800),'biased');
len=size(crossxy);
% Only half = cxy(m-N), m=1, ...

470

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

Table 10.5 (continued)

xy = abs(crossxy(((len-1)/2+1):len));
% Find max in xy
[ampxy,posxy]=max(xy);

plot(xy),;
title('Crosscorelation between x and y');
xlabel('Time at 8000 Hz sampling rate');
ylabel('Crosscorrelation');
text(posxy-1,ampxy,...
'\bullet\leftarrow\fontname{times} CorossXY(m) = MAXIMUM',
'FontSize',12)
disp(sprintf('The maximum corssXY(m) found at %d with value =%d \n',
posxy-1,ampxy));

fclose(fid1);
fclose(fid2);

Table 10.6 File listing for experiment exp10.7.4_delayDetect

Files Description

delayDetect.m MATLAB experiment program

rtfar.pcm Data file for far-end signal

rtmic.pcm Data file for near-end signal

Crosscorrelation between x and y

CrossXY(m) = MAXIMUM

2500

2000

1500

1000

500

0
0 100 200 300 400 500 600 700 800

Time at 8000 Hz sampling rate

C
ro

ss
co

rr
el

at
io

n

Figure 10.30 Crosscorrelation function to find a flat delay

471

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

472 ADAPTIVE ECHO CANCELATION

References

[1] S. M. Kuo and D. R. Morgan, Active Noise Control Systems – Algorithms and DSP Implementations, New York:

John Wiley & Sons, Inc., 1996.

[2] W. Tian and A. Alvarez, ‘Echo canceller and method of canceling echo,’ World Intellectual Property Organization,

Patent WO 02/093774 A1, Nov. 2002.

[3] W. Tian and Y. Lu, ‘System and method for comfort noise generation,’ US Patent no. 6 766 020 B1, July 2004.

[4] Y. Lu, R. Fowler, W. Tian, and L. Thompson, ‘Enhancing echo cancellation via estimation of delay,’ IEEE Trans.
Signal. Process., vol. 53, no. 11, pp. 4159–4168, Nov. 2005.

[5] D. L. Duttweiler, ‘A twelve-channel digital echo canceller,’ IEEE Trans. Comm., vol. COM-26, pp. 647–653,

May 1978.

[6] D. L. Duttweiler and Y. S. Chen, ‘A single-chip VLSI echo canceller,’ Bell Sys. Tech. J., vol. 59, pp. 149–160,

Feb. 1980.

[7] K. Eneman and M. Moonen, ‘Filterbank constrains for subband and frequency-domain adaptive filters,’ Proc.
IEEE ASSP Workshop, New Paltz, NY: Mohonk Mountain House, Oct. 1997.

[8] Math Works, Inc.,Using MATLAB, Version 6, 2000.

[9] Math Works, Inc.,MATLAB Reference Guide, 1992.

[10] Analog Devices, Digital Signal Processing Applications Using the ADSP-2100 Family, Englewood Cliffs, NJ:

Prentice Hall, 1990.

[11] C. W. K. Gritton and D. W. Lin, ‘Echo cancellation algorithms’ IEEE ASSP Mag., pp. 30–38, Apr. 1984.

[12] CCITT Recommendation G.165, Echo Cancellers, 1984.

[13] M. M. Sondhi and D. A. Berkley, ‘Silencing echoes on the telephone network,’ Proc. IEEE, vol. 68, pp. 948–963,

Aug. 1980.

[14] M. M. Sondhi and W. Kellermann, ‘Adaptive echo cancellation for speech signals,’ in Advances in Speech Signal
Processing, S. Furui and M. Sondhi, Eds., New York: Marcel Dekker, 1992, Chap. 11.

[15] Texas Instruments, Inc., Acoustic Echo Cancellation Software for Hands-Free Wireless Systems, Literature no.

SPRA162, 1997

[16] Texas Instruments, Inc., Echo Cancellation S/W for TMS320C54x, Literature no. BPRA054, 1997

[17] Texas Instruments, Inc., Implementing a Line-Echo Canceller Using Block Update & NLMS Algorithms- ’C54x,

Literature no. SPRA188, 1997

[18] ITU-T Recommendation G.167, Acoustic Echo Controllers, Mar. 1993.

[19] ITU-T Recommendation G.168, Digital Network Echo Cancellers, 2000.

Exercises

1. What are the first things to check if the adaptive filter is diverged during the designing of an adaptive echo canceler?

2. Assuming a full-band adaptive FIR filter is used and the sampling frequency is 8 kHz, calculate the following:

(a) the number of taps needed to cover an echo tail of 128 ms;

(b) the number of multiplications needed for coefficient adaptation; and

(c) the number of taps if the sampling frequency is 16 kHz.

3. In Problem 2, the full-band signal is sampled at 8 kHz. If using 32 subbands and the subband signal is critically

sampled, answer the following questions:

(a) What is the sampling rate for each subband?

(b) What is the minimum number of taps for each subband in order to cover the echo tail length of 128 ms?

(c) What is the total number of taps and is this number the same as that of Problem 2?

(d) At 8 kHz sampling rate, how many multiplications are needed for coefficient adaptation in each sampling

period? You should see the savings in computations over Problem 2.

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

EXERCISES 473

4. The C55x LMS instruction, LMS Xmem, Ymem, ACx, ACy, is very efficient to perform two parallel LMS

operations in one cycle. Write a C55x code using this instruction to convert the fixed-point C code in the experiment

given in Section 10.7.3.

5. For VoIP applications, if a conventional landline telephone user A calls an IP phone user B via the VoIP gateway,

draw a diagram to show which side will hear line echo and which side needs a line echo canceler. If both sides

are using IP phones, do you think we still need a line echo canceler?

6. In the experiment given in Section 10.7.2, the signal flow has been classified into transmit, receive, double talk,

and idle mode. In each of these modes, summarize which processes, comfort noise insertion, ramping up, ramping

down, or attenuation, are applied?

JWBK080-10 JWBK080-Kuo March 2, 2006 16:3 Char Count= 0

474

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

11
Speech-Coding Techniques

Communication infrastructures and services have been changed dramatically in recent years to include

data and images. However, speech is still the most important and common service in the telecommu-

nication networks. This chapter introduces speech-coding techniques to achieve the spectral efficiency,

security, and easy storage.

11.1 Introduction to Speech-Coding

Speech-coding techniques compress the speech signals to achieve the efficiency in storage and transmis-

sion, and to decompress the digital codes to reconstruct the speech signals with satisfactory qualities. In

order to preserve the best speech quality while reducing the bit rate, it uses sophisticated speech-coding

algorithms that need more memory and computational load. The trade-offs between bit rate, speech

quality, coding delay, and algorithm complexity are the main concerns for the system designers.

The simplest method to encode the speech is to quantize the time-domain waveform for the digital

representation of speech, which is known as pulse code modulation (PCM). This linear quantization

requires at least 12 bits per sample to maintain a satisfactory speech quality. Since most telecommunication

systems use 8 kHz sampling rate, PCM coding requires a bit rate of 96 kbps. As briefly introduced in

Chapter 1, lower bit rate can be achieved by using logarithmic quantization such as the μ-law or A-law

companding, which compresses speech to 8 bits per sample and reduces the bit rate to 64 kbps. Further

bit-rate reduction at 32 kbps can be achieved using the adaptive differential PCM (ADPCM), which uses

adaptive predictor and quantizer to track the input speech signal.

Analysis–synthesis coding methods can achieve higher compression rate by analyzing the spectral

parameters that represent the speech production model, and transmit these parameters to the receiver for

synthesizing the speech. This type of coding algorithm is called vocoder (voice coder) since it uses an

explicit speech production model. The most widely used vocoder uses the linear predictive coding (LPC)

technique, which will be focused in this chapter.

The LPC method is based on the speech production model including excitation input, gain, and vocal-

tract filter. It is necessary to determine a given segment or frame (usually in the range of 5–30 ms) in

voiced or unvoiced speech. Segmentation is formed by multiplying the speech signal by a Hamming

window. The successive windows are overlapped. For a voiced speech, the pitch period is estimated and

used to generate the periodic excitation input. For an unvoiced speech, a random noise will be used as

the excitation input. The vocal tract is modeled as an all-pole digital filter. The filter coefficients can be

estimated by the Levinson–Durbin recursive algorithm, which will be introduced in Section 11.2.

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

475

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

476 SPEECH-CODING TECHNIQUES

In recent years, many LPC-based speech CODECs, especially code-excited linear predictive (CELP)

at bit rate of 8 kbps or lower have been developed for wireless and network applications. The CELP-

type speech CODECs are widely used in applications including wireless mobile and IP telephony

communications, streaming media services, audio and video conferencing, and digital radio broadcast-

ings. These speech CODECs include the 5.3 to 6.3-kbps ITU-T G.723.1 for multimedia communications,

the low-delay G.728 at 16 kbps, the G.729 at 8 kbps, and the ISO (International Organization for Stan-

dardization) MPEG-4 CELP coding. In addition, there are regional standards that include Pan-European

digital cellular radio (GSM) standard at 13 kbps, and GSM adaptive multirate (AMR) for third generation

(3G) digital cellular telecommunication systems.

11.2 Overview of CELP Vocoders

CELP algorithms use an LPC approach. The coded parameters are analyzed to minimize the perceptually

weighted error via a closed-loop optimization procedure. All CELP algorithms share the same basic func-

tions including short-term synthesis filter, long-term prediction synthesis filter (or adaptive codebook),

perceptual weighted error minimization procedure, and fixed-codebook excitation.

The basic structure of the CELP coding system is illustrated in Figure 11.1. The following three

components can be optimized to obtain good synthesized speech:

1. time-varying filters, including short-term LPC synthesis filter 1/A(z), long-term pitch synthesis filter

P(z) (adaptive codebook), and post filter F(z);

2. perceptually based error minimization procedure related to the perceptual weighting filter W (z); and

3. fixed-codebook excitation signal eu(n), including excitation signal shape and gain.

H(z)

Input
speech

xin(n)

Minimum
MSE

W(z)

P(z)

1/A(z) W(z)

eu(n)

eu(n) 1/A(z) F(z)

xout(n)
x(n)

xw(n)

ev(n)

e(n)

xw(n)

ew(n)

e(n)

Pitch
analysis

Output
speech

P(z)

Encoder

Decoder

Encoded bit stream

Excitation
generator

LPC
analysis

ˆ

ˆ

Figure 11.1 Block diagram of LPC coding scheme. The top portion of the diagram is the encoder, and the bottom

portion is the decoder

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

OVERVIEW OF CELP VOCODERS 477

In the encoder, the LPC and pitch analysis modules analyze speech to obtain the initial parameters for

the speech synthesis model. Following these two modules, speech synthesis is conducted to minimize

the weighted error. To develop an efficient search procedure, the number of operations can be reduced

by moving the weighting filter into two branches before the error signal as shown in Figure 11.1. In the

encoder, xin(n) is the input speech, xw(n) is the original speech weighted by the perceptual weighting

filter W (z), x̂w(n) is the weighted reconstructed speech by passing excitation signal e(n) through the

combined filter H (z), eu(n) is the excitation from the codebook, ev(n) is the output of pitch predictor

P(z), and ew(n) is the weighted error.

Parameters including excitation index, quantized LPC coefficients, and pitch predictor coefficients are

encoded and transmitted. At the receiver, these parameters are used to synthesize the speech. The filter

W (z) is used only for minimizing the mean-square error loop, and its coefficients are not encoded. The

coefficients of the post filter F(z) are derived from the LPC coefficients and/or from the reconstructed

speech.

In the decoder, the excitation signal e(n) is first passed through the long-term pitch synthesis filter

P(z) and then the short-term LPC synthesis filter 1/A(z). The reconstructed signal x̂(n) is sent to

the post filter F(z), which emphasizes speech formants and attenuates the spectral valleys between

formants.

11.2.1 Synthesis Filter

The time-varying short-term synthesis filter 1/A(z) and the long-term synthesis filter P(z) are updated

frame by frame using the Levinson–Durbin recursive algorithm. The synthesis filter 1/A(z) is expressed

as

1/A(z) = 1

1 −
p∑

i=1

ai z−i

, (11.1)

where ai is the short-term LPC coefficient and p is the filter order.

The most popular method to calculate the LPC coefficients is the autocorrelation method. Due

to the characteristics of speeches, we apply windows to calculate the autocorrelation coefficients as

follows:

Rn(j) =
N−1− j∑

m=0

sn(m)sn(m + j), j = 0, 1, 2, . . , p, (11.2)

where N is the window (or frame) size, n is the frame index, and m is the sample index in the frame.

We need to solve the following matrix equation to derive the prediction filter coefficients ai :

⎡⎢⎢⎢⎣
Rn(0) Rn(1) · · · Rn(p − 1)

Rn(1) Rn(0) · · · Rn(p − 2)
...

...
. . .

...

Rn(p − 1) Rn(p − 2) · · · Rn(0)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a1

a2

...

ap

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Rn(1)

Rn(2)
...

Rn(p)

⎤⎥⎥⎥⎦ . (11.3)

The left-hand side matrix is symmetric, all the elements on its main diagonal are equal, and the elements

on any other diagonal parallel to the main diagonal are also equal. This square matrix is Toeplitz. Several

efficient recursive algorithms have been derived for solving Equation (11.3). The most widely used

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

478 SPEECH-CODING TECHNIQUES

algorithm is the Levinson–Durbin recursion summarized as follows:

E (0)
n = R(0)

n (11.4)

ki =
Rn(i) −

i−1∑
j=1

a(i−1)
j Rn(|i − j |)

E (i−1)
n

(11.5)

a(i)
i = ki (11.6)

a(i)
j = a(i−1)

j − ki a
(i−1)
i− j 1 ≤ j ≤ i − 1 (11.7)

E (i)
n =

(
1 − k2

i

)
E (i−1)

n . (11.8)

After solving these equations recursively for i = 1, 2, . . . , p, the parameters ai are given by

a j = a(p)
j 1 ≤ j ≤ p. (11.9)

Example 11.1: Consider the order p = 3 and given autocorrelation coefficients Rn(j), j = 0, 1,

2, 3, for a frame of speech signal. Calculate the LPC coefficients.

We need to solve the following matrix equation:⎡⎢⎣Rn(0) Rn(1) Rn(2)

Rn(1) Rn(0) Rn(1)

Rn(2) Rn(1) Rn(0)

⎤⎥⎦
⎡⎢⎣ a1

a2

a3

⎤⎥⎦ =

⎡⎢⎣ Rn(1)

Rn(2)

Rn(3)

⎤⎥⎦ .

This matrix equation can be solved recursively as follows:

For i = 1:

E (0)
n = R(0)

n

k1 = Rn(1)

E (0)
n

= Rn(1)

Rn(0)

a(1)
1 = k1 = Rn(1)

Rn(0)

E (1)
n = (

1 − k2
1

)
Rn(0) =

[
1 − R2

n(1)

R2
n(0)

]
Rn(0).

For i = 2, E (1)
n and a(1)

1 are available from i = 1. Thus, we have

k2 = Rn(2) − a(1)
1 Rn(1)

E (1)
n

= Rn(0)Rn(2) − R2
n(1)

R2
n(0) − R2

n(1)

a(2)
2 = k2

a(2)
1 = a(1)

1 − k2a(1)
1 = (1 − k2) a(1)

1

E (2)
n = (

1 − k2
2

)
E (1)

n .

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

OVERVIEW OF CELP VOCODERS 479

For i = 3, E (2)
n , a(2)

1 , and a(2)
2 are available from i = 2. Thus, we get

k3 =
Rn(3) −

[
a(2)

1 Rn(2) + a(2)
2 Rn(1)

]
E (2)

n

a(3)
3 = k3

a(3)
1 = a(2)

1 − k3a(2)
2

a(3)
2 = a(2)

2 − k3a(2)
1 .

Finally, we have

a0 = 1, a1 = a(3)
1 , a2 = a(3)

2 , a3 = a(3)
3 .

We can use MATLAB functions provided in the Signal Processing Toolbox to calculate LPC co-

efficients. For example, the LPC coefficients can be calculated using the Levinson–Durbin recursion

as

[a,e] = levinson(r,p)

The parameter r is a deterministic autocorrelation sequence (vector), p is the order of denominator

polynomial A(z), a = [a(1) a(2) · · · a(p + 1)] where a(1) = 1, and the prediction error e.

The function lpc(x,p) determines the coefficients of forward linear predictor by minimizing the

prediction error in the least-square sense. The command

[a,g] = lpc(x,p)

finds the coefficients of a linear predictor that predicts the current value of the real-valued time series x

based on past samples. This function returns prediction coefficients a and error variances g.

Example 11.2: Given a speech file voice4.pcm, calculate the LPC coefficients and spectral

response using the function levinson(). Also, compare the contours of speech spectrum with

the synthesis filter’s frequency response. Assume that the LPC order is 10 and Hamming window

size is 256. The partial MATLAB code to calculate the LPC coefficients is listed in Table 11.1.

The complete MATLAB program is given in example11_2.m. The magnitude response of the

synthesis filter shows the envelope of the speech spectrum as shown in Figure 11.2.

Example 11.3: Calculate the LPC coefficients as in Example 11.2 using the function lpc instead

of levinson. In this case, g and e are identical if using the same order, and the LPC coefficients

are identical to Example 11.2.

Using a high-order synthesis filter, the frequency response is closer to the original speech

spectrum. Figure 11.3 shows the use of high order (42) to calculate the LPC coefficients using

lpc.

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

480 SPEECH-CODING TECHNIQUES

Table 11.1 MATLAB code to calculate LPC coefficients and frequency response

fid=fopen('voice4.pcm','r'); % Open the pcm data file
b= fread(fid,20000,'short'); % Read 20000 samples to b

% Windowing
w=hamming(frame); % Generate Hamming window
x1=b((start+1):(start+frame));
x=x1.*w; % Windowing

y=fft(x,fftL); % FFT of the specified block
py=10*log10(y.*conj(y)/fftL); % Magnitude response
fclose(fid); % Close the file

% Calculation of autocorrelation
m=0;
while (m<=lpcOrder);
r(m+1)=sum(x((m+1):(frame)).*x(1:frame-m));
r(m+1) = r(m+1)/frame; m=m+1;
end;

% Levinson algorithm
[a,e]=levinson(r,lpcOrder);

0 500 1000 1500 2000 2500 3000 3500 4000
10

20

30

40

50

60

70

80

LPC envelope

FFT spectrum

Frequency (Hz)

Original speech spectrum and its LPC envelope

M
ag

n
it

u
d
e

(d
B

)

Figure 11.2 Spectral envelope of speech spectrum derived from the synthesis filter

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

OVERVIEW OF CELP VOCODERS 481

0 500 1000 1500 2000 2500 3000 3500 4000
10

20

30

40

50

60

70

80

Synthesis filter frequency response

FFT spectrum

Frequency (Hz)

Original speech spectrum and its LPC envelope

M
ag

n
it

u
d
e

(d
B

)

Figure 11.3 Magnitude response of synthesis filter with higher order

11.2.2 Long-Term Prediction Filter

The long-term prediction filter P(z) models the long-term correlation in speech to provide fine spectral

structure, and it has the following general form:

P(z) =
I∑

i=−I

bi z
−(Lopt+i), (11.10)

where Lopt is the optimum pitch period, and bi are the coefficients. Typically, I = 0 for one tap, I = 1

for three taps, and I = 2 for 5-tap pitch filters.

In some cases, the long-term prediction filter is also called an adaptive codebook since the excitation

signals are adaptively updated. An example is given in the ITU-T G.723.1, which uses a fifth-order

long-term prediction filter.

11.2.3 Perceptual Based Minimization Procedure

A reduction in perceived distortion is possible if the noise spectrum is shaped to place the majority of

the error in the formant (high-energy) regions where human ears are relatively insensitive because of the

auditory masking. On the other hand, more subjectively disturbing noise in the formant nulls must be

reduced. The synthesis filter in Equation (11.1) is used to construct the perceptual weighting filter. The

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

482 SPEECH-CODING TECHNIQUES

formant perceptual filter has the following transfer function:

W (z) =
1 −

p∑
i=1

ai z−iγ i
1

1 −
p∑

i=1

ai z−iγ i
2

= A(z/γ2)

A(z/γ1)
, (11.11)

where 0 < γ < 1 is a bandwidth expansion factor with typical values γ1 = 0.9 and γ2 = 0.5.

The synthesis filter 1/A(z) and perceptual weighting filter W (z) can be combined to form

H (z) = W (z)/A(z). (11.12)

The impulse response of a combined or cascaded filter is denoted by {h(n), n = 0, 1, . . . , Nsub − 1},
where Nsub is the subframe length.

11.2.4 Excitation Signal

For efficient temporal analysis, a speech frame is usually divided into a number of subframes. For example,

there are four subframes defined in the G.723.1. For each subframe, the excitation signal is generated

and the error is minimized to find the optimum excitation.

The excitation varies between the pulse train and the random noise. A general form of the excitation

signal e(n) shown in Figure 11.1 can be expressed as

e(n) = ev(n) + eu(n), 0 ≤ n ≤ Nsub − 1, (11.13)

where eu(n) is the excitation from a fixed or secondary codebook given by

eu(n) = Guck(n), 0 ≤ n ≤ Nsub − 1, (11.14)

where Gu is the gain, Nsub is the length of the excitation vector (or the subframe), and ck(n) is the

nth-element of kth-vector in the codebook. In Equation (11.13), ev(n) is the excitation from the long-

term prediction filter expressed as

ev (n) =
I∑

j=−I

e(n + j − Lopt)b(j), n = 0, 1, . . . , Nsub − 1. (11.15)

Passing e(n) through the combined filter H (z), we have perceptually weighted synthesis speech given

by

x̂w(n) = v(n) + u(n) =
n∑

j=0

ev(j)h(n − j) +
n∑

j=0

eu(j)h(n − j), n = 0, 1, . . . , Nsub − 1, (11.16)

where the first term v(n) = ∑n
j=0 ev(j)h(n − j) is from the long-term predictor and the second term

u(n) = ∑n
j=0 eu(j)h(n − j) is from the secondary codebook. Therefore, the weighted error ew(n) can be

described as

ew(n) = xw(n) − x̂w(n). (11.17)

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

OVERVIEW OF CELP VOCODERS 483

The squared error of ew(n) is given by

Ew =
Nsub−1∑

n=0

e2
w(n). (11.18)

By computing the above equations for all possible parameters including the pitch predictor coefficients

bi (pitch gain), lag Lopt (delay), optimum secondary excitation code vector ck with elements ck(n),

n = 0, . . . , Nsub − 1, and gain Gu, we can find the minimum Ew,min as

Ew,min = min {Ew} = min

{
Nsub−1∑

n=0

e2
w(n)

}
. (11.19)

This minimization procedure is a joint optimization between the pitch prediction (adaptive codebook)

and the secondary (fixed) codebook excitations. The joint optimization of all the excitation parameters,

including Lopt, bi , Gu, and ck , is possible but it is computationally intensive. A significant simplification

can be achieved by assuming that the pitch prediction parameters are optimized independently from the

secondary codebook excitation parameters. We call this a separate optimization procedure.

In a separate optimization, the excitation e(n) given in Equation (11.13) contains only ev(n) because

eu(n) = 0. The optimized pitch lag and pitch gain are first found using historical excitations. The contribu-

tion of the pitch prediction v(n) can be subtracted from the target signal xw(n) to form a new target signal.

The second round of minimization is conducted by approximating the secondary codebook contribution

to this new target signal. An example of separate optimization procedure can be found in G.723.1.

11.2.5 Algebraic CELP

The algebraic CELP (ACELP) implies that the structure of the codebook is used to select the excitation

codebook vector. The codebook vector consists of a set of interleaved permutation codes containing few

nonzero elements [3, 4]. The ACELP fixed-codebook structures have been used in G.729 and G.723.1

low-bit rate at 5.3 kbps, and WCDMA AMR. The fixed-codebook structure used in G.729 is shown in

Table 11.2.

In Table 11.2, mk is the pulse position, k is the pulse number, the interleaving depth is 5. In this

codebook, each codebook vector contains four nonzero pulses indexed by ik . Each pulse can have either

the amplitudes of +1 or −1, and can assume the positions given by Table 11.2. The codebook vector, ck ,

is determined by placing four unit pulses at the locations mk multiplied with their signs (±1) as follows:

ck(n) = s0δ(n − m0) + s1δ(n − m1) + s2δ(n − m2) + s3δ(n − m3), n = 0, 1, . . . , 39, (11.20)

where δ(n) is a unit pulse.

Table 11.2 G.729 ACELP codebook

Number of bits to code

Pulse ik Sign sk Position mk (sign + position)

i0 ±1 0, 5, 10, 15, 20, 25, 30, 35 1 + 3

i1 ±1 1, 6, 11, 16, 21, 26, 31, 36 1 + 3

i2 ±1 2, 7, 12, 17, 22, 27, 32, 37 1 + 3

i3 ±1 3, 8, 13, 18, 23, 28, 33, 38, 4, 9, 14,

19, 24, 29, 34, 39

1 + 4

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

484 SPEECH-CODING TECHNIQUES

0 1 2 3 4 5 10 15 20 22 25 30 34 39

Figure 11.4 Four pulse locations in a 40-sample frame

Example 11.4: Assuming that all four pulses in a frame are located as shown in Figure 11.4, these

pulse locations and signs are found by minimizing the squared error defined in Equation (11.18).

These pulse positions are confined within certain positions with interleaving depth 5 as defined

by Table 11.2. The pulse positions and signs can be coded into codeword as shown in Table

11.3. We assume that the positive sign is encoded with 0 and the negative sign is encoded with

1. The sign bit is the MSB. This example shows how to encode ACELP excitations. We need

4 + 4 + 4 + 5 = 17 bits to code this ACELP information.

11.3 Overview of Some Popular CODECs

Different vocoders are used for different applications that depend on the bit rate, robustness to channel

errors, algorithm delay, complexity, and sampling rate. Two most popular algorithms G.729 and G.723.1

are widely used in real-time communications over the Internet due to their low-bit rates and high qualities.

The AMR is mainly used for the GSM and the WCDMA wireless systems for its flexible rate adaptation

to error conditions of wireless channels.

11.3.1 Overview of G.723.1

One example of a CELP CODEC is the ITU-T G.723.1 [1], whose basic structure is illustrated in

Figure 11.5. The predictor coefficients are updated using the forward adaptation method. The encoder

operates on a frame of 240 samples, i.e., 30 ms at the 8 kHz sampling rate. The input speech is first

buffered into frames of 240 samples, filtered by a highpass filter to remove the DC component, and then

divided into four subframes of 60 samples each.

For every subframe m, a 10th-order LPC filter is computed using the highpass filtered signal xm(n). For

each subframe, a window of 180 samples is centered on the current subframe as shown in Figure 11.6.

A Hamming window is applied to these samples. Eleven autocorrelation coefficients are computed from

the windowed signal. The linear predictive coefficients are found using the Levinson–Durbin algorithm.

For every input frame, four LPC sets will be computed, one for each subframe. These LPC coefficient

sets are used to construct the short-term perceptual weighting filter.

Table 11.3 An example of coding the ACELP pulses into codeword

Pulse ik Sign sk Position mk Sign + position = encoded code

i0 +1 5 (k=1) 0<<3 + 1 = 0001
i1 -1 1 (k=0) 1<<3 + 0 = 1000
i2 -1 22 (k=4) 1<<3 + 4 = 1100
i3 +1 34 (k=14) 0<<4 + 14 = 01110

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

OVERVIEW OF SOME POPULAR CODECS 485

Formant
perceptual
weighting

Highpass
filter

Framer

Harmonic
noise

shaping

Pitch
predictor

Impulse
response
calculator

LPC
analysis Secondary

excitation
decoder

 LSP
quantizer

em(n)

y(n)

xm(n)

Am(z)

Wm(z)

Lolp,m

Hm(z)

fm(n) tm(n) vm(n)

rm(n)

hm(n)
Pm(z)

zm(n)

ev,m(n)

Pitch
estimator

MP-MLQ/
ACELP

Zero input
response

Memory
update

LSP
decoder

LSP
interpolator

Pitch
prediction
decoder

eu,m(n)

Simulated decoder

MSE

Lopt,m, bopt,m

Am(z)
~

−

−

Figure 11.5 Block diagram of G.723.1 CODEC

Calculating the LPC coefficients requires the past, current, and future subframes. The LPC synthesis

filter is defined as

1

Am(z)
= 1

1 −
10∑

i=1

ai,m z−i

, (11.21)

where m = 0, 1, 2, 3 is the subframe index. As shown in Figure 11.5, the LPC filter coefficients of

the last subframe are converted to LSP (line spectral pairs) coefficients. The reason for doing LPC to

Past Subframe1 Subframe2 Subframe3 Subframe4 Look-ahead

180-sample LPC analysis windows

60 60240

Figure 11.6 G.723.1 LPC analysis windows vs. subframes

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

486 SPEECH-CODING TECHNIQUES

Table 11.4 Procedures of LPC coefficient calculation and reconstruction

Seq. Computed parameters Subframe 0 Subframe 1 Subframe 2 Subframe 3

1 LPC coefficients {ai,0} {ai,1} {ai,2} {ai,3}
2 LSP coefficients {βi,3}
3 LSP coefficients quantization and

dequantization

{β̂ i,3}

4 Interpolated LSP coefficients {β̂ i,0} {β̂ i,1} {β̂ i,2} {β̂ i,3}
5 Reconstructed LPC coefficients {âi,0} {âi,1} {âi,2} {âi,3}

LSP coefficients conversion is to take the advantages of two properties of LSP coefficients: to verify

the stability of the filter and to have higher coefficients correlation among subframes. The first property

can be used to make synthesis filter stable after quantization, and the second is used to further remove

redundancy. The LPC coefficients calculation and quantization can be further explained with Table 11.4

and the following procedures:

1. Compute {ai,m} for subframes m = 0, 1, 2, 3 and 10th-order LPC coefficients i = 1, . . . , 10. With

{ai,m}, we can construct Equation (11.21). The unquantized LPC coefficients are used to construct

the short-term perceptual weighting filter Wm(z), which will be used to filter the entire frame to obtain

the perceptually weighted speech signal.

2. Convert the last subframe’s {ai,3} to LSP coefficients {βi,3}.

3. Use vector quantization to quantize the 10 LSP coefficients into LSP index for transmitting. Dequan-

tize the LSP coefficients to {β̂ i,3}.

4. Use the LSP coefficients {β̂ i,3} from the current frame and the last frame to interpolate the LSP

coefficients for each subframe {β̂ i,m}.

5. Convert LSP coefficients {β̂ i,m} back to LPC coefficients {âi,m} and construct the synthesis filter

1/ Ãm(z) for each subframe. Note that even in the encoder side, we also need this in order for both

sides to use the same set of synthesis filter. Decoding side never has the unquantized LPC coefficients.

The pitch estimation is performed on two adjacent subframes of 120 samples. The pitch pe-

riod is searched in the range from 18 to 142 samples. Using the estimated open-loop pitch period

Lolp,m , a harmonic noise-shaping filter Pm(z) can be constructed. The combination of the LPC synthe-

sis filter with the formant perceptual weighting filter and the harmonic noise-shaping filter, Hm (z) =
Wm (z) Pm (z) / Ãm (z), is used to create an impulse response hm(n)(n = 0, . . . , 59). The adaptive exci-

tation signals ev,m(n) and the secondary excitation signal eu,m(n) are filtered by this combined filter to

provide the zero-state responses um(n) and vm(n), respectively.

In adaptive codebook excitation, a fifth-order pitch predictor is used. The optimum pitch periods

(Lopt,m) of subframe 0 and 2 are computed via closed-loop vector quantization around the open-loop

pitch estimate Lolp,m . The optimum pitch periods in subframes 1 and 3 are searched for differential values

around the previous optimum pitch periods of subframes 0 and 2, respectively. The pitch periods of

subframes 0 and 2, and the differential values for subframes 1 and 3 are transmitted to the decoder.

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

OVERVIEW OF SOME POPULAR CODECS 487

Let bk, k = 0, . . . , Nltp − 1 denotes the kth gain vector and its elements are bk(n), n = 0, 1, 2, 3, 4,

where Nltp is the size of pitch gain codebook. The adaptive codebook excitation is formed by

ev,m(n) =
4∑

j=0

bk(j)em(− Lm − 2 + n + j), 0 ≤ n ≤ 59, 0 ≤ k ≤ Nltp − 1, (11.22)

where Lm = Lolp,m − 1, Lolp,m , and Lolp,m + 1 for subframes 0 and 2, or Lm = Lopt,m−1 − 1, Lopt,m−1,

Lopt,m−1 + 1, and Lopt,m−1 + 2 for subframes 1 and 3, where Lopt,m−1 is the optimum pitch lag in the

previous subframe 0 or 2.

By using the closed-loop quantization, the adaptive codebook contribution is computed as

vm(n) = ev,m(n) ∗ hm(n) =
n∑

j=0

ev,m(j)hm(n − j), 0 ≤ n ≤ 59. (11.23)

The optimization procedure minimizes the mean-squared error Eac given as

Eac =
59∑

n=0

[tm(n) − vm(n)]2, 0 ≤ k ≤ Nltp − 1. (11.24)

The best lag Lopt,m and tap vector bopt,m that minimize Eac are identified in the current subframe as

the adaptive codebook’s lag value and gain vector, respectively. The optimum reconstructed adaptive

codebook contribution is expressed as

vm(n) =
4∑

j=0

bopt,m(j)
n∑

k=0

em(k − Lopt,m − 2 + j)hm(n − k), 0 ≤ n ≤ 59. (11.25)

The contribution of the adaptive codebook vm(n) is then subtracted from the initial target vector tm(n) to

obtain the new target signal rm(n) for the secondary codebook quantization.

Applying similar close-loop quantization technique, the secondary codebook parameters can be found

by minimizing the error signal defined by

Esc =
59∑

n=0

[rm(n) − um(n)]2, (11.26)

where the fixed-codebook contribution um(n) is a function of pulse location mk , sign sk , and gain.

Finally, the residual signals are encoded by secondary excitation, either by ACELP or by MP-MLQ

(multipulse maximum likelihood quantization) according to the bit rate used. The transmitted information

to the receiver includes the LSP vector index, adaptive codebook lag and tap indices, and secondary

excitation information.

The bit allocation of a vocoder presents a clear picture of what algorithm has been used, relationship

between frame and subframe, encoded bit rate, and how many bits per frame. Table 11.5 lists the bit

allocations of G.723.1 at 5.3 and 6.3 kbps. The major differences between these two rates are in the

coding of pulse positions and amplitudes.

ITU G.723.1 has three Annexes. Annex A defines silence compression scheme, Annex B defines

alternative specification based on floating-point arithmetic, and Annex C defines scalable channel-coding

scheme for wireless applications.

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

488 SPEECH-CODING TECHNIQUES

Table 11.5 Bit allocations of G.723.1

Parameters coded Subframe 0 Subframe 1 Subframe 2 Subframe 3 Total

LPC indices 24

Adaptive codebook lags 7 2 7 2 18

All the gains combined 12 12 12 12 48

6.3 kbps Pulse positions 20 18 20 18 73*

Pulse signs 6 5 6 5 22

Grid index 1 1 1 1 4

Total 189

5.3 kbps Pulse positions 12 12 12 12 48

Pulse signs 4 4 4 4 16

Grid index 1 1 1 1 4

Total 158

*Using the fact that the number of codewords in a fixed codebook is not a power of 2 or 3, additional bits are saved by combining the

four MSBs of each pulse position index into a single 13-bit word.

11.3.2 Overview of G.729

G.729 is a low-bit rate, toll-quality CODEC using CS-ACELP (conjugate-structure algebraic-excited

linear-prediction) based on the CELP coding algorithm. The coder operates on speech frames of 10 ms

(80 samples) at sampling rate of 8 kHz. Each frame is further divided into two 40-sample subframes. For

every frame, the speech signal is processed to extract the parameters of the CELP model including LPC

coefficients, adaptive- and fixed-codebook indices and gains. These parameters are quantized, encoded,

and transmitted over the channel. G.729 encoder block diagram is shown in Figure 11.7.

The LPC analysis window uses 6 subframes, 120 samples from the past speech frames, 80 samples in

the present speech frame, and 40 samples from the future subframe. The future 40-sample subframe is

−

x(n)
LPC

analysis
Per. weight

W(z)

xw(n)

ew(n)

eu(n)

ev(n)

Gc

Gp

e(n)

Fixed CB

search

Gains

quantization

Pitch

analysis

Adaptive

codebook

Fixed

codebook

Synthesis filter

W (z) / A(z)

Figure 11.7 Encoding principles of the CS-ACELP encoder (adapted from G.729)

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

OVERVIEW OF SOME POPULAR CODECS 489

240-sample LPC analysis window

Previous Current Future

120 80 40

Figure 11.8 LPC analysis window operations

used as the 5-ms look-ahead in the LPC analysis, which introduces extra 5-ms algorithmic encoding delay.

The window procedure is illustrated in Figure 11.8. Following the similar procedures as G.723.1, the

LPC coefficients are computed and quantized. The combined reconstructed synthesis filter and perceptual

weighting filter, W (z)/ Â(z), are used for synthesis as shown in Figure 11.7.

The excitation signal consists of the fixed-codebook vector eu(n) and the adaptive codebook vector

ev(n), which are determined in each subframe. Closed-loop pitch analysis is used to find the adaptive

codebook delay with fractional resolutions and gain. Different from the G.723.1, a fractional pitch is

used to accurately represent the harmonic signals. In the first subframe, a fractional pitch delay T1 with a

resolution of 1/3 is used in the range of [19 1
3
, 84 2

3
], and the integer delay is used in the range of [85, 143].

For the second subframe, the resolution of only 1/3-fractional delay T2 is used. The pitch delay is encoded

using 8 bits for the first subframe, and differentially encoded using 5 bits for the second subframe.

A 17-bit algebraic codebook is used for the fixed-codebook excitation. For algebraic codebook, each

vector contains four nonzero pulses. The bit allocation for algebraic codebook is listed in Table 11.2.

The 40-sample vector with four unit pulses is represented in Equation (11.20). The gains of the adaptive

codebook (Gp) and fixed-codebook (Gc) contributions are vector quantized to 7 bits, with moving-

averaging prediction applied to the fixed-codebook gain.

The block diagram of decoder is shown in Figure 11.9. The excitation and synthesis filter parameters

are retrieved from the bit stream. First, the parameter’s indices are extracted from the received bit stream.

These indices are decoded to obtain the coder parameters corresponding to a 10-ms speech frame. The

parameters include the LSP coefficients, two fractional pitch delays, two fixed-codebook vectors, and two

sets of adaptive- and fixed-codebook gains. The LSP coefficients are interpolated and converted to the

LPC filter coefficients for each subframe. For each 5-ms subframe, the following steps are performed:

(1) the excitation is constructed by adding the adaptive- and fixed-codebook vectors scaled by their

respective gains; (2) the speech is reconstructed by filtering the excitation through the LPC synthesis

filter; and (3) the reconstructed speech signal is passed through a postprocessing stage, which includes an

Bit stream
input

Adaptive
codebook

Fixed
codebook

Gc

Gp

De-
quantization

Synthesis
filter

Postfilter
Output

Construct
postfilter

Figure 11.9 G.729 decoder

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

490 SPEECH-CODING TECHNIQUES

Table 11.6 Summary of G.729 bit rates of different annexes

Annex A or SID Silence

Annexes Annex C Annex D Annex E (Annex B) (Annex B)

Bits per 10 ms frame 80 64 118 16 0

Bit rate 8 kbps 6.4 kbps 11.8 kbps 1.6 kbps 0 kbps

adaptive postfilter based on the long-term and short-term synthesis filters, followed by a highpass filter

and scaling operation.

In addition to G.729, other related annexes from ITU-T are listed here. They are used for different

applications. The bit-rate information about these annexes is listed in Table 11.6.� Annex A: ‘Reduced complexity 8-kbps CS-ACELP speech CODEC,’ which reduces about half-

computational requirement at a minimal reduction in perceived quality.� Annex B: ‘A silence compression scheme for G.729 optimized for terminals conforming to Recom-

mendation V.70,’ which adds discontinuous transmission (DTX), voice activation detection (VAD),

background noise modeling, comfort noise generation (CNG), and silence frame insertion to G.729

and G.729A.� Annex C: ‘Reference floating-point implementation for G.729 CS-ACELP 8-kbps speech coding,’

which could be used for Pentium processor.� Annexes D and E on 6.4 kbps and 11.8 kbps CS-ACELP speech-coding algorithms.� Annexes F–I enhance capabilities of previous annexes (e.g., DTX/VAD/CNG) and integrate CODECs

with different bit rates.

11.3.3 Overview of GSM AMR

GSM adaptive multirate (AMR) CODEC is a speech-coding standard introduced by the third generation

partnership project (3GPP) for compression of toll-quality speech for mobile telephony applications. The

AMR CODEC operates at eight different bit rates: 12.2, 10.2, 7.92, 7.40, 6.70, 5.90, 5.15, and 4.75 kbps.

The data rate is selectable at run time by the system.

The vocoder processes signals using 20 ms frames. For compatibility with legacy systems, the 12.2

and 7.4 modes are compatible versions of the GSM-enhanced-full-rate and IS-136-enhanced-full-rate

CODECs. In addition, the CODEC was designed to allow seamless switching on a frame-by-frame basis

between the different modes listed as follows:� Channel mode: GSM half-rate at 11.4 kbps or full-rate operation at 22.8 kbps.� Channel mode adaptation: Control and selection of the full-rate or half-rate channel mode.� CODEC mode: Bit-rate partitioning of the speech for a given channel mode.� CODEC mode adaptation: Control and selection of the bit rates.

The AMR speech CODEC provides a high-quality speech service with the flexibility of the multirate

approach, thus allowing a trade-off between the quality and the capacity as a function of the network

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

OVERVIEW OF SOME POPULAR CODECS 491

Encoder

TRAU

Decoder

Channel
decoder

Encoder

Decoder

Channel
encoder

Channel
decoder

Downlink
measures

Downlink
request

Uplink
measures

Uplink
mode control

Base station

Channel
encoder

Mobile station

DL mode
request

UL mode
command

DL CODEC
mode (Rx)

UL CODEC
mode (Rx)

Uplink CODEC mode

Downlink codec mode

DL mode
request (Rx)

UL mode
command (Rx)

Quality
indicator

Quality
indicator

Downlink
mode control

Network
control

Figure 11.10 Block diagram of AMR system, where DL denotes downlink, UL denotes uplink, and Rx means

received (adapted from GSM 06.71, version 7.0.2)

load. This flexibility is applicable to 2G and 3G networks. As the G.723.1 and G.729 algorithms, the

GSM AMR also uses ACELP technique. Therefore, we will introduce its application in the real wireless

networks, such as the rate adaptation rather than detailed algorithms.

In Figure 11.10, the speech encoder input is a 13-bit PCM signal from the mobile station, or from the

public switched telephone network (PSTN) via an 8-bit A-law or μ-law to 13-bit linear PCM conversion.

The encoder encodes the PCM signal to bit stream with the bit rate controlled by transcoding and rate

adaptor unit (TRAU). The bit rates of the source CODEC for the adaptive multirate full-rate channel are

listed in Table 11.7. The encoded bit stream is sent to the channel coding function to produce an encoded

block. Full-rate bit stream has 456 bits and half rate has 228 bits.

The inverse operations are performed in the receive direction. The GSM 06.90 [7] describes the detailed

mapping between the 160 input speech samples in 13-bit PCM format to the encoded bit stream. The

decoder will reconstruct 160 speech samples from the bit steam.

Figure 11.10 presents a block diagram of the overall AMR system for uplink and downlink over the

same radio interface. Mobile station, base transceiver station, and TRAU are shown in the figure.

The AMR link adaptation, channel quality estimation, and inband signaling are given in GSM 05.09.

The AMR multirate adaptation is based on the UL (uplink) and the DL (downlink) quality indicators that

come from the radio channel quality measurements. The UL quality indicator is mapped to an UL mode

command and the DL quality indicator is mapped to a DL mode request. The UL mode command and

Table 11.7 Relationship among speech bit rate, full rate, and half rate

Encoded speech bit rate

Speech bit rate (kbps) 12.2 10.2 7.95 7.40 6.70 5.90 5.15 4.75
Encoded bits per 20 ms frame 244 204 159 148 134 118 103 95
Gross bit rate at full-rate mode 22.8 22.8 22.8 22.8 22.8 22.8 22.8 22.8
Gross bit rate at half-rate mode 11.4 11.4 11.4 11.4 11.4 11.4

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

492 SPEECH-CODING TECHNIQUES

Table 11.8 Source bit rates for the AMR-WB CODEC [7]

Bits per 20 ms 477 461 397 365 317 285 253 177 132 35
Bit rate 23.85 23.05 19.85 18.25 15.85 14.25 12.65 8.85 6.6 1.75*

*Assuming SID (silence insertion descriptor) frames are continuously transmitted.

the DL mode request are sent to the transmitter using the communication reverse link. The UL CODEC

mode and DL mode requests are sent as inband signals in the uplink radio channel. The DL CODEC

mode and UL mode command are sent as inband signals in the downlink channel.

A GSM system using the AMR speech CODEC may select the optimum channel (half or full rate)

and CODEC mode (speech and channel bit rates) to deliver the best combination of speech quality and

system capacity. This flexibility provides a number of important benefits.

Improved speech quality in both half-rate and full-rate modes can be achieved by means of CODEC

mode adaptation, i.e., by varying the balance between speech and channel coding for the same gross bit

rate. When the radio quality is good (low-bit-error rate), the higher bit-rate CODEC is used. When the

radio quality is worse, lower bit-rate CODEC is used while the overall channel bit rate is unchanged.

Table 11.7 shows the bit allocations of all the rates.

In addition to AMR, 3GPP and ITU-T have standardized a wideband AMR, which is named as 3GPP

GSM-AMR WB and also named as ITU-T G.722.2, for providing wideband telephony services. Wideband

AMR is an adaptive multirate wideband CODEC with bit rates ranging from 6.6 to 23.85 kbps. The coder

works on speech sampled at 16 kHz and a frame of 20 ms (320 speech samples). It supports VAD in

combination with DTX and CNG.

The wideband speech is divided into two subbands; the lower subband from 75 Hz to 6.4 kHz and

the upper subband from 6.4 to 7.0 kHz. The lower band signal is encoded based on the ACELP model.

The higher band is encoded using the silence compression method, or treated as fractional noise and just

encoded with spectral envelope. More details can be found in 3GPP technical specification TS 26.290.

11.4 Voice over Internet Protocol Applications

Voice over Internet protocol (VoIP) is the telephony service over the traditional data networks [9].

VoIP is also referred as IP (Internet protocol) telephony. The integration of the voice and data services

is provided by packet-switched data networks. The development of VoIP has led to the cost-efficient

gateway equipments that bridge analog telephony circuits and IP ports. The IP telephony converts the

voice or fax into packet data suitable for transport over the networks. As a result, the expected next-

generation communications systems that are capable of replacing the traditional PSTN are realized by

integrating the voice and data over the IP.

This section uses an example to demonstrate the current status of VoIP system, its applications, and

possible troubleshooting approaches.

11.4.1 Overview of VoIP

A simplified diagram of VoIP applications is shown in Figure 11.11. The functional units in Figure 11.11

are defined as follows:

1. Analog-to-digital (A/D) and digital-to-analog (D/A) interface units: The analog signals are converted

to linear PCM samples for processing. The D/A converters convert the processed PCM digital samples

to the analog signals.

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

VOICE OVER INTERNET PROTOCOL APPLICATIONS 493

IPA/D Encoder
RTP

UDP/IP

RTP
UDP/IP

D/A Decoder
Jitter
buffer

Figure 11.11 Simplified block diagram of VoIP applications

2. Speech-coding unit: The main processing unit encodes the PCM data samples received, or decodes

the bit stream from network to the PCM data samples. Various compression algorithms could be used

for different applications.

3. Jitter buffer: The jitter buffer is used to compensate for network jitters. This packet buffer holds

incoming packets for a specified amount of time before forwarding them to the decoder. This has the

effect of smoothing the packet flow, increasing the resiliency to delayed packets, and other transmis-

sion effects. The buffer size is configurable, and can be optimized for given network conditions. It is

practical to set 20–100 ms for each direction.

4. Real-time transport protocol (RTP): The RTP is designed for carrying the data that has the real-

time properties such as voice or video. The RTP header contains the time stamp, payload type, and

sequence information that are useful for the receiving side to reconstruct the data.

5. User datagram protocol (UDP): UDP provides efficient but unreliable data transport real-time voice

data because retransmission of real-time voice data would add too much delay.

6. Internet protocol (IP): provides a standard encapsulation for data transmission over the network. It

contains a source and destination addresses used for routing.

Example 11.5: The trace given in Table 11.9 shows a frame of RTP data for the ITU G.729

encapsulated in UDP, IP, and Ethernet protocols. In the IP layer, the 20-byte header includes

the source (88.88.88.1) and destination (88.88.88.8) IP addresses which are used for routing the

packets. In the UDP layer, the 8-byte header provides the payload length and port information. In

the RTP layer, the 12-byte header provides the payload type, time stamp, and sequence number.

Finally, the payload follows 12-byte RTP header.

Figure 11.12 shows the complete data in hex format over the IP network. In this example, there is

54-byte overhead for each 20-ms G.729 encoded data, i.e., 20 bytes. Since the number of overhead is

fixed, it is efficient to pack more payloads in one packet but the delay will be increased. Usually, the

payload will be from 20 to 80 ms.

11.4.2 Real-Time Transport Protocol and Payload Type

VoIP data packets contained in RTP packets are encapsulated in UDP packets. RTP provides the solution

enabling the receiver to put the packets back into the correct order, and not waiting too long for packets

that either have lost or are taking too long to arrive. The format of RTP header is given in Figure 11.13.

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

494 SPEECH-CODING TECHNIQUES

Table 11.9 Example of G.729 payload

Frame 271 (74 bytes on wire, 74 bytes captured)
Arrival Time: Dec 3, 2004 11:27:30.243551000
Time delta from previous packet: 0.001989000 seconds
Time since reference or first frame: 6.417555000 seconds
Frame Number: 271
Packet Length: 74 bytes
Capture Length: 74 bytes

Ethernet II, Src: 00:07:09:64:a0:50, Dst: 00:30:01:16:03:22
Destination: 00:30:01:16:03:22 (88.88.88.8)
Source: 00:07:09:64:a0:50 (88.88.88.1)
Type: IP (0x0800)

Internet Protocol, Src Addr: 88.88.88.1 (88.88.88.1), Dst Addr:
Version: 4
Header length: 20 bytes
Diff. Services Field: 0xb8 (DSCP 0x2e: Expedited FW;

ECN: 0x00)
1011 10.. = Differentiated Services Codepoint: Expedited Forwarding

(0x2e)
.... ..0. = ECN-Capable Transport (ECT): 0
.... ...0 = ECN-CE: 0

Total Length: 60
Identification: 0x0000 (0)
Flags: 0x00

0... = Reserved bit: Not set
.0.. = Don't fragment: Not set
..0. = More fragments: Not set

Fragment offset: 0
Time to live: 64
Protocol: UDP (0x11)
Header checksum: 0x1940
Source: 88.88.88.1 (88.88.88.1)
Destination: 88.88.88.8 (88.88.88.8)

User Datagram Protocol, Src Port: 14252 (14252), Dst Port: 24288 (24288)
Source port: 14252 (14252)
Destination port: 24288 (24288)
Length: 40
Checksum: 0x0000 (none)

Real-Time Transport Protocol
10.. = Version: RFC 1889 Version (2)
..0. = Padding: False
...0 = Extension: False
.... 0000 = Contributing source identifiers count: 0
0... = Marker: False
.001 0010 = Payload type: ITU-T G.729 (18)
Sequence number: 11974
Timestamp: 2083810640
Synchronization Source identifier: 728976431
Payload: 713AA734EC8110DC25E945932687F8CD

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

VOICE OVER INTERNET PROTOCOL APPLICATIONS 495

0000 00
00

30 01

37 ac 5e e0 00 28 00 00

16 03 22 00 07 09 64 a0 50 08 00 .0..."...d.P..E.
0010 .<....@.b.XXX.XX
0020 X.7.ˆ..(......|4
0030 mP+sL/q:.4....%.
0040 E.&......>

Ethernet
IP
UDP

RTP

Payload

45 b8
00 003c

08
00 00 00 40 11 62 ec 58

58
58 58 58 5801

80 12 2e c6 7c 34

e9ec343a2f4c732b506d
45 93 26 87 f8 cd ae e9 8b 3e

71 a7 25dc1081

Figure 11.12 Graphical explanations of IP/UDP/RTP packet data

The first 12 octets are present in every RTP packet, while the list of CSRC identifiers will present only

when a mixer is inserted. Refer to RFC1889 for detailed definition of the field. The notations given in

Figure 11.13 are defined as follows:� V – Version of RTP used.� P – Padding, a byte not used at bottom packet to reach the parity packet dimension.� X – Presence of the header extension.� CC – Number of CSRC identifiers following the fixed header. CSRC fields are used, for example, in

conferencing case.� M – Marker bit.� PT – Payload type.

The payload type identifies the format of the RTP payload and determines its interpretation by applica-

tions. A profile may specify a default payload type codes. A set of default mappings for audio and video

is specified in the RFC 3551. Some commonly used CODEC payload types are listed in Table 11.10.

GSM-AMR, G.729E, and G.726 use dynamic payload type while some of the early CODECs use

the static payload type. The dynamic payload type uses the number between 96 and 127. For dynamic

payload type, the payload type needs to be negotiated between two terminals.

Timestamp

Synchronization source (SSRC) identifier

Contributing source (CSRC) identifiers

0

V = 2

1 2 3 4 5 6

1st byte 2nd byte 3rd byte 4th byte

7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

P X CC M PT Sequence number

Figure 11.13 Fixed-header fields (adapted from RFC1889)

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

496 SPEECH-CODING TECHNIQUES

Table 11.10 Partial payload types for audio encoding (adapted from RFC 3551)

Payload type Encoding name Comments

0 PCMU G.711 PCM μ-law

3 GSM GSM

4 G723.1 G.723.1 dual rate

8 PCMA G.711 PCM A-law

13 CN G.711 Annex II comfort noise

15 G728 G.728 at 16 kbps

18 G729 G.729 at 8 kbps

96–127 Dynamic Dynamic payload type

11.4.3 Example of Packing G.729

Each G.729 and G.729A frame consists of 80 bits. The mapping of these parameters is given in Table

11.11 and Figure 11.14. The bits of each 32-bit word are numbered from 0 to 31, with the most significant

bit on the left and numbered 0. The octets (bytes) of each word are transmitted with the most significant

octet first.

A G.729 RTP packet may consist of zeros, or G.729 or G.729 Annex A frames, followed by zeros, or

one G.729 Annex B frame. The presence of a comfort-noise frame can be deduced from the length of

the RTP payload. The default packetization interval is 20 ms (two frames), but in some situations it may

be desirable to send 10-ms packets. An example would be a transition from speech to comfort noise in

the first 10 ms of the packet. For some applications, a longer packetization interval may be required to

reduce the packet rate. Figure 11.14 shows the packet format of G.729 at 8 kbps, and Table 11.11 shows

the description of parameters. The bit-stream ordering is reflected by the order in the Table 11.11. For

each parameter, the MSB is transmitted first.

11.4.4 RTP Data Analysis Using Ethereal Trace

There are many commercially available equipment and software packages that are capable of analyzing

the IP data. Ethereal is widely used software tool to capture the IP data for production use. Ethereal

supports 620 protocols and the software can be downloaded from Internet. IP data can be captured from

a live network connection or read from a captured file.

L2 L3 P1 P0 C1

4 0 1 2 3 4 5 6 7 0 0 1 2 3 4

C1 S1 GA1 GB1 P2 C2

5 6 7 8 9 10 11 12 0 1 2 3 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 6 7

C2 S2 GA2 GB2

8 9 10 11 12 0 1 2 3 0 1 2 0 1 2 3

0

0 0

L0 L1

1 2

1 2

3 4 5

3 4 5

6

6

1st byte

5th byte

9th byte

2nd byte

6th byte

10th byte

3rd byte

7th byte

4th byte

8th byte

7 0

00

1 2 3

1 2 3

4

4

5 6 7 0 1 2 3

1 2 3

4 5 6 7 0 1 2 3 4 5 6 7

Figure 11.14 G.729 and G.729A bit packing

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 497

Table 11.11 Description of transmitted parameters indices

Symbol Description Bits

L0 Switched MA predictor of LSP quantizer 1

L1 First stage vector of quantizer 7

L2 Second stage lower vector of LSP quantizer 5

L3 Second stage higher vector of LSP quantizer 5

P1 Pitch delay first subframe 8

P0 Parity bit for pitch delay 1

C1 Fixed codebook first subframe 13

S1 Signs of fixed-codebook pulses first subframe 4

GA1 Gain codebook (stage 1) first subframe 3

GB1 Gain codebook (stage 2) first subframe 4

P2 Pitch delay second subframe 5

C2 Fixed codebook second subframe 13

S2 Signs of fixed-codebook pulses second subframe 4

GA2 Gain codebook (stage 1) second subframe 3

GB2 Gain codebook (stage 2) second subframe 4

An example of analyzing the RTP trace that uses rtp as the filter to display all RTP packets is shown

in Figure 11.15. In this example, G.729 is the voice CODEC. The RTP data transfers back and forth

between two IP terminals.

A very useful feature of this tool is performing statistic analysis using Statistic→RTP→Stream

Analysis. The results shown in Figure 11.16 can help to understand the data format on the network

side, investigate the possible cause of errors during transmission, and verify the interoperability with

third-party equipments. The RTP data can also be saved using Save Payload for off-line processing.

11.4.5 Factors Affecting the Overall Voice Quality

The network delay, packet losses, packet jitters, and echoes are the major contributors to the perceived

quality of VoIP. The ITU G.114 standard states that the end-to-end one-way delay should not exceed

150 ms. The overall voice packet delay can be improved with prioritizing the voice in the network packet.

The speech-coding algorithms can also compensate these factors. Furthermore, efficient packet-loss

concealment algorithms make the lost or discarded packet effects less noticeable.

The delay can also be shortened by choosing low-delay speech CODECs which use small buffer

size for block processing. A good jitter buffer algorithm can effectively compensate the jitter with the

minimum buffer size to make the overall delay minimized. Network echoes can be effectively canceled

or suppressed using adaptive echo cancelation algorithms introduced in Chapter 10.

11.5 Experiments and Program Examples

In this section, we will calculate the LPC coefficients using MATLAB, C, and C55x programs.

11.5.1 Calculating LPC Coefficients Using Floating-Point C

In this experiment, we implement the Levinson–Durbin algorithm using floating-point C to calculate

the LPC coefficients. The main C program to access these functions is listed in Table 11.12, where

three functions calc_autoc(), calc_lpc(), and hmwindowing() are used to calculate the LPC

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

Figure 11.15 Example of RTP data between two terminals. It shows all the components of IP/UDP/RTP/payload

Figure 11.16 Statistic of RTP data. It shows there are 336 RTP packets without packet loss and sequence errors

498

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 499

Table 11.12 Main program lpc_mainTest.c for computing LPC coefficients

while (fread(input,sizeof(short),N,fpin)==N)
{

// Apply the Hamming window
hmwindowing(N,input,ws);
// Autocorrelation
calc_autoc(ws, p_order, N,R);
// Levension_Durbin
calc_lpc(R, lpc, p_order);

}

coefficients. Function calc_lpc() is listed in Table 11.13. The files used for this experiment are listed

in Table 11.14.

Procedures of the experiment are listed as follows:

1. Start CCS, open the project, build, and load the program.

2. Edit the experiment parameter file param.txt located in the data directory, include input speech file,

output coefficients file, LPC order, and frame size if necessary. The default setting uses the speech

file voice4.pcm, 10th-order LPC, and frame size 180.

3. Modify the experiment test program such that the envelope of LPC coefficients will be plotted by

CCS and displayed. The envelope will look similar to Figure 11.2.

4. Repeat the experiment with different speech files, such as male and female speakers, voiced and

unvoiced segments.

11.5.2 Calculating LPC Coefficients Using C55x Intrinsics

A special library such as the ETSI (Europe Telecommunication Standard Institute) library can be used to

represent the fixed-point operations for the CODECs including the G.723.1, G.729, and AMR. By using

the basic operators defined in the ETSI library, the floating-point C code can be converted to fixed-point

C code.

The floating-point C code must be modified for implementation on the fixed-point C55x. The input

signal is normalized to maximally use the limited dynamic range and to avoid overflow. A vector normal-

ization example is shown in Table 11.15. In the code, functions round, norm_l, L_add, L_sub, L_shl,

and L_shr are used to simulate the processor operations of rounding, 16-bit normalization, 32-bit addi-

tion, subtraction, and 32-bit left and right shifts. After normalization, the Levinson algorithm is used to

compute LPC coefficients. An example of calculating analysis filter coefficients is shown in Table 11.15.

The fixed-point C libraries do not have the efficiency that a DSP processor requires for real-time pro-

cessing. Using the C55x intrinsics to replace functions in the fixed-point C libraries, we can achieve much

better run-time efficiency. The results from fixed-point C implementation and intrinsics implementation

are bit exact. This ensures the CODEC implementations in both fixed-point C and C55 intrinsics to have

the same performance.

In Table 11.15, the operator round(x) converts a 32-bit data to 16 bits with rounding of the higher

16-bit word. Operatornorm_l(x) calculates the leading sign bit. Using the same approach, the Levinson–

Durbin algorithm can be converted as listed in Table 11.16. In the program, the LPC coefficients a[]

and the reflection coefficients K[] are represented in Q.13 format to work with the LPC coefficients

between −4 (0x8000/0x2000) and +3 8191
8192

(0x7fff/0x2000). The prediction error E[] and correlation

R[] are in Q.14 format to avoid overflow. The files used for this experiment are listed in Table 11.17.

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

500 SPEECH-CODING TECHNIQUES

Table 11.13 Function used for LPC coefficient computation

/*
| calc_lpc() : lpc coefficients
| Input autoc : autoc[0,.,frame_size-1]
| p : lpc order
| Output lpc : lpc[0,.,p_order]
*/
float *K; // Reflection coefficient
float *E; // Prediction error
float *a; // Intermediate lpc coefficients
static short first = 0;

void calc_lpc(float *autoc, float *lpc, short p)
{

short i,j,p1;
float acc0;
float *R; // Correlation
p1 = p+1;
if (first == 0)
{

K = (float *)malloc((p1)*sizeof(float));
a = (float *)malloc((p1)*(p1)*sizeof(float));
E = (float *)malloc((p1)*sizeof(float));
first++;

}
R = autoc;
E[0] = R[0]; // Equation (11.4)
if (fabs(E[0]) < D16_MIN) // To avoid divided by 0

E[0] = D16_MIN;
K[1] = R[1] / E[0]; // Equation (11.5)
a[1*p1+1]=K[1]; // Equation (11.6)
E[1]=(1-K[1]*K[1]) * E[0]; // Equation (11.8)
for (i=2;i<=p;i++)
{

acc0=0.0;
for (j=1;j<i;j++)

acc0 += a[j*p1+i-1] * R[i-j];// partial Equation (11.5)
K[i] = (R[i]-acc0) / E[i-1];// Equation (11.5)
a[i*p1+i] = K[i]; // Equation (11.6)
for (j=1;j<i;j++)

a[j*p1+i] = a[j*p1+(i-1)] - K[i] * a[(i-j) * p1+(i-1)];
// (Equation 11.7)

E[i]=(1 - K[i] * K[i]) * E[i-1];// (Equation 11.8)
if (fabs(E[i]) < D16_MIN) // For division

E[i] = signof(E[i]) * D16_MIN;
}
for (j=1;j<=p;j++) // Equation (11.9)

lpc[j] = -a[j*p1+p]; // Same format as MATLAB
}

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 501

Table 11.14 File listing for experiment exp11.5.1_floatingPointLpc

Files Description

lpc_mainTest.c Main program for testing experiment

lpc_auto.c C function computes autocorrelation

lpc_lpc.c LPC analysis function

lpc_hamming.c Hamming window function

lpc_hamTable.c Generate Hamming window lookup table

lpc.h C Header file

floatPoint_lpc.pjt DSP project file

floatPoint_lpc.cmd DSP linker command file

param.txt Configuration file

voice4.pcm Speech file

Table 11.15 Using intrinsics for calculating autocorrelation coefficients

/*
| calc_autoc() : autocorrelation
| Input ws : ws[0,.,frame_size-1]
| p_order : lpc order
| frame_size : frame_size
| Output autoc : autoc[0,.,p_order]
*/
void calc_autoc(short *ws, short p_order, short frame_size, short *autoc)
{

short k,m,i,Exp;
long acc0,acc1;
/* Compute autoc[0] */
acc1 = (long) 0 ;
for (i = 0 ; i < frame_size ; i++)
{

acc0 = (long)ws[i]*ws[i];
acc1 = L_add(acc1,acc0);

}
/* Normalize the energy */
Exp = norm_l(acc1) ;
acc1 = L_shl(acc1, Exp) ;
autoc[0] = round(acc1);
/* Compute autoc[i], i=1,..10 */
for (k = 1 ; k <= p_order ; k ++) {

acc1 = (long) 0 ;
for (m = k ; m < frame_size ; m ++)
{

acc0 = (long)ws[m]*ws[m-k];
acc1 = L_add(acc1,acc0);

}
acc0 = L_shl(acc1, Exp);
autoc[k] = round(acc0);

}

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

502 SPEECH-CODING TECHNIQUES

Procedures of the experiment are listed as follows:

1. Start CCS, open the project, build, and load the program.

2. Check the experiment results and convert the fixed-point results to floating-point representation

(scaling down by 8192) to evaluate the differences.

Table 11.16 Using intrinsics for calculating synthesis filter coefficients

/*
| calc_lpc() : lpc coefficients
| Input autoc : autoc[0,...,p_order]
| p : lpc order
| Output lpc : lpc[0,...,p_order]
*/
short K[LPCORDER+1]; // Reflection coefficient in Q.13
short a[(LPCORDER+1)*(LPCORDER+1)]; // LPC coefficients in Q.13
short E[LPCORDER+1]; // Prediction error in Q.14
void calc_lpc(short *autoc, short *lpc, short p)
{

short i,j,p1;
long acc0,acc1;
short *R; // Correlation in Q.14
short sign;
p1= p+1;
// Calculate LPC parameters
R = autoc;
E[0] = R[0];
acc0 = L_shl(R[1],13);
sign = signof(&acc0);
acc0 = L_shl(acc0,1);

K[1] = div_l(acc0, E[0]);
if(sign== (short)-1)
K[1] = negate(K[1]);
a[1*p1+1]=K[1];
/*E[1]=((8192-((K[1]*K[1])>>13)) * E[0])>>13;*/
acc0 = (long)K[1] * K[1];
acc0 = L_shr(acc0,13);
acc0 = L_sub(8192, acc0);
acc0 = E[0]* (short)(acc0);
acc0 = L_shr(acc0,13);
E[1] = (short) acc0;
for (i=2;i<=p;i++)
{

acc0=0;
for (j=1;j<i;j++)
{

acc1 = (long)a[j*p1+i-1] * R[i-j];
acc0 = L_add(acc0,acc1);

}
acc1 = L_shl(R[i],13);
acc0 = L_sub(acc1, acc0);
sign = signof(&acc0);

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 503

Table 11.16 (continued)

if (acc0 > L_shl(E[i-1],13))
break;

acc0 =L_shl(acc0,1);
K[i] = div_l(acc0,E[i-1]);
if(sign == (short)-1) K[i] = negate(K[i]);
a[i*p1+i] = K[i];
/* a[j*p1+i]=a[j*p1+(i-1)]-((K[i]*a[(i-j)*p1+(i-1)])>>13);*/
for (j=1;j<i;j++)
{

acc0 = (long)K[i] * a[(i-j)*p1+(i-1)];
acc1 = L_shl((int)a[j*p1+(i-1)],13);
acc0 = L_sub(acc1,acc0);
acc0 = L_shr(acc0,13);
a[j*p1+i] = (short) acc0;

}
/* E[i]=((8192-((K[i]*K[i])>>13)) * E[i-1])>>13;*/
acc0 = (long)K[i] * K[i];
acc0 = L_shr(acc0,13);
acc0 = L_sub((short)8192,acc0);
acc0 = E[i-1]* (short)(acc0);
acc0 = L_shr(acc0,13);
E[i] = (short) acc0;

}
for (j=1;j<=p;j++)

lpc[j] = negate(a[j*p1+p]); // Same format as in MATLAB
}

3. Read lpc data from data memory and use MATLAB program (Example 11.2) to plot spectrum

response of LPC synthesis filter against the input signal. We should see the LPC spectrum representing

the envelope of the signal spectrum similar to Figure 11.2.

4. Modify the experiment to allow the test program accepting different parameters such as LPC order

and input files.

Table 11.17 File listing for experiment exp11.5.2_intrinsicLpc

Files Description

intrinsic_lpc_mainTest.c Main program for testing experiment

intrinsic_lpc_lpc.c Fixed-point function computes LPC coefficients

intrinsic_lpc_auto.c Fixed-point function computes autocorrelation

intrinsic_lpc_hamming.c Hamming window function using intrinsics

intrinsic_lpc_hamTable.c Function generates Hamming window lookup table

lpc.h C header file for the experiment

gsm.h ETSI intrinsics header file provided by CCS

linkage.h Header file used in conjunction with gsm.h
intrinsic_lpc.pjt C55x project file

intrinsic_lpc.cmd C55x linker command file

voice4.pcm Speech file

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

504 SPEECH-CODING TECHNIQUES

5. Repeat the experiment with different experiment speech files, such as male and female, voiced and

unvoiced segments.

6. Use scaling variables such as E and K rather than arrays E[11] and K[11] to reduce memory usage.

Pay attention to the array a[] in floating- and fixed-point C, where the array size has been reduced

from p1*p1 in floating-point C to p1 in fixed-point C. Rewrite the LPC code to use scaling variables

E and K.

11.5.3 MATLAB Implementation of Formant Perceptual
Weighting Filter

In Example 11.2, a MATLAB function is used to compute the LPC coefficients as a = levinson(r,p).

Using the LPC coefficients for synthesis filter 1/A(z), the weighting filter W (z) can be calculated using

Equation (11.11). The speech file voice4.pcm is used for the experiment, and the magnitude response

of the perceptual weighting filter is plotted. The MATLAB script is listed in Table 11.18. The files used

for the experiment is listed in Table 11.19.

Procedures of the experiment are listed as follows:

1. Start MATLAB and set the path to the directory ../exp11.5.3_matPwf.

2. Run the experiment and examine the frequency responses of the synthesis filter and perceptual

weighting filter (refer to Figure 11.17).

0 500 1000 1500 2000 2500 3000 3500 4000
−100

−80

−60

−40

−20

0

20

40

Frequency (Hz)

A(Z) and W(Z) filter spectrum responses

M
ag

n
it

u
d
e

 (
d
B

)

Original envelope

γ2=0.95 and γ1=1.0

γ2=0.75 and γ1=1.0

γ2=0.50 and γ1=1.0

Figure 11.17 Spectrum of speech and its spectral envelopes defined by synthesis filters

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 505

Table 11.18 MATLAB code to calculate W (z) and plot its frequency response

gama_1 = 0.95;
gama_2 = 0.70;
gama_3 = 0.50;

a=levinson(r,lpcOrder); % Levinson
y=fft(a,fftL);
pyy=-10*log10(y.*conj(y));

a_1 = a*gama_1;
m=0;
while (m<=lpcOrder);

a_1(m+1)=a(m+1)*(gama_1^(m-1));
m=m+1;

end;
y=fft(a_1,fftL);
pyy_1=-30-pyy-10*log10(y.*conj(y)); % Offset 20 dB for display

a_2 = a*gama_2;
m=0;
while (m<=lpcOrder);

a_2(m+1)=a(m+1)*(gama_2^(m-1));
m=m+1;

end;
y=fft(a_2,fftL);
pyy_2=-50-pyy-10*log10(y.*conj(y)); % Offset 20 dB for display

a_3 = a*gama_2;
m=0;
while (m<=lpcOrder);

a_3(m+1)=a(m+1)*(gama_3^(m-1));
m=m+1;

end;
y=fft(a_3,fftL);
pyy_3=-70-pyy-10*log10(y.*conj(y)); % Offset 20 dB
plot(f,pyy(1:(fftL/2)),'-',f,pyy_1(1:(fftL/2)),'-.',

f,pyy_2(1:(fftL/2)),'--.',f,pyy_3(1:(fftL/2)),'--');
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
title('A(Z) and W(Z) filter spectrum responses');
h = legend('Original envelop',' \gamma2=0.95&\gamma1=1.0',

'\gamma2=0.75&\gamma1=1.0','\gamma2=0.50&\gamma1=1.0',4);

3. Change the parameters γ2 to other values and observe the differences of weights.

4. Modify the MATLAB script to read different segment of the speech data from the speech file

voice4.pcm and repeat the experiment. Observe the differences using different speech segments.

5. Change the order of LPC filter and repeat the experiment. Observe the changes with different LPC

filter orders.

6. Use different frame sizes to calculate LPC coefficients and observe differences.

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

506 SPEECH-CODING TECHNIQUES

Table 11.19 File listing for experiment exp11.5.3_matPwf

Files Description

exp11_5_3_pwf.m MATLAB perceptive weighting filter experiment

voice4.pcm Speech file

11.5.4 Implementation of Perceptual Weighting Filter Using
C55x Intrinsics

For many speech-coding algorithms, perceptual weighting filter coefficients are calculated using LPC

coefficients. In addition to all files used by experiment given in Section 11.5.2, the fixed-point C file

intrinsic_pwf_wz.c listed in Table 11.20 is used to calculate the weighting filter coefficients for this

experiment. In the program, gamma1 is γ1 and gamma2 is γ2 given in Equation (11.11). The files used for

this experiment are listed in Table 11.21.

Procedures of the experiment are listed as follows:

1. Start CCS, open the project, build, and load the program.

2. Check the experiment results. Plot the weighting filter frequency response to verify the LPC envelope.

It should resemble Figure 11.17.

Table 11.20 Computation of perceptual weighting filter coefficients, intrinsic_pwf_wz.c

/*
| calc_wz() : Perceptual weighting filter
| W(Z)=(wf1[z])/(wf2[z])
| Input lpc : lpc[0,.,p_order]
| gamma1 : gamma1
| gamma2 : gamma2
| p_order : lpc order
| Output wf1 : wf1[0,.,p_order]
| wf2 : wf2[0,.,p_order]
*/
void calc_wz(short *lpc, short gamma1,short gamma2, short p_order, short
*wf1, short *wf2)
{

short I,gam1,gam2;
wf1[0]=32767;
wf2[0]=32767;
gam1 = gamma1;
gam2 = gamma2;

for (i=1; i<=p_order; i++)
{

wf1[i] = mult_r(lpc[i],gam1);
wf2[i] = mult_r(lpc[i],gam2);
gam1 = mult_r(gam1, gamma1);
gam2 = mult_r(gam1, gamma2);

}
}

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

REFERENCES 507

Table 11.21 File listing for experiment exp11.5.4_intrinsicPwf

Files Description

intrinsic_pwf_mainTest.c Main program for testing experiment

intrinsic_pwf_lpc.c Fixed-point function computes LPC coefficients

intrinsic_pwf_auto.c Fixed-point function computes autocorrelation

intrinsic_pwf_hamming.c Hamming window function using intrinsics

intrinsic_pwf_hamTable.c Function generates Hamming window lookup table

intrinsic_pwf_wz.c Function calculates perceptual weighting filter coefficients

pwf.h C header file

gsm.h ETSI intrinsics header file provided by CCS

linkage.h Header file used in conjunction with gsm.h
intrinsic_pwf.pjt C55x project file

intrinsic_pwf.cmd C55x linker command file

voice4.pcm Speech file

References

[1] ITU-T Recommendation G.723.1, Dual Rate Speech Coder for Multimedia Communications Transmitting at 5.3
& 6.3 kbit/s, Mar. 1996.

[2] CCITT Recommendation G.728, Coding of Speech at 16 kbit/s Using Low-delay Code Excited Linear Prediction,

Geneva, 1992.

[3] ITU-T Recommendation G.729, Coding of Speech at 8 kbit/s Using Conjugate-Structure Algebraic-Code-Excited
Linear Prediction (CS-ACELP), Dec. 1995.

[4] MPEG-4 Working Draft, CELP Coding, ISO/IEC CD 14496-3 Subpart 3, ISO/JTC 1/SC 29/WG11, Oct. 1997.

[5] J. Natvig, ‘Pan-European speech coding standard for digital mobile radio,’ Speech Communications, vol. 7, 1988,

pp. 113–123.

[6] 3G TS 26.190 V1.0.0 (2000–12), Mandatory Speech CODEC Speech Processing Functions AMR Wideband
Speech CODEC; Transcoding Functions (Release 4), Dec. 2000.

[7] 3GPP TS 26.171, Universal Mobile Telecommunications System (UMTS); AMR Speech CODEC, Wideband;
General Description (Release 5), Mar. 2001.

[8] All G.729 related ITU-T standards including Annex A–I.

[9] A. M. Kondoz, Digital Speech Coding for Low Bit Rate Communications Systems, New York: John Wiley &

Sons, Inc., 1995.

[10] W. E. Witowsky, ‘IP telephone design and implementation issues,’ Telogy white paper.

[11] W. Tian, Narrow/Wide-Band Speech Coding Using CELP Model, Ph.D. Dissertation, National University of

Singapore, 1998.

[12] W. Tian, W. C. Wong, and C. Tsao, ‘Low-delay subband CELP coding of wideband speech,’ IEEE Proc. Vision,
Image Signal Process., vol. 144, pp. 313–316, Oct. 1997.

[13] W. Tian and W.C. Wong, ‘Multi-pulse embedded coding of speech,’ Proc. IEEE APCC/ICCS’98, pp. 107–111,

Nov. 1998.

[14] W. Tian, W. C. Wong, C. Y. Law, and A. P. Tan, ‘Pitch synchronous extended excitation in multi-mode CELP,’

IEEE Communications Letter, vol. 03, pp. 275–276, Sep. 1999.

[15] W. Tian and W. C. Wong, ‘6 kbit/s partial joint optimization CELP,’ Proc. ICICS’99, CDROM #1D1.1, Dec.

1999.

[16] W. Tian and A. Alvarez, ‘Embedded coding of G.729x,’ Proc. ICICS’99, CDROM #2D3.3, Dec. 1999.

[17] W. Tian, G. Hui, W. Ni, and D. Wang, ‘Integration of LD-CELP codec and echo canceller,’ Proc. IEEE TEN-
CON’93, pp. 287–290, Oct. 1993.

[18] J. H. Chen and A. Gersho, ‘Adaptive postfiltering for quality enhancement of coded speech,’ IEEE Trans. Speech
Audio Process., vol. 3, pp. 59–71, Jan. 1995.

[19] P. E. Papamichalis, Practical Approaches to Speech Coding, Englewoods Cliffs, NJ: Prentice Hall, 1987.

JWBK080-11 JWBK080-Kuo March 2, 2006 16:5 Char Count= 0

508 SPEECH-CODING TECHNIQUES

[20] Math Works, Inc., Using MATLAB, Version 6, 2000.

[21] Texas Instruments, Inc., A-Law and mu-Law Companding Implementations Using the TMS320C54x, Literature

no. SPRA163A, 1997.

Exercises

1. In Equation (11.11), let γ2 = 1. Will the weighting filter still work? On the other hand, if we let

γ1 = 1, what will be the combined filter H (z) in Equation (11.12)? You may modify the MATLAB

script given in Section 11.5.3 to conduct this exercise.

2. For the ACELP representation, how many bits are needed in order to encode the eight possible

positions? If this pulse amplitude is either +1 or –1, how many bits are needed in total to encode

the pulse position and sign? If the pitch interval is from 20 to 147, how many bits are needed for

encoding? If we need higher resolution, 1/2 sample, in the pitch range of 20–147, how many bits are

needed?

3. The LSP coefficient vector in G.723.1 is a 10th-order vector. This vector is divided by three subvectors

of dimensions 3, 3, and 4. If each subvector is vector equalized using an 8-bit codebook, how many

bits are needed to represent the LSP quantization index?

4. If we use 16 bits to represent the LPC coefficients, and assume that the values of these coefficients

are always between ±3.00 and 0.0, what is the most efficient representation of the coefficients using

the 16-bit fixed-point format?

5. For VoIP applications, assume that there are 60 bytes used for Ethernet/IP/UDP/RTP headers. If using

ITU G.729 as the CODEC with the packet frame size of 20 ms, what is the actual bit rate over the

IP network? If the voice activity is 40 % (means 60 % signal is silence), how much can be saved in

bandwidth if we do not send anything during silence frames? If we increase the packet frame size

from 20 to 40 ms, what is the actual bit rate over network during the active frames?

6. Given a RTP trace, if the 7-bit Payload type = 0, which CODEC has been used (refer to Table

11.10)? If the UDP payload length = 100 bytes, what is the frame size in samples for this CODEC?

If we get a valid UDP payload length = 21 bytes, why the packet size is smaller? Assume that there

are 12 bytes for RTP header and 8 bytes for UDP.

7. For the ACELP such as G.729 CODEC, if the first three pulse locations have been found to be at 5,

6, and 7, is it possible the fourth pulse is at 8? Is it possible the fourth one is at 9? Why?

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

12
Speech Enhancement
Techniques

This chapter introduces the design and implementation of single-channel speech enhancement (or noise

reduction) algorithms to enhance the speech corrupted by background noises. We will focus on the

spectrum subtraction algorithm for reducing background noises.

12.1 Introduction to Noise Reduction Techniques

The use of cellular/wireless phones is often found in the noisy environments such as vehicles, restaurants,

shopping malls, manufacturing plants, or airports. High background noises will degrade the quality or

intelligibility of speech in these applications. Excessive noise level also will degrade the performance of

existing signal processing techniques, such as speech coding, speech recognition, speaker identification,

and adaptive echo cancelation, which are developed with the low-noise assumption. The purpose of

many speech enhancement algorithms is to reduce noise, improve speech quality, or suppress undesired

interference. The noise reduction (NR) becomes increasingly important to improve voice quality in noisy

environments for hands-free applications.

There are three general classes of speech enhancement techniques: subtraction of interference, sup-

pression of harmonic-related noises, and resynthesis using vocoders. Each technique has its own set of

assumptions, advantages, and limitations. The first technique suppresses noise by subtracting the esti-

mated noise spectrum, which will be discussed in Section 12.2. The second method employs fundamental

frequency tracking using adaptive comb filter for reducing the periodic noises. The third technique fo-

cuses on estimating speech-modeling parameters using iterative methods, and uses these parameters to

resynthesize the noise-free speech.

NR algorithms can be classified as single-channel or dual-channel (multiple-channel) techniques. In

many real-world situations, only a single-channel system is available. A typical single-channel speech

enhancement system is shown in Figure 12.1. The noisy speech x(n) is the only available input signal

for the system, which contains s(n) from the speech source and v(n) from the noise source. The output

signal is the enhanced speech ŝ(n). Under the assumption that the background noise is stationary, the

characteristics of the noise can only be estimated during the silence periods between utterances.

This chapter concentrates on the single-channel speech enhancement systems. Since the systems

estimate noise characteristics during the nonspeech periods, an accurate and robust voice activity detector

(VAD) plays an important role in the performance of the system.

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

509

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

510 SPEECH ENHANCEMENT TECHNIQUES

Noisy speech Single-channel
system

Noise
source

Speech
source Enhanced speech

s(n)x(n) = s(n) + v(n)

Figure 12.1 A single-channel speech enhancement system

Noise subtraction algorithms can be implemented in either time or frequency domain. The frequency-

domain implementation based on short-time spectral amplitude estimation and subtraction is called the

spectral subtraction. The basic idea of the spectral subtraction algorithm is to obtain the short-term

magnitude spectrum of the noisy speech using the fast Fourier transform (FFT), subtract the estimated

noise magnitude spectrum, and then to perform an inverse transforming on this subtracted spectral

amplitude with the original phase.

Frequency-domain noise suppression can be implemented in time domain by decomposing the cor-

rupted speech signal into overlapped frequency bands using a filterbank. The noise power of each subband

is estimated during nonspeech periods. Noise suppression is achieved using the attenuation factors that

correspond to the ratio of the temporal signal power to the estimated noise power. Since the spectral

subtraction algorithm provides the basic concept of filterbank technique, it will be presented in details in

the next section.

12.2 Spectral Subtraction Techniques

Spectral subtraction technique uses a computationally efficient FFT for reducing noise. As illustrated in

Figure 12.2, this approach enhances the speech quality by subtracting the estimated noise spectrum from

the noisy speech spectrum.

Data segmenting
and buffering

x(n)
FFT

VAD

Spectrum
subtraction

Noise spectrum
estimation

Overlap

Phase calculation

s(n)

Attenuation

Speech

Nonspeech

IFFT

Figure 12.2 Block diagram of the spectral subtraction algorithm

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

SPECTRAL SUBTRACTION TECHNIQUES 511

12.2.1 Short-Time Spectrum Estimation

Assume that the noisy signal x(n) consists of a speech s(n) and an uncorrelated noise v(n). This noisy

speech is segmented and windowed. The FFT and magnitude spectrum are computed frame by frame.

A VAD is used to determine if the current frame is the speech or nonspeech. For a speech frame, the

algorithm performs the spectral subtraction to generate the enhanced speech signal ŝ(n). During the

nonspeech frames, the algorithm estimates noise spectrum and attenuates the signal in the buffer to

reduce noise.

There are two methods for generating the output during nonspeech frames: (1) attenuate the output

by a fixed scaling factor that is less than 1, and (2) set the output to zero. Experimental results show that

having some residual noise during nonspeech frames will give a better subjective speech quality. This is

because setting the output to zero has the effect of amplifying the noise during the speech frames. We

must maintain the balance between the magnitude and the characteristics of the noise perceived during

the speech and noise frames to avoid undesirable audio effects such as clicking, fluttering, or even slurring

of the speech signal. A reasonable amount of attenuation is about 30 dB.

The input signal is segmented using the Hanning (or Hamming) window introduced in Section 4.2.3 to

50 % overlapped data buffers. After the noise subtraction, the enhanced speech waveform is reconstructed

to time domain by the inverse FFT. These output frames are overlapped and added to produce the output

signal.

Example 12.1: Given a frame of 256 samples, calculate the algorithm delay if 50 % overlap is

used. Compare the computational load with the algorithms without using overlap.

If 50 % overlap is used, algorithm delay is 256 samples or 32 ms at 8 kHz sampling rate. The

computational load will be double since the same block of data has been calculated twice.

12.2.2 Magnitude Subtraction

Several assumptions are made for the algorithm development. First, the algorithm assumes that the

background noise is stationary such that the expected noise spectrum will not change during the following

speech frames. If the environment changes, there will be enough time for the algorithm to estimate a

new background noise spectrum before the presence of speech. Therefore, the algorithm must have an

effective VAD to determine its operations. The algorithm also assumes that the NR can be achieved by

removing the noise from the magnitude spectrum only.

If the speech s(n) has been degraded by a zero-mean uncorrelated noise v(n), the corrupted noisy

signal can be expressed as

x(n) = s(n) + v(n). (12.1)

Taking the discrete Fourier transform of x(n) gives

X (k) = S(k) + V (k). (12.2)

The estimate of |S(k)| can be expressed as

|Ŝ(k)| = |X (k)| − E |V (k)|, (12.3)

where E |V (k)| is the expected noise spectrum estimated during the nonspeech frames.

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

512 SPEECH ENHANCEMENT TECHNIQUES

Given the |Ŝ(k)|, the speech spectrum can be expressed as

Ŝ(k) = |Ŝ(k)|e jθx (k), (12.4)

where θx (k) is the phase of measured noisy signal and

e jθx (k) = X (k)

|X (k)| . (12.5)

It assumes that the phase of noisy speech can be used for practical purposes. Therefore, we can reconstruct

the enhanced speech with the short-term speech magnitude spectrum |Ŝ(k)| and the noisy phase θx (k).

Substituting Equations (12.3) and (12.5) into Equation (12.4), the speech estimate can be expressed as

Ŝ(k) = [|X (k)| − E |V (k)|] X (k)

|X (k)|
= H (k)X (k), (12.6)

where

H (k) = 1 − E |V (k)|
|X (k)| . (12.7)

Note that the spectral subtraction algorithm given in Equations (12.6) and (12.7) avoids the computation

of phase θx (k), which is too complicated to implement on a DSP processor for real-time applications.

Example 12.2: In the derivation of spectral subtraction algorithm, identify which simplification

has contributed to the distortion of the speech.

Using Equations (12.7) and (12.2), the estimation can be further decomposed as

Ŝ(k) = X (k)H (k) = [S(k) + V (k)]

[
1 − E |V (k)|

|S(k) + V (k)|
]

= S(k) + V (k) − E |V (k)| S(k) + V (k)

|S(k) + V (k)|
= S(k) + V (k) − E |V (k)| eθx (k). (12.8)

Here, V (k) − E |V (k)|eθx (k) = 0 results in a perfect cancelation. In practice, this is not realistic for

the following reasons: (1) V (k) is a temporal observation and the estimation of V (k) by E[V (k)]

is very difficult in real-time applications; (2) the simplified algorithm uses θx (k) to represent θv(k)

in order to avoid the heavy computation; (3) the VAD cannot be perfect, and thus it results in an

inaccurate estimation of the noise spectrum.

Example 12.3: Read a frame of data from speech file voice4.pcm as the original speech signal

s(n). Add a white Gaussian noise v(n) to s(n) to form a noisy speech signal x(n) as shown in

Equation (12.1). The corresponding transformed signals are S(k), V (k), and X (k). Calculate the

angle difference between S(k) and X (k). The differences are in the range of (−π, π). The original

speech spectrum S(k) and white noise spectrum V (k) are illustrated in Figure 12.3 using the

MATLAB script example12_3.m. The frame size is 256 and the white noise is generated using

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

VOICE ACTIVITY DETECTION 513

80

70

60

50

30

40

20

10

0

0
−10

500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

M
ag

n
it

u
d
e

 (
d
B

 o
r

an
g
le

)
Angle difference between original speech S(k) and noisy speech X(k)

Original speech S(k)

White noise V(k)

Angle difference

Figure 12.3 Angle difference between the original and noisy speeches

v = wgn(frame,1,40). The noise level is relatively small compared with the speech s(n) as

shown in Figure 12.3.

The angle difference is large in the regions where the noise level is comparable or even higher

than the speech. If the VAD detection is accurate, most of these large angle difference regions

should be classified as silence. Example 12.3 indicates that the approximation of θs(k) by θx (k) is

reasonable in the active bands.

In order to reduce music-tone effects, an oversubtraction factor may be applied to Equation (12.7) as

H (k) = 1 − ε
E |V (k)|
|X (k)| , (12.9)

where ε ≤ 1. Using ε < 1 can relieve the effect of oversubtraction, but mildly decrease the signal-to-noise

ratio of the processed signal.

12.3 Voice Activity Detection

VAD is one of the most important functions for spectral subtraction algorithms. The basic assumptions

for a VAD algorithm are (1) the spectrum of the speech signal changes in short time, but background

noise is relatively stationary and it changes slowly; and (2) the active speech level is usually higher than

the background noise level. Several methods are used for VAD, such as voiced/unvoiced classification

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

514 SPEECH ENHANCEMENT TECHNIQUES

Calculate
En

Calculate
Nf

Y

NUpdate hangover
counter

En>Tr?

Y

N
Expired?

Speech

Silence

x(n)
Calculate

Tr

VAD flag

Figure 12.4 Block diagram of a simple VAD algorithm

used in ITU G.723.1, zero-crossing method used in G.729, and spectral comparison used in both G.729

and GSM vocoders in addition to different power thresholds validations. Some of them may be combined

to offer a VAD with better performance.

This section introduces a generic form of VAD. In practical speech applications, the input signal is

usually highpass filtered to remove the undesired low-frequency components. Assuming that X (k) are

the FFT bins of the input signal x(n), the bins covering the frequencies from 300 to 1000 Hz (at 8 kHz

sampling rate) are used to calculate the power with different window sizes as shown in Figure 12.4. The

VAD algorithm is described as follows.

Calculate signal energy En as

En =
K 2∑

k=K 1

|X (k)|2, (12.10)

where K 1 and K 2 are the nearest integers of frequency indices (k) close to 300 and 1000 Hz, respectively.

The energy of the signal in a short window is calculated as

Es(j) = (1 − αs)Es(j) + αs En, (12.11)

and the long window signal energy is calculated as

El(j) = (1 − αl)El(j) + αl En, (12.12)

where αs and αl are the window-length factor, and the subscript ‘s’ represents the short window and

‘l’ represents long window, respectively. Usually, αs = 1/16 and αl = 1/128. The noise level at the nth

frame, Nf, is updated on the basis of its previous value and the current En , and with different rates

controlled by αs or αl.

The noise floor is calculate as

Nf =
{

(1 − αl)Nf + αl En, if Nf < Es(j)

(1 − αs)Nf + αs En, if Nf ≥ Es(j)
. (12.13)

The threshold Tr used for signal energy comparison is calculated as

Tr = Nf

1 − αl
+ margin, (12.14)

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

IMPLEMENTATION CONSIDERATIONS 515

where the ‘margin’ is a reasonable value to avoid toggling between voice and silence if the noise level is

flat. The current frame signal energy will be compared with this threshold and the decision will be made

as follows:

VAD Flag =
⎧⎨⎩

1,

1,

0,

if En > Tr

if En ≤ T and hangover not expired

if En ≤ T and hangover expired

. (12.15)

A hangover period is used for transitioning from active speech to silence in order to avoid false

detection of the silence at the tail end of speech. During the tail period of the speech and before the

hangover counter is expired, the signal frames are classified as active speech. The typical hangover time

is about 90 ms.

If the noise level is changing and signal level is relatively low, this VAD may not response correctly,

especially during the tail of speech segments. It may need the extra measurements such as zero-crossing

rate and voiced segment detection. More details can be found in the G.723.1 and G.729 algorithms.

12.4 Implementation Considerations

Modifications must be made to the spectral subtraction algorithm illustrated in Figure 12.2 to reduce the

auditory effects of spectral error. These modifications include spectral magnitude averaging, half-wave

rectification, and residual NR.

12.4.1 Spectral Averaging

Since the spectral error is proportional to the difference between the noise spectrum and its mean,

averaging of the magnitude spectra can be used to reduce the spectral error. The local average can be

expressed as

|X (k)| = 1

M

M∑
i=1

|Xi (k)|, (12.16)

where Xi (k) is the transform of i th frame of x(n). A problem with this modification is that the speech signal

is considered as short-term stationary for a maximum length of 30 ms. The average has the risk of some

temporal smearing to short transitory sounds. From the experimental results, a reasonable compromise

between variance reduction and time resolution appears to be an average of two to three frames.

12.4.2 Half-Wave Rectification

For each frequency bin where the magnitude spectrum |X (k)| is less than the averaged noise magnitude

spectrum E |V (k)|, the output is set to zero because the magnitude spectrum cannot be negative. This

modification can be implemented by half-wave rectification of the spectral subtraction filter H (k). Thus,

Equation (12.6) becomes

Ŝ(k) = H (k) + |H (k)|
2

X (k). (12.17)

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

516 SPEECH ENHANCEMENT TECHNIQUES

The advantage of half-wave rectification is that it essentially eliminates low coherent tonal noise. The

drawback occurs when the sum of the noise and speech is less than E |V (k)| at frequency bin k. In this

case, the speech information at that frequency bin is incorrectly removed, implying a possible decrease

in intelligibility.

As mentioned earlier, a small amount of residual noise improved the output speech quality. This idea

can be implemented by using a software constraint

|S(k)| ≥ 0.02E |V (k)| , (12.18)

where the minimum spectrum floor is –34 dB with respect to the estimated noise spectrum.

12.4.3 Residual Noise Reduction

For uncorrelated noise, the residual noise spectrum occurs randomly as narrowband magnitude spikes.

This residual noise spectrum will have a magnitude between zero and a peak value measured during

nonspeech periods. When these narrowband components are transformed back to the time domain, the

residual noise will sound like the sum of tones with random fundamental frequency which is turned

on and off at a rate of about 20 ms. During speech frames, the residual noise will also be perceived at

frequencies that are not masked by the speech.

Since the residual noise will randomly fluctuate in amplitude in each frame, it can be suppressed by

replacing its current value with its minimum value chosen from the adjacent frames. The minimum value

is used only when
∣∣Ŝ(k)

∣∣ is less than the maximum residual noise calculated during nonspeech periods.

The reasons behind this scheme are:

1. If |Ŝ(k)| lies below the maximum residual noise and it varies radically from frame to frame, there is a

high probability that the component at that frequency is due to noise. Therefore, it can be suppressed

by taking the minimum value.

2. If |Ŝ(k)| lies below the maximum but has a nearly constant value, there is a high probability that the

spectrum at that frequency is due to low-energy speech. Therefore, taking the minimum will retain

the information.

3. If |Ŝ(k)| is greater than the maximum, the bias is sufficient. Thus, the estimated spectrum |Ŝ(k)| is

used to reconstruct the output speech.

The disadvantages of this scheme are that more storage is required to save the maximum noise residuals

and the magnitude values, and more computation is required to find the maximum and minimum values

of spectra for three adjacent frames.

12.5 Combination of Acoustic Echo Cancelation with NR

There are many practical applications that combine the acoustic echo cancelation (AEC) introduced in

Chapter 10 with the NR techniques introduced in this chapter as an integrated system. These applications

include hands-free cell phones in noisy environments.

Assume that the vector u(n) consists of two scalar variables x(n) and y(n) as

u(n) =
[

x(n)

y(n)

]
. (12.19)

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

COMBINATION OF ACOUSTIC ECHO CANCELATION WITH NR 517

If the estimator ŝ(n) of s(n) is a linear function of u(n), S(z) is the z-transform of s(n), and U(z) is the

z-transform of u(n), the mean-square error (MSE) can be expressed as

E
(|S(z) − Ŝ(z)|2) = E

(|S(z) − FT (z)U(z)|2) , (12.20)

where F(z) = [Fx (z)Fy(z)]T is the filter applied to these two variables. Minimizing the error in Equation

(12.20) in relation to F(z) leads to the filter

E
(
S(z)UT (z)

) = E
(
UT (z)FT (z)U(z)

)
and

E
(
U(z)FT (z)U(z)

) = FT (z)

[
γxx (z) γyx (z)

γxy(z) γyy(z)

]
, (12.21)

where γyy(z) is the power spectral density of y(n), γxx (z) is the power spectral density of x(n), γyx (z) is

the cross-power spectral density between y(n) and x(n), and γxy(z) is the cross-power spectral density

between x(n) and y(n).

Substitution of Equation (12.21) to Ŝ(z) leads to

Ŝ(z) = FT (z)

[
X (z)

Y (z)

]
=

[[
γxx (z) γyx (z)

γxy(z) γyy(z)

]−1 [
γsx (z)

γsy(z)

]]H [
X (z)

Y (z)

]
, (12.22)

where H means Hermitian (complex-conjugate) transpose, γsx (z) is the cross-power spectral density

between s(n) and x(n), and γsy(z) is the cross-power spectral density between s(n) and y(n). From this

equation, it is not difficult to derive the following equation:

Ŝ(k) = [X (z) − W (z)X (z)] H (z), (12.23)

where W (z) is the transfer function of AEC, and H (z) is the transfer function of the NR system. More

details of the derivation can be found in reference [7].

The first part of the integrated system is the AEC and its output is further processed by the NR

technique. The combined structure is shown in Figure 12.5. In the first stage, the echo is canceled by the

AEC filter W (z), leaving the desired signal with noise. The second stage reduces noise through the NR

techniques such as Wiener filter or spectral subtraction. The AEC and NR algorithm shown in Figure

12.5 will be presented in Section 12.7.4.

NR +
+−

x(n)

d(n)
s(n)ˆ

y(n)

W(z)

Figure 12.5 Combination of AEC with NR

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

518 SPEECH ENHANCEMENT TECHNIQUES

NR2

−
NR1

+
+

AEC

Figure 12.6 AEC followed by a closed-loop NR

There are several possible AEC and NR combinations. Figure 12.6 shows a different structure with

the noise reduction filter NR1 in the feedback loop of AEC. The noise in adaptation loop will disturb the

update of AEC coefficients, thus NR1 reduces the noise for updating AEC filter. The second filter NR2

reduces noise in the voice path.

12.6 Voice Enhancement and Automatic Level Control

ITU-T has recommendations G.160 for voice enhancement device (VED) and G.169 for automatic level

control (ALC). According to G.160, the NR module must be placed between the network echo canceler

and the ALC module as shown in Figure 12.7. The NR reduces the effect of background noise originating

from the microphone, and the ALC module compensates the network gain with a predetermined value.

12.6.1 Voice Enhancement Devices

Important functions of VED include the acoustic echo control, NR, and the recognition and accommo-

dation of tandem-free operations. A G.160 compliant equipment ensures that the performance of overall

network will not be degraded when the VED is installed in the network. According to G.160, NR functions

have the following main characteristics:� The ability to modify a noise-corrupted voice signal, thus improving the subjective quality.� The ability to maintain the quality of the voice signal when it is not corrupted by noise.� The ability to avoid corrupted voiceband or facsimile data.

NR
+

+
−

x(n)

d(n)y(n)

ALC

snr(n)
salc(n)

ŝ(n)

W(z)

Figure 12.7 Echo canceler followed by NR and ALC

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 519� The ability to prevent interferences caused by in-band network signaling tones.� The ability to exhibit low throughput delay.� The ability to provide 64-kbps bit-sequence integrity when VED was disabled.

12.6.2 Automatic Level Control

G.169 applies to the testing and evaluation of ALC devices used for digital network-based equipment.

This standard defines test requirements and procedures such as requirements for passing DTMF tones,

voiceband data, and frequency distortion. The ALC module is located in the digital transmission path to

perform the signal level adjustment to meet a user-defined reference level. The ALC processes signals

in the transmitting direction as illustrated in Figure 12.8.

If an echo cancelation device is used to reduce the reflected echoes, the ALC gain should meet certain

stability. It assumes that the ALC device is installed at a location in the transmission path after the echo

cancelation device. It also recommends that the maximum gain of the ALC device connected with an

echo cancelation should not exceed +15 dB.

12.7 Experiments and Program Examples

In this section, we will discuss the implementation of the NR algorithm using MATLAB, C, and C55x

programs.

12.7.1 Voice Activity Detection

In this experiment, we introduce a simple VAD using floating-point C. The experiment applies a 256-

point complex FFT on the input signal with 8 kHz sampling rate. The FFT bins that cover the frequencies

from 250 to 820 Hz are used for power calculation as shown in Figure 12.4. Table 12.1 lists the VAD

algorithm used for the experiment.

T1530230-98

Rin Rout

Sout Sin

Receive or nonprocessing path

ALC device

Receive in Receive out

ALC
Processing

Send or processing path

Send out Send in

Figure 12.8 Block diagram of an ALC device (from G.169)

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

520 SPEECH ENHANCEMENT TECHNIQUES

Table 12.1 Simple VAD algorithm, floatPoint_vad.c

short vad_vad(VAD_VAR *pvad)
{

short k,VAD;
float En; // Current frame power
VAD_VAR *p = (VAD_VAR *)pvad;
En = 0; // VAD algorithm (12.10)
for (k=p->ss; k<=p->ee; k++) // Power from 250 to 820 Hz
{

En += (float)(sqrt(p->D[k].real*p->D[k].real
+ p->D[k].imag*p->D[k].imag));

}
p->Em = p->am1*p->Em + p->alpham*En; // Equation(12.11)
if (p->Nf < p->Em) // Update noise floor (12.13)

p->Nf = p->al1*p->Nf + p->alphal*En;
else

p->Nf = p->am1*p->Nf + p->alpham*En;
p->thres = p->Nf + p->margin;
VAD = 0;
if (p->Em >= p->thres)

VAD=1;
if (VAD) // Speech is detected since Em >= threshold

p->hov = HOV;
else // Silence is detected since Em < threshold
{

if (p->hov-- <=0)
p->hov =0;

else
VAD=1;

}
return VAD;

}

In the program, the signal power computation starts from FFT bin ss and ends at ee according to

the low and high frequencies, respectively. For a 256-point FFT and 8 kHz sampling frequency rate,

the low frequency 250 Hz is the FFT bin ss = 250 · 256/8000 = 8 and the high frequency 820 Hz

is the FFT bin ee = 820 · 256/8000 = 26. The short-term energy is computed using Equation (12.11).

The detector uses a threshold Em to determine if the signal contains speech. If the energy is greater than

the threshold, the detector will set VAD flag; otherwise, the flag will be cleared. In order to prevent

detector oscillations, a small number is added to the threshold as a safety margin.

Table 12.2 lists the files used for this experiment. Figure 12.9 shows the VAD output against the noisy

speech. If speech is detected, the output is 1 (indicated by amplitude 7500); otherwise, the output is

silence.

Procedures of the experiment are listed as follows:

1. Open the CCS project file, rebuild, and load the program.

2. Run the experiment to obtain the output file.

3. Use MATLAB to plot both test speech file speech.wav and the VAD detection result file. Compare

the VAD detector result with the speech file to evaluate the VAD detection.

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 521

Table 12.2 File listing for experiment exp12.7.1_floatPointvad

Files Description

floatPoint_vad_mainTest.c C function for testing VAD algorithm

floatPoint_vad_vad.c NR uses VAD

floatPoint_vad_hwindow.c Tabulated data table for Hanning window

floatPoint_vad_ss.c FFT and preprocessing for VAD detection

floatPoint_vad_init.c VAD initialization

floatPoint_vad_fft.c FFT function and bit reversal

floatPoint_vad.h C header file defines constant and function prototyping

floatPoint_vad.pjt DSP project file

floatPoint_vad.cmd DSP linker command file

param.txt Parameter file

speech.wav Data file

4. Modify the parameter file param.txt for different test files and lengths of the FFT.

5. Modify the test file floatPoint_vad_mainTest.c such that the experiment will output wave file

controlled by the VAD flag. When VAD flag is cleared, write zeros to the output file. When the flag

is set, copy the input to the output directly. Listen to the output wave file. Is the VAD detection

accurate?

6. Adjust the hangover length and listen to the transition effect under different hangover lengths.

1.5

1

0.5

−0.5

−1
0 2 4 6

Samples

8 10 12

0

× 104

× 104

VAD flag

A
m

p
li

tu
d
e

speech

VAD flag

Figure 12.9 Voice activity detection of a noisy speech

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

522 SPEECH ENHANCEMENT TECHNIQUES

12.7.2 MATLAB Implementation of NR Algorithm

This MATLAB experiment uses the block size of 256 with a moving window of length 128 (50 % overlap).

The MATLAB script nr.m listed in Table 12.3 performs windowing, VAD, NR, and 50 % signal overlap.

The signal array is s[], and the processed data is stored in the array ss[]. The MATLAB script

NR_test.m listed in Table 12.4 uses the spectrum subtraction function.

The waveforms before (top plot) and after (bottom plot) processing are shown in Figure 12.10. The

noise level are attenuated about 30 dB. The horizontal axis is the sample index, and the vertical axis is

the amplitude with full scales of 32 767 of 16-bit data.

Table 12.5 lists the files used for this experiment. Procedures of the experiment are listed as follows:

1. Start MATLAB and set working directory to the director exp12.7.2_matlabNR.

2. Run MATLAB program. Observe the processed data and compare it with the original noisy data file.

3. Listen to the output file and compare it with the original noisy data file.

4. Use different data files to evaluate the NR algorithm.

12.7.3 Floating-Point C Implementation of NR

The core part of spectral subtraction-based NR algorithm with VAD is listed in Table 12.6. The array

TB[k] is the FFT bin of the input signals, and NS[k] is the estimated noise bin. Based on the VAD

information, either spectrum subtraction or amplitude attenuation is applied. N is the half of frame size,

and h[k] is the filter response. The files used for this experiment are listed in Table 12.7.

Procedures of the experiment are listed as follows:

1. Open the CCS project file, rebuild, and load the program.

2. Run the experiment to obtain the output file.

3. Use MATLAB to plot both the speech file speech.wav and the NR result file. Compare these two

files to evaluate the NR algorithm.

4. Modify the parameter file param.txt for using different attenuation factors. Compare the results

obtained using attenuation factors 0.5, 0.1, and 0.0.1.

5. Compare the experiment results with the experiment given in Section 12.7.1. Describe the differences

between the results from both experiments.

12.7.4 Mixed C55x Assembly and Intrinsics Implementation of VAD

This experiment implements the voice activity detection using C55x intrinsics. The files used for this

experiment are listed in Table 12.8. This experiment uses mixed C-and-assembly implementation that

takes the advantages of efficient assembly programming for computational intensive functions, while

leaves the control or configuration functions in C.

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 523

Table 12.3 List of MATLAB script for spectral subtraction

function [ss]=NR(s,Fs)

nw = 256;
overLap = nw/2;
nf=1+floor((ns-nw)/overLap); % Number of frames

% Calculate Hamming windowing
win=hamming(nw);

% Processing loop
idx=nw;
for is=1:nf

x=fft(s(((is-1)*overLap+1):1:idx).*win);
yy=x;
x2=x(1:129).*conj(x(1:129));

% Windowing
Ls = 7./8.;
pxnS=Ls*pxnS+(1-Ls)*x2;
Ll = 63./64.;
pxnL=Ll*pxnL+(1-Ll)*x2;

% VAD energy calculation
ppxnS = pxnS(20:60)'*pxnS(20:60);
ppxnL = pxnL(20:60)'*pxnL(20:60);

% Update noise floor
if (ppxnS > ppxnL)

pn=Ll*pn+(1-Ll)*x2;
else

pn=Ls*pn+(1-Ls)*x2;
end
ppn = pn(20:60)'*pn(20:60);
if(ppxnS > (1.05*ppn+20))

hoCounter = 6; % Hangover counter
os = pn./(pxnS);
os = min(os,1); % Protect overdriving
q = 1-sqrt(os);

elseif (hoCounter >=1)
os = pn./(pxnS);
os = min(os,1); % Protect overdriving
q = 1-sqrt(os);
hoCounter = hoCounter-1;

else
q=0.04*ones(129,1); % Silence frame

end

% Compose symmetric complex
y =x(1:129).*q;
yy(1:129)=y;
yy(129:256)=conj(y(129:-1:2));

continues overleaf

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

524 SPEECH ENHANCEMENT TECHNIQUES

Table 12.3 (continued)

% Shift the memory for history
ss2(1:nw)=ss1(1:nw);
ss1(1:nw)=real(ifft(yy));

% Doing 50% overlapping
temp = ss1(1:128).*win(1:128);
temp = temp + ss2(129:256).*win(129:256);
ss(((is-1)*overLap+1):1:(idx-256+128)) =2*(temp);
idx=idx+overLap;

end

Table 12.4 List of MATLAB code, NR_test.m

fs=8000; % Sampling frequency
fid1=fopen('.\data\speech.pcm','r'); % Open the pcm input file
fid2=fopen('.\data\processed.pcm','w'); % Open the pcm output file
[s,COUNT]=fread(fid1,'int16'); % Read input file
[ss]=NR(s,fs); % Call spectral subtraction routine
fwrite(fid2,ss,'int16'); % Write processed data to output

Noisy speech

1.5

1

0.5

−0.5

−1.5

−1

0

× 104

× 104

A
m

p
li

tu
d
e

Enhanced speech

1.5

1

0.5

−0.5

−1.5

−1

0

0 2 4 6 8 10 12 14 16

× 104

A
m

p
li

tu
d
e

Samples at 8K Hz sampling rate

Figure 12.10 Speech waveform comparisons before and after NR

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 525

Table 12.5 File listing for experiment exp12.7.2_matlabNR

Files Description

NR_test.m Main function for testing NR function

NR.m NR algorithm with VAD

speech.pcm Speech file

Table 12.6 List of spectral subtraction algorithm

if (VAD) // Speech is detected since VAD=1
{

for (k=0;k<=N;k++)
{

tmp = TB[k] - (127./128.)*NS[k];
h[k] = tmp / TB[k];

}
}
else // Silence is detected since VAD=0
{

Npw = 0.0;
for (k=0;k<=N;k++) // Update the noise spectrum
{

NS[k] = (1-alpha)*NS[k] + alpha*TB[k];
Npw += NS[k];

}
Npw = Npw/Npw_normalfact; // Normalized noise power
margin = (127./128.)*margin+(1./128.)*En; // New margin

}

Table 12.7 File listing for experiment exp12.7.3_floatPointNR

Files Description

floatPoint_nr_mainTest.c C function for testing NR algorithm

floatPoint_nr_vad.c Voice activity detector

floatPoint_nr_hwindow.c Tabulated data table for Hanning window

floatPoint_nr_ss.c Preprocessing before using FFT

floatPoint_nr_init.c NR initialization

floatPoint_vad_fft.c FFT function and bit reversal

floatPoint_nr_proc.c NR control function

floatPoint_nr.h C header file defines constant and function prototyping

floatPoint_nr.pjt DSP project file

floatPoint_nr.cmd DSP linker command file

param.txt Parameter file

speech.wav Data file

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

526 SPEECH ENHANCEMENT TECHNIQUES

Table 12.8 File listing for experiment exp12.7.4_mixed_VAD

Files Description

mixed_vad_mainTest.c C function for testing VAD algorithm

mixed_vad_vad.c Voice activity detection algorithm

mixed_vad_tableGen.c Lookup table for Hanning window

mixed_vad_ss.c Preprocessing before using FFT for VAD

mixed_vad_init.c Initialization for VAD experiment

mixed_vad_wtable.c Generate FFT twiddle factors

fft.asm Assembly FFT function

bit_rev.asm Assembly bit-reversal function

dspFunc55.asm Assembly supporting functions for VAD experiment

mixed_vad.h C header file defines the external variables

mixed_VAD.pjt DSP project file

mixed_VAD.cmd DSP linker command file

param.txt Parameter file

long_speech.pcm Data file

short_speech.pcm Data file

In this mixed C-and-assembly implementation, FFT, square root function used in power calculation,

and 32- by 16-bit multiplication are implemented in C55x assembly language fft.asm in and dsp-

Func55.asm. Procedures of the experiment are listed as follows:

1. Open the CCS project file, rebuild and load the experiment program.

2. Run the experiment to obtain the output file. Compare the result with the floating-point C experiment

given in Section 12.7.1.

3. Use Section 12.7.3 as reference to modify this experiment using C55x intrinsics. Run the mixed

C-and-assembly experiment and compare the result with experiment given in Section 12.7.3.

4. Use the DSP/BIOS knowledge learned from previous experiments to create a real-time NR exper-

iment. The experiment uses a microphone as input device and a loudspeaker as the output. The

sampling rate is 8 kHz and the FFT size is 256.

12.7.5 Combining AEC with NR

In this experiment, we combine AEC and NR as presented in Figure 12.5. The files used for this experiment

are listed in Table 12.9. A portion of the C function is listed in Table 12.10 that performs the AEC followed

by the NR.

The AEC is a sample-by-sample processing while the NR is a frame-based processing. The relationship

among these signals is illustrated in Figure 12.11.

We may compare the outputs of combined AEC and NR to evaluate the improvement of AEC using

the NR. The waveform comparison is illustrated in Figure 12.12. It shows that the noise at the output of

AEC is further attenuated in the NR stage.

Procedures of the experiment are listed as follows:

1. Open the CCS project file, rebuild, and load the program.

2. Run the experiment to obtain the output file. Compare the result with the floating-point C experiment

given in Section 10.7.2.

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 527

Table 12.9 File listing for experiment exp12.7.5_floatPointAecNr

Files Description

floatPoint_aecNr_mainTest.c Main function with file I/O for testing AEC or NR

floatPoint_nr_vad.c NR uses VAD

floatPoint_nr_hwindow.c Generate Hanning window lookup table

floatPoint_nr_proc.c NR algorithm

floatPoint_nr_ss.c Data preprocessing before calling VAD

floatPoint_nr_init.c NR initialization

floatPoint_nr_fft.c FFT function and bit reverse

floatPoint_aec_calc.c AEC algorithm

floatPoint_aec_util.c AEC supporting functions

floatPoint_aec_init.c AEC initialization

nr.h NR C header file

aec.h AEC C header file

float_AECNR.pjt DSP project file

float_AECNR.cmd DSP linker command file

param.txt Parameter file

mic.pcm Data file of microphone input

far.pcm Data file of far-end input

Table 12.10 Source code of floatPoint_aecNr_mainTest.c

while((fread(temp1,sizeof(char),2*nrvar.L,farIn)==(2*nrvar.L)))// Far-end
{

fread(temp2,sizeof(char),2*nrvar.L,micIn); // Near-end
for (i=0; i<2*nrvar.L; i+=2)
{

farEndIn = (temp1[i]&0xFF) | (temp1[i+1]<<8);
microphoneIn = (temp2[i]&0xFF) | (temp2[i+1]<<8);
for (j=0;j<nrvar.L-1;j++) // Buffer data for NR
{

input[j] = input[j+1];
}
input[j] = aecCalc(microphoneIn,farEndIn,&aec);
count++;
if(count == nrvar.N) // Frame based noise reduction
{

count = 0;
nrvar.vadFlag = nr_ss(pnr);
nr_proc(pnr);
for (j=0; j<nrvar.N; j++)
{

temp3[2*j] = (input[j]&0xFF);
temp3[2*j+1] = (input[j]>>8)&0xFF;

}
fwrite(temp3,sizeof(char),2*nrvar.N,txOut); // Write farEndOut

}
}

}

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

528 SPEECH ENHANCEMENT TECHNIQUES

NR

aecCalc ()

farEndIn

micIn

Frame based Sample based

Figure 12.11 Combined AEC and NR functions

3. Use the same approach to convert this experiment to fixed-point C or use C55x intrinsics.

4. To further improve run-time efficiency, replace the fixed-point C FFT and inverse FFT with the C55x

assembly routines.

5. Create a DSP/BIOS experiment for real-time AEC + NR experiment. Configure the DSK for 8 kHz

sampling rate for input and output signals. Set AIC23 in stereo input such that one input is used for

line-in and other for microphone input. Set AIC23 in stereo output such that one output plays the far-

end input audio to a loudspeaker and the other output is used for the AEC + NR output. We can use a

PC sound card to record the AEC + NR output and evaluate the real-time performance of AEC + NR.

Output of AEC

Output of AEC + NR

1.5

1.5

1

1

0.5

0.5

−0.5

−0.5

−1.5

−1.5

−1

−1

0

0

0 1 2 3

Samples at 8K Hz sampling rate

4 5 6 7

× 104

× 104

× 104

A
m

p
li

tu
d
e

A
m

p
li

tu
d
e

Figure 12.12 Comparison of waveforms between the output of AEC and output of AEC + NR

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

EXERCISES 529

References

[1] S. M. Kuo and D. R. Morgan, Active Noise Control Systems – Algorithms and DSP Implementations, New York:

John Wiley & Sons, Inc., 1996.

[2] MATLAB, Version 7.0.1, Release 14, Sep. 2004.

[3] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1989.

[4] Texas Instruments, Inc., Acoustic Echo Cancellation Software for Hands-Free Wireless Systems, Literature no.

SPRA162, 1997.

[5] Texas Instruments, Inc., Echo Cancellation S/W for TMS320C54x, Literature no. BPRA054, 1997.

[6] H. Gustafsson,S. E. Nordholm, and I. Claesson, ‘Spectral subtraction using reduced delay convolution and adaptive

averaging,’ IEEE Trans. Speech and Audio Process., vol. 9, no. 8, pp. 799–807, Nov. 2001.

[7] W. L. B. Jeannes, P. Scalart, G. Faucon, and C. Beaugeant, ‘Combined noise and echo reduction in hands-free

systems: A survey,’ IEEE Trans. Speech and Audio Process., vol. 9, no. 8, pp. 808–820, Nov. 2001.

[8] ITU-T Recommandation G. VED/G.160, Voice Enhancement Devices, Draft no. 6.1, 2002.

[9] ITU-T Recommandation G.169, Automatic Level Control Devices, June 1999.

Exercises

1. Using the experiment given in Section 12.7.1, calculate the percentage of silence frames for speech file

speech.wav. In a normal conversation, there should be over 50 % of silence frames.

2. Explain why different window sizes are used for calculating signal energy used for VAD? During the onset of

speech, which output is bigger using Equations (12.11) and (12.12)? What happens at the offset (tail) of speech?

3. The music-tone effect is due to the oversubtraction of certain frequencies. In order to make this effect less

noticeable, the mild subtraction should be applied. As a result, the canceled noise is less as compared with the full

subtraction and this will compromise the cancelation effect. Write a MATLAB function to control this parameter

among different subtraction factors expressed in Equation (12.9).

4. Write a program to compare the music-tone effect of using Equation (12.6) to estimate the signal and using half-

wave rectification method in Equation (12.17). Also compare the intelligibility of the processed speech between

two methods.

5. Based on Equation (12.23), instead of using NR followed by AEC, the Winner filter for NR filter could be used in

front of AEC as shown in Figure 12.13. The near-end filter H (z) is used to remove the statistically known noise

introduced from the microphone. Explain why we also need an identical filter in the far-end branch.

+
−

x(n)

d(n)s(n)ˆ
y(n)

H(z)

Copy

Near-end

Far-end

H(z)

+

AEC

Figure 12.13 The structure with Winner filter in front of AEC

JWBK080-12 JWBK080-Kuo March 2, 2006 16:14 Char Count= 0

530

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

13
Audio Signal Processing

Digital audio signal processing techniques are widely used in consumer electronics such as CD players,

high-definition televisions, portable audio devices, and home theaters. For professional audio, the appli-

cations can be found in the fields of digital sound broadcasting, program distribution, computer music,

and digital storage. This chapter introduces the basic audio coding algorithms and multichannel audio

CODECs.

13.1 Introduction

The compact disc (CD) is a very popular digital audio format. It stores audio signals with 44.1 kHz

sampling rate and 16-bit PCM format, thus results in a bit rate of 1411.2 kbps for stereo audio. This posts

a challenge on channel bandwidth or storage capacity for emerging digital audio applications such as

multimedia streaming over IP network, wireless mobile, audio and video conferencing, and digital radio

broadcasting. The increasing demand for better quality digital audio, such as multichannel audio coding

(5–7 channels), or higher sampling rate (96 kHz), requires more sophisticated encoding and decoding

techniques in order to minimize the transmission cost and provide cost-efficient storage.

The efficient speech coding using a vocal-tract model discussed in Chapter 11 is not applicable to audio

in general. In addition, we have to deal with stereo or multichannel signal presentations, higher sampling

rate, higher resolution, wider dynamic range, and higher listener expectation. Audio signal compression

algorithms that satisfy these requirements include psychoacoustics, transform coding, Huffman coding,

and reduction of interchannel redundancies. Combination of these techniques leads to the development

of algorithms for perceptually transparent high-fidelity coding, CD-quality digital audio. In addition to

the basic requirements of low-bit rate, high quality of reconstructed audio signals, robustness to channel

bit errors and packet loss, and low complexity in decoding are also required.

Many audio coding algorithms have become international standards for commercial products, par-

ticularly the MPEG standards, which will be described in the following sections. In particular, MPEG

Layer-3 (MP3) is a very popular media format for Internet audio delivery and portable audio players.

MP3 provides a range of bit rates from 8 to 320 kbps, and supports the switching of bit rates between

audio frames. MP3 at 320 kbps produces perceptually comparable quality with CD at 1411.2 kbps. In

this chapter, the MP3 coding standard is discussed in details as an example for audio coding.

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

531

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

532 AUDIO SIGNAL PROCESSING

Lossless
coding

PCM
input

M
U

X

Psychoacoustics
model

Filterbank
transform

D
ig

it
al

 c
h
an

n
elSide info

coding

Dequantization
PCM
output

D
E

M
U

X

Filterbank
transform

Side info
decoding

Quantization

Lossless
decoding

Figure 13.1 Basic structure of audio coding and decoding

13.2 Basic Principles of Audio Coding

Lossy compression is applied to speech and audio signals based on the noise shaping, where the noise

below the masking threshold may not be audible. Lossless compression is also applied to audio signals

because of large amount of data due to high sampling rate. This section describes the principles of these

lossy compressions using psychoacoustics and lossless compression using Huffman coding.

Figure 13.1 shows the basic structure of an audio CODEC. The function of each module will be briefly

described, and some modules will be further discussed in the following sections:

Filterbank: It splits the full-band signals into several subbands uniformly or according to the critical band

model of the human auditory system. For example, there are 32 subbands used by MPEG-1.

Transform: It converts time-domain signals to frequency-domain coefficients. For example, the modified

discrete cosine transform (MDCT) is used in MPEG-1 Layer 3. In MPEG-2 AAC (advanced audio

coding) or Doubly AC-3 [1, 2], the MDCT functions as filterbank for splitting full-band signals.

Psychoacoustics model: It calculates masking threshold according to human auditory-masking effect

from the spectral coefficients, and uses the masking threshold to quantize the MDCT coefficients.

Lossless coding: It further removes the coded bit-stream redundancy using entropy coding. For example,

Huffman coding is used in MPEG-1 Layer 3.

Quantization and dequantization: It quantizes the MDCT coefficients to indices based on masking thresh-

old provided by psychoacoustics model on the encoding, and converts the indexes back to the spectral

coefficients on the decoding.

Side information: Bit-allocation information needed for the decoder.

Multiplexer and demultiplexer: It packs and unpacks the coded bits into bit stream.

The encoded bit-stream format for transmitting the compressed audio signal is shown in Figure 13.2

and described as follows [3]:

Header: It contains information about the format of the frame. It starts with a synchronization word that

is used to find the beginning of a frame. The header also contains information about the bit stream,

including layer number, bit rate, sampling frequency, and stereo encoding parameters. For example,

the header field in MP3 has 32 bits.

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

BASIC PRINCIPLES OF AUDIO CODING 533

CRC
(optional)

Ancillary
information

Main data
Side

information
Header

Figure 13.2 Typical encoded audio bit-stream format

CRC (cyclic redundancy checksum): It protects the header. When it is present, the decoder calculates a

CRC on the header and compares it with the CRC in the frame. If the CRC does not match, the decoder

starts looking for a new sync word. For example, the sync word for MP3 is a 12-bit 0xFFF. More CRC

implementation can be found in Section 14.2.3.

Side information: It contains information for decoding and processing the main data. Different steps in

the decoding process use this global information. For example, when performing Huffman decoding

of the main data in MP3, the information about which Huffman table has been used in the encoder is

stored in the side information. The Huffman encoded data and the side information are combined in a

single bit stream.

Main data: It consists of coded spectral coefficients and lossless encoded data. For example, MP3 includes

scaling factors that are used to reconstruct the original frequency lines from the information in the

Huffman data.

Ancillary data: It holds the user-defined information such as song title or optional song information.

13.2.1 Auditory-Masking Effects for Perceptual Coding

Auditory masking or psychoacoustics describes the principles that a low-level signal (the maskee) can

become inaudible when a louder signal (the masker) occurs simultaneously since human ear does not

respond equally to all frequency components. This phenomenon can be exploited in speech and audio

coding by an appropriate noise shaping in the encoding process. The masking depends on the spectral

distribution of masker and maskee, and on their variation with time. The perceptual weighting method

for speech coding has been discussed in Chapter 11. Audio signals are also based on the similar auditory-

masking effect but with wider bandwidth.

The quiet (absolute) threshold is approximated by the following nonlinear function [4]:

Tq(f) = 3.64(f/1000)−0.8 − 6.5e−0.6(f/1000−3.3)2 + 10−3(f/1000)4 (dB SPL), (13.1)

where SPL represents sound pressure level. For example, a 16-bit full-scale sinusoid that is precisely

resolved by the 512-point fast Fourier transform (FFT) in bin will yield a spectral line having 84-dB SPL.

With 16-bit sampling resolution, SPL estimates very low amplitude input signals that are at or below the

absolute threshold.

Equation (13.1) represents a listener with acute hearing and any signal level below will not be per-

ceived. The approximation curve is shown in Figure 13.3 using the log scale in frequency. Most humans

cannot sense frequencies below 20 Hz nor above 20 kHz. This range tends to narrow as we aged. For

example, a middle-aged man will not hear much of the signals above 16 kHz [5]. Frequencies rang-

ing from 2 to 4 kHz are the easiest to perceive at a relatively low volume. This frequency-domain

phenomenon is the simultaneous masking in which a low-level signal can be inaudible (masked) by

a simultaneously occurring stronger signal if masker and maskee are close enough to each other in

frequency.

The simultaneous masking is dependent on the relationship between frequencies and their relative

volumes. The temporal masking is based on time instead of frequency. For example, if a stronger tonal

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

534 AUDIO SIGNAL PROCESSING

102 103 104
−10

0

10

20

30

40

50

60

70

80

90

100
Auditory masking threshold

S
o
u
n
d
 p

re
ss

u
re

 l
ev

el
 (

d
B

)

Frequeny (log scale)

Tonal masker at 1 kHz

Masking threshold Quiet threshold

Figure 13.3 Auditory-masking thresholds

component is played before a quiet sound, the quiet sound may not be heard if it appears within the order

of 50–200 ms [6]. The masking threshold will mask weaker signals around the masker.

Using the absolute threshold of hearing to shape the spectrum of coding distortion represents the first

step toward perceptual coding. However, the most useful threshold is the masking threshold when stimuli

(audio signals) are present. The detection threshold for spectral quantization noise is a combination of

the absolute threshold and the shape determined by the stimuli present at any given time. Since stimuli

are time varying, the masking threshold is also a time-varying function of the input signal. In order to

estimate this threshold based on the rules highlighted in Figure 13.3, spectral coefficients are used to

compare the relative magnitude.

Human does not respond linearly to all frequency components. The auditory system can be roughly

divided into 26 critical bands; each band is a bandpass filter with bandwidth of 50–100 Hz for signal

below 500 Hz, and with bandwidth up to 5000 Hz for signal at high frequencies. One critical band

comprises one bark. Within each critical band, the auditory-masking threshold, which is also referred

as the psychoacoustics masking threshold (or the threshold of the just noticeable distortion) can be

determined. Frequencies in these critical bands (or barks) are harder to distinguish by human ears.

The conversion from frequency to bark (critical band) can be approximated using the following equation

[4]:

z(f) = 13 tan−1(0.00076 f) + 3.5 tan−1[(f/7500)2] (Bark). (13.2)

This equation converts frequency in Hz to the bark scale. Thus, one critical bandwidth comprises one

bark. The masking curves shown in Figures 13.3 and 13.4 are plotted using this approximation.

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

BASIC PRINCIPLES OF AUDIO CODING 535

0 1000 2000 3000 4000 5000 6000
−10

0

10

20

30

40

50

60

70

80

90

100
Auditory masking threshold

S
o
u
n
d
 p

re
ss

u
re

 l
ev

el
 (

d
B

)

Frequency (linear scale)

1 kHz tone masker

Masking threshold

Quiet threshold

Figure 13.4 Masking thresholds with linear frequency scale

Suppose there is a dominant tonal component in an audio signal. Figure 13.4 shows that this dominant

noise will introduce a masking threshold that masks out frequencies in the same critical band. This

frequency-domain masking phenomenon is known as simultaneous masking, which has been observed

within critical bands. This effect is also known as the spread of masking. It is often modeled in coding

applications by a triangular spreading function that has slopes of 25 and -10 dB per Bark for the lower and

higher frequencies, respectively. The 1 kHz tone masking threshold in Figures 13.3 and 13.4 is calculated

based on this assumption.

Spreading function described here is a simplified version. However, psychoacoustics experiments

showed that sloppiness of the spreading function depends on the masker loudness. This model assumes

constant loudness during the encoding, which is not accurate but simple. Using fixed spreading function

might lead to over or under masking in some cases that in turn reduces coder performance. However,

this spreading masking is the best during the encoding since we do not know the sound level during play

back. This masking model is a key factor to the efficiency of the algorithm.

Example 13.1: Using the masking thresholds shown in Figure 13.3, calculate the masking effect

for the following scenarios: Given a 65 dB tone at 2 kHz and two test tones played at 2.5 (40 dB)

and 1.5 kHz (40 dB), calculate if it is necessary to code these two tones or not.

We first use Equation (13.2) to calculate how many barks are there between these two tones and

the masker. We will draw a picture with barks and masking contours to see if these two tones are

under the masking threshold of 2 kHz tone or not. The magnitude contours of masker and masking

threshold are plotted in Figure 13.5 using the MATLAB code example13_1.m. From the figure,

it is clear that there are several bark bands across the tones between 2 and 1.5/2.5 kHz. Due to the

sharper slope (25 dB per bark) on the left side (lower frequency) of the masker tone, the test tone

at 1.5 kHz is much higher than the masking threshold of this masker. Therefore, this 1.5 kHz tone

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

536 AUDIO SIGNAL PROCESSING

0 1000 2000 3000 4000 5000 6000
−10

0

10

20

30

40

50

60

70

80

90

100

Auditory masking threshold

Frequency of linear scale (Hz)

S
o
u
n
d
 p

re
ss

u
re

 l
ev

el
 (

d
B

)

2018 1916 17159 1413
12

11
10

Barks

Figure 13.5 Example of masking effect of a 2 kHz tone

cannot be masked but be left as a masker tone. On the other hand, due to the slow slope (−11 dB

per bark) on the right side (higher frequency) and wider frequency coverage in the bark bank in

higher frequency, this 2.5 kHz tone is under the masking threshold of this 2 kHz masker tone’s

masking threshold. This example shows the masking effect is not symmetric with more effect on

higher frequencies.

13.2.2 Frequency-Domain Coding

The MDCT is widely used for audio coding techniques. In addition to the energy compaction capabil-

ity similar to discrete cosine transform (DCT), MDCT can simultaneously achieve critical sampling,

reduction of block effects, and flexible window switching.

The MDCT uses the concept of time-domain aliasing cancelation, while the quadrature mirror filterbank

(QMF) uses the concept of frequency-domain aliasing cancelation. This can be viewed as the duality of

MDCT and QMF. However, the MDCT also cancels frequency-domain aliasing, while the QMF does

not cancel time-domain aliasing. In other words, only the MDCT achieves perfect reconstruction.

Before the introduction of MDCT, transform-domain-based audio coding techniques used discrete

Fourier transform (DFT) or DCT with window functions such as a rectangular window. However, these

early coding techniques cannot meet the contradictory requirements, i.e., critical sampling vs. block effect.

For example, when a rectangular window DFT (or DCT) analysis/synthesis system is critically sampled,

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

BASIC PRINCIPLES OF AUDIO CODING 537

the system suffers from poor frequency resolution in addition to block effects. Overlapped window

provides better frequency response with the penalty of requiring additional values in the frequency

domain. MDCT has solved this problem by introducing window switching to tackle possible preecho

problems in the case of insufficient time resolutions.

The MDCT of x(n), n = 0, 1, . . . , N– 1, is expressed as

X (k) =
N−1∑
n=0

x(n) cos

[(
n + N + 2

4

) (
k + 1

2

)
2π

N

]
, k = 0, 1, . . . , N/2 − 1, (13.3)

where X (k) is the kth MDCT coefficient. The inverse MDCT (IMDCT) is defined as

x(n) = 2

N

N/2−1∑
k=0

X (k) cos

[(
n + N + 2

4

) (
k + 1

2

)
2π

N

]
, n = 0, 1, . . . , N − 1. (13.4)

The relationship between the MDCT and the DFT can be established via shifted DFT. Using the DFT

definition given in Equation (6.13), if we shift the time index n by (N + 2)/4 and the index k by 1/2, the

DFT becomes

X (k) =
N−1∑
n=0

x(n)e− j
[(

n+ N+2
4

)(
k+ 1

2

)
2π
N

]
, k = 0, 1, . . . , N/2 − 1. (13.5)

Similarly, the inverse DFT with same shifting is derived as

x(n) = 1

N

N−1∑
k=0

X (k)e− j
[(

n+ N+2
4

)(
k+ 1

2

)
2π
N

]
, n = 0, 1, . . . , N − 1. (13.6)

For real-valued signals, it is easy to prove that MDCT coefficients in Equations (13.3) and (13.4) are

equivalent to the real part of shifted DFT in Equations (13.5) and (13.6), respectively. This fact provides

the base to calculate MDCT using FFT method. For implementation of time-domain aliasing cancelation,

the window needs to satisfy the following conditions to have perfect reconstruction [7]:

1. The analysis and synthesis windows must be equal, and the length N must be an even number.

2. The window coefficients must be symmetric as

h(n) = h(N − n − 1). (13.7)

3. These coefficients must satisfy power complimentary requirement as

h2(n + N/2) + h2(n) = 1. (13.8)

Several windows satisfy those conditions. The simplest case but rarely used is the modified rectangular

window expressed as

h(n) = 1/
√

2, 0 ≤ n ≤ N − 1. (13.9)

The sine window that is used by MP3 and AC-3 is expressed as

h(n) = sin

[
π

N

(
n + 1

2

)]
, 0 ≤ n ≤ N − 1. (13.10)

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

538 AUDIO SIGNAL PROCESSING

20

A
m

p
li

tu
d
e

40 60 80 100 120

Reconstructed waveform using 64-point

FFT/IFFT with 50% overlap

−1.5

-1

−0.5

0

0.5

1

1.5

20 40 60 80 100 120

A
m

p
li

tu
d
e

−1.5

−1

−0.5

0

0.5

1

1.5
Reconstructed waveform using 64-point FFT/IFFT

(a) Without overlapping.

Sample index, n Sample index, n

(b) With 50% overlapping.

Figure 13.6 Hanning windowed FFT/IFFT: (a) without overlapping; (b) with 50 % overlapping

Note that the windows applied to the MDCT are different from the windows that are used for other types

of signal analysis. One of the reasons is that MDCT windows are applied twice for both the MDCT and

the IMDCT.

Example 13.2: This example illustrates the block effect of DFT. In order to have better frequency

resolution, Hanning window is applied. Given a 1 kHz tone as the input, (1) perform the 64-point

DFT without overlapping; and (2) with 50 % overlap for DFT. Compare the waveforms between

(1) and (2), and calculate the total number of frequency coefficients needed for transmission in

each case.

The waveform without overlapping is shown in Figure 13.6(a). In order to achieve the higher

frequency resolution, the time-domain waveform is reconstructed with window. In this case, there

are 32 bins (complex) that need to be quantized. The waveform with 50 % overlapping is recon-

structed perfectly as shown in Figure 13.6(b). The penalty of this reconstruction is the need to

quantize frequency bins twice, i.e., 64 complex bins.

Preechoes are very common artifacts in the perceptual audio coding schemes using high-frequency

resolution. The name ‘preecho’ describes the artifact occurred even before the music event that causes

such noise. Switching window between the length N = 512 and 64 resolves this problem. For example,

AC-3 uses different window sizes to achieve different resolutions, and MP3 decoder also supports the

switching of window from 36 to 12 to increase the time-domain resolution. We will discuss more about

the preecho effects in Section 13.5.4.

13.2.3 Lossless Audio Coding

Lossless audio coding uses entropy code to further remove the redundancy of the coded data without

any loss in quality. Figure 13.7 shows three typical types of lossless coder structures. Figure 13.7(a) is

a pure entropy coding structure, or a lossless-only structure. The advantage of this scheme is simple but

it is difficult to achieve compression gain. Huffman encoding is a lossless coding scheme that produces

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

MULTICHANNEL AUDIO CODING 539

PCM signal

input

PCM signal

input

PCM signal

input

Entropy

coding

Entropy

coding

Bit stream

Coded audio

bit stream

Coded audio

bit stream

Coded audio

bit stream

(a) Lossless-only audio encoder.

Bit stream

(b) Extended lossless coding on encoded bit stream.

 Entropy

coding

B
it

 s
tr

ea
m

Core lossy

coder

Core lossy

coder

−

+

(c) Lossless audio encoder with a base lossy CODEC.

Figure 13.7 Three types of lossless coder structures: (a) lossless-only audio encoder; (b) extended lossless coding

on encoded bit stream; and (c) lossless audio encoder with a base lossy CODEC

Huffman codes from input symbols. Based on the statistic contents of the input sequence, the symbols

are mapped to Huffman codes. Symbols that occur more frequently are coded with a shorter code, while

symbols that occur less frequently are coded with longer codes. In average, this will reduce the total

number of bits if some combinations of input sequences are more likely to appear than others.

Figure 13.7(b) further reduces the redundancy by using entropy coding. The example of this method

can be found in MP3 and MPEG-2 AAC. In MP3, the second compression process, Huffman coding, is

used at the end of the perceptual coding process. Huffman coding is extremely fast because it utilizes a

lookup table for mapping quantized coefficients to possible Huffman codes. On average, an additional

20 % of compression can be achieved.

Figure 13.7(c) is a hierarchical structure of mixed core lossy coder and lossless coder. For a given

PCM audio input, more advanced scalable lossless coding generates a bit stream that can be decoded to a

bit-exact reproduction of input PCM audio. The example can be found in MPEG-4 AAC scalable lossless

coding standards. In this coding scheme, the audio is first encoded with AAC, and then the residual error

between the original audio and the AAC is encoded as shown in Figure 13.7(c). The resultant compressed

bit stream has two rates: the lossy bit rate (same as encoded AAC bit stream) and the lossless bit rate. On

the decoding side, the decoder may use the core lossy encoded bit stream to produce a lossy reproduction

of the original audio with lower quality, or use full bit streams to produce the highest quality audio. A

better signal fidelity is always resulted from higher rates. Refer to [8] for detailed information.

13.3 Multichannel Audio Coding

This section briefly introduces different audio CODECs, and uses MP3 as an example for relatively

detailed description.

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

540 AUDIO SIGNAL PROCESSING

F
il

te
rb

an
k

PCM
audio
input

N
o
n
u
n
if

o
rm

 q
u
an

ti
za

ti
o
n
 Subband 1

Subband 2

Subband 32

MDCT coefs

MDCT coefs

MDCT coefs
MDCT

MDCT

MDCT

1024 FFT Masking
threshold

Huffman
coding

Side
information

coding

Bit-stream
formatting

CRC

External
control

Figure 13.8 Block diagram of MP3 encoder

13.3.1 MP3

MP3 processes the audio data in 1152 samples per frame. This algorithm uses 32 subbands, each subband

is critically sampled at 1/32 sampling rate, and 36 samples are buffered for MDCT block. Therefore, there

are 32 × 36 = 1152 samples per frame (about 26 ms). The MP3 encoder is illustrated in Figure 13.8.

MP3 specifies two different MDCT block lengths: a long block of 18 samples and a short block of

6 samples. There is 50 % overlap between successive windows and so the window sizes are 36 and 12.

The long block length allows better frequency resolution for audio signals with stationary characteristics,

while the short block length provides better time resolution for transients. As discussed in Section 13.2.2,

this window switching technique can reduce the pre- or postecho.

The 1152 samples per frame will result in 576 MDCT coefficients. These coefficients are quantized

using psychoacoustics model that is calculated based on the 1024 FFT bins. In Figure 13.8, the control

parameters are the sampling and bit rates as summarized in Table 13.1.

After quantization, the encoder arranges 576 quantized MDCT coefficients in the order of increasing

frequency except for the short MDCT block mode. For short blocks, there are three sets of window values

for a given frequency. Since higher energy audio components are concentrated in lower frequencies, the

increasing frequency order moves the large values to the lower frequencies and small values to the

higher frequencies. This is similar to a zigzag method used in image coding. The ordered stream is more

favorable for Huffman coding.

Example 13.3: Figure 13.9 shows the amplitude distribution of MDCT coefficients. The data is

obtained using the averaged absolute values of MDCT coefficients. There are 32 subbands and 18

samples in each subband. These coefficients are scaled by 32 768. It is clear that large coefficients

are near DC frequency (indicated by subband number) and the coefficients with values close to 0

are at the higher frequencies.

Table 13.1 MP3 configurations for constant bit rate

Parameters Configurations

Sampling rate (kHz) 48, 44.1, 32

Bit rate (kbit/s) 320, 256, 224, 192, 160, 128, 112, 96, 80

Compression rate 4.4, 5.5, 6.3, 7.4, 8.8, 11.0, 12.6, 14.7, 17.6

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

MULTICHANNEL AUDIO CODING 541

0

10

20

30

0

10

20

30
0

1000

2000

3000

4000

5000

Coefficients amplitude distribution

C
o
ef

fi
ci

en
ts

 a
m

p
li

tu
d
e

Samples in the subband Subband number

Figure 13.9 Amplitude distribution of MDCT coefficients

After ordering the coefficients, the frequency bins are divided into three regions: run-zeros, count-1,

and big-values. Starting at the highest frequency, the encoder identifies the continuous run of all-zero

values as one region of run-zeros. The run-zeros represent the frequency bins that have been removed

by the encoder, and they should be filled with zeros by the decoder. The next region, count-1, can only

be coded with the values 0, 1, or –1. Low-frequency components are represented by big values that are

coded with the highest precision. The big-value region is divided into three subregions and coded using

different Huffman tables. Therefore, each subregion is coded with different set of Huffman tables that

match with the statistics of that region.

In MP3, there are 32 different Huffman tables for big values. These tables are predefined based on

statistics suitable for compressing audio information. The side information specifies which table to use

for decoding the current frame. The output from the Huffman decoder is 576 scaled frequency lines,

represented with integer values.

13.3.2 Dolby AC-3

AC-3 is a high-quality, low-complexity, multichannel audio coding technique. It is the sound format used

for digital televisions, digital versatile discs (DVDs), high-definition televisions, and digital cable and

satellite transmissions.

Dolby digital provides six audio channels with the 5.1 format. The ‘5’ channels are left, center, right,

left-surround, and right-surround. The ‘.1’ represents the low-frequency effects (LFE) channel for the

subwoofer. The LFE channel is one-tenth of the bandwidth of other channels.

As shown in Figure 13.10, the AC-3 encoder uses the human auditory-masking and transform-coding

techniques. AC-3 has the similar structure as shown in Figure 13.1, except that there is no lossless coding

for the bit streams. AC-3 is a block-structured coder with typically 512 samples per block, and 256

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

542 AUDIO SIGNAL PROCESSING

F
il

te
rb

an
k

Spectral
envelopePCM

audio
input

Exponent

Exponent

Encoded spectral envelope

Mantissa
quantization

Mantisa
quantization

Mantissa

Spectral
envelope

Encoded spectral envelope

Mantissa

Quantized
mantissa

Bit
allocation

B
it

-s
tr

ea
m

 f
o
rm

at
ti

n
g

Figure 13.10 Block diagram of AC-3 encoder

samples per block may be used for better time resolution. For a block with 512 samples, 512 MDCT

coefficients are calculated. These frequency-domain representations are decimated by a factor of 2 so that

each block contains 256 coefficients. The MDCT coefficients are represented by floating-point format

consisting of exponent and mantissa. These exponents are encoded as a coarse representation of the signal

spectrum, which is referred as the spectral envelope.

These exponents are 5-bit values that indicate the number of leading zeros in the binary representation

of a coefficient. The exponent acts as a scaling factor 2− exp for each mantissa. Exponent values range from

0 (for the largest coefficient values with no leading zero) to 24. Exponents for coefficients that have more

than 24 leading zeroes are fixed at 24, and the corresponding mantissas are allowed to have leading zeros.

This spectral envelope is used by the core bit-allocation routine, which determines how many bits are

used to encode each individual mantissa. The spectral envelope and the coarsely quantized mantissa for

six audio blocks (total 1536 audio samples for 5.1 channels) are formatted into an AC-3 frame.

Decoding procedure is based on the inverse of the encoding process. The decoder unpacks various types

of data such as the encoded spectral envelope and mantissas. The spectral envelope is decoded to produce

the exponents. The bit-allocation routine is run and the results are used to unpack and dequantize the

mantissas. The exponents and mantissas are transformed back to the time domain to produce the decoded

PCM samples.

AC-3 can process 20-bit digital audio signals over a frequency range from 20 to 20 kHz (−3 dB at 3 Hz

and 20.3 kHz). The LFE channel covers 20–120 Hz (−3 dB at 3 Hz and 121 Hz). It supports sampling

rates of 32, 44.1, and 48 kHz. Data rates range from 32 kbit/s for a single mono channel to 640 kbit/s for

special applications. The typical bit rate is 384 kbit/s.

AC-3 uses 256- or 512-point MDCT. Detailed procedures to implement the MDCT using a single

N /4-point complex IFFT to calculate N -point IMDCT can be found in [1, 2].

13.3.3 MPEG-2 AAC

MPEG-2 AAC supports applications that do not request backward compatibility with the existing

MPEG-1 stereo format. The AAC standard employs high-resolution filterbank, prediction techniques,

and Huffman coding. The AAC standard offers high quality at lowest possible bit rates between 320

and 384 kbit/s for five channels. With sampling frequencies between 8 and 96 kHz and the number of

channels from 1 to 48, this scheme is well prepared for future developments.

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

MULTICHANNEL AUDIO CODING 543

PCM
audio
input

Iterations loops

B
it

-s
tr

ea
m

 f
o
rm

at
ti

n
g

Rate

distortion
control
process

Intensity coupling

Prediction

Mid/Sid stereo

Lossless coding

Quantizer

Scaling factors

Previous
frame

Encoded
audio
stream

Gain control

Filterbank

TNS

Perceptual
model

Figure 13.11 AAC structure diagram

AAC follows the same basic coding structure as MP3, such as high-resolution filterbank, nonuniform

quantization, Huffman coding, and iteration loop structure. It improves MP3 in many areas using new

coding tools [9]. The encoder structure is shown in Figure 13.11. The important differences between the

AAC and its predecessor MP3 are summarized as follows:

Filterbank: MPEG-2 AAC uses MDCT with the increased window length. The MDCT supports block

lengths of 2048 and 256 points that can be switched dynamically, while MP3 supports the block

lengths of 1152 and 384 points. Compared to MP3, the length of the long block transform (2048)

offers improved coding efficiency for stationary signals, and the short block length (256) provides

optimized coding capabilities for transient signals.

Temporal noise shaping (TNS): TNS uses temporal masking technique to shape the distribution of quan-

tization noise in time domain since the acoustic events just before the masking signal (premasking)

and after this masking signal (postmasking) are not audible. The duration when premasking applies

is short in the order of a few ms, whereas the postmasking is in the order of 50–200 ms. TNS filters

the original spectrum and quantizes the filtered spectrum bins. This will lead to a temporally shaped

distribution of quantization noise in the decoded audio signal. TNS is especially successful for the

improvement of speech quality at low-bit rates.

Prediction: Prediction is commonly used in speech-coding algorithms. The frequency-domain prediction

reduces redundancies of stationary signals by removing the redundancy between two successive coding

frames.

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

544 AUDIO SIGNAL PROCESSING

E
n
co

d
ed

 m
u
lt

ic
h
an

n
el

 a
u
d
io

b
it

 s
tr

ea
m

Audio
bit

stream

#1

#n

Stereo audio

Stereo channel
combining

Spilt filter

Spilt filter

Spilt filter

Figure 13.12 Conversion from multichannel to stereo channels

13.4 Connectivity Processing

Connectivity processing includes sampling-rate conversion and transcoding between two different codes;

for example, to convert the 5.1-channel AC-3 code at 48 kHz to the 2-channel MP3 code at 44.1 kHz.

Figure 13.12 shows a typical conversion structure from multichannel to stereo. The split filter controls

the components going to the left and right channels. The simplest implementation of these filters could

be a scaling factor. For example, if the original channel is the left channel in multichannel format, this

signal may go to the left channel of the new stereo signal. For the center channel, 50 % go to the left and

right channels.

Transcoding technologies [10] adjust the compression ratio of standard compressed bit stream. Com-

paring with decoding and then reencoding the media, transcoding achieves modest computation saving

by skipping part of the compression operations, mainly the inverse and forward transforms. However, due

to the complexity of mapping the encoded parameters from one coding standard to another, transcoding

is not that easy to achieve.

13.5 Experiments and Program Examples

This section implements the MDCT, MP3 decoding, and preecho and postecho using MATLAB, C, or

C55x programs.

13.5.1 Floating-Point Implementation of MDCT

Table 13.2 lists the floating-point C code used to implement direct MDCT and IMDCT for MP3. Given a

PCM data file, this code will calculate the MDCT and IMDCT, and then compare the differences. Figure

13.13 shows the block diagram of the procedures that calculate MDCT. Even though it requires 50 %

overlap, the final number of frequency coefficients is equal to the number of the original time samples.

The main program for the MDCT experiment is listed in Table 13.2. The MDCT and IMDCT functions

used by the main program are listed in Tables 13.3 and 13.4, respectively.

In this experiment, the program initialization generates three tables. One is the sine window table win,

the second is the cos_enc table used for MDCT, and the last one is the cos_dec table used for IMDCT.

The original signal input.pcm is shown in Figure 13.14(a). The difference between the original input

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

Table 13.2 List of partial main program to test MDCT module

{
mdct(pcm_data_in,mdct_enc16,FRAME); // Perform MDCT of N samples
for (j = 0; j < M; j++)
{

pcm_data_in[j] = pcm_data_in[j+M];
}
fwrite(mdct_enc16, sizeof(short),(FRAME>>1),f_enc);
inv_mdct(mdct_enc16,mdct_proc,FRAME); // Inverse MDCT
overlap(mdct_proc,prevblck,pcm_data_out);// Overlap addition

}

Block
MDCT

IMDCT

Quantization
in

frequency
domain

Windowing

Windowing
PCM

sample

PCM
sample

Data
framing

Overlap
and add

Figure 13.13 MDCT block processing

Table 13.3 C code for implementing MDCT

/* Function: Calculation of the direct MDCT */
void mdct(short *in, short *out, short N)
{

short k,j;
float acc0;
for (j = 0; j < N / 2; j++)
{

for (acc0 = 0.0, k = 0; k < N; k++)
{

acc0 += win[k]*(float)in[k]*cos_enc[j][k];
}
out[j] = float2short(acc0);

}
}

Table 13.4 C code for IMDCT

void inv_mdct(short *in, short *out, short N)
{

short j,k;
float acc0;
for(j= 0;j<N;j++)
{

acc0 = 0.0;
for(k=0;k<N/2;k++)
{

acc0 += (float)in[k]*cos_dec[((2*j+1+N/2)*(2*k+1))%(4*N)];
}
acc0 = acc0*win[j];
out[j] = float2short(acc0); // Convert to 16 bits

}
}

545

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

546 AUDIO SIGNAL PROCESSING

3

2

1

0

−1

−2

−3

A
m

p
li

tu
d
e

0 200 400 600 800 1000 1200

Samples

(a) Original input signal.

(b) Amplitude differnce.

Original input signal× 104

 Difference between original input and inverse MDCT output

Differenced between maximum +3 minimum −3

10

8

6

4

2

0

−2

−4

−6

−8

−10
0 200 400 600 800 1000 1200

Samples

A
m

p
li

tu
d
e

Figure 13.14 The original signal and amplitude difference between the original signal and the IMDCT output: (a)

original input signal; (b) amplitude difference

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 547

Table 13.5 File listing for experiment exp13.5.1_floatingPointMdct

Files Description

floatPoint_mdctTest.c Main function for testing experiment

floatPoint_mdct.c Direct and inverse MDCT functions

floatPoint_mdct_init.c Generate window and coefficient tables

floatPoint_mdct.h C header file

floatPoint_mdct.prj DSP project file

floatPoint_mdct.cmd DSP linker command file

input.pcm Data file

signal input.pcm and the IMDCT output mdctProc.pcm is plotted in Figure 13.14(b). The maximum

distortion is ±3. Table 13.5 lists the files used for this experiment.

Procedures of the experiment are listed as follows:

1. Start CCS, open the project, build, and load the program.

2. Check the experiment results with different frame sizes defined in floatPoint_mdct.h.

3. Further optimization of table to make the table size smaller. Change the two-dimensional array

cos_enc[][] table to one-dimensional array cos_enc[] and try to reduce the table size by

taking the advantage of periodic property.

13.5.2 Implementation of MDCT Using C55x Intrinsics

In this experiment, we replace all ‘float’ variables with ‘short’ in the floating-point C code, and use

the C55x intrinsics for multiplication and other DSP-specific functions. The intrinsic implementation of

MDCT is listed in Table 13.6. Comparing the code between Tables 13.3 and 13.6, the differences are

using mult_r and L_mac functions to implement the multiplication and accumulation.

Table 13.6 C55x intrinsics implementation of MDCT

void mdct(short *in, short *out, short N)
{

short k,j;
long acc0;
short temp16;
for (j = 0; j < N / 2; j++)
{

acc0 = 0;
for (k = 0; k < N; k++)
{

temp16 = mult_r(win[k],(in[k]));
acc0 = L_mac(acc0,temp16,(cos_enc[j][k]));

}
acc0 = L_add(acc0, 0x8000L);
out[j] = (short) (acc0>>SFT16);

}
}

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

548 AUDIO SIGNAL PROCESSING

Difference between original input and fixed-point inverse MDCT output

Differenced between maximum +9 minimum −9

10

8

6

4

2

0

−2

−4

−6

−8

−10
0 200 400 600 800 1000 1200

Samples

A
m

p
li

tu
d
e

Figure 13.15 Amplitude distortion between the original signal and the C55x IMDCT output

Similar to the experiment given in Section 13.5.1, we compare the result with the original data. The

distortion is shown in Figure 13.15. The distortion is higher in the 16-bit C55x implementation as

compared with the 32-bit floating-point implementation. At the active segment, the maximum distortion

in amplitude is ±9, which is higher than the floating-point implementation with the maximum distortion

of ±3. The files used for this experiment are listed in Table 13.7.

Procedures of the experiment are listed as follows:

1. Start CCS, open the project, build, and load the program.

2. Run the experiment using different frame sizes (defined in intrinsic_mdct.h). Check the exper-

iment results obtained with different frame sizes.

3. Convert the direct and reverse MDCT functions in fixed-point C code to C55 assembly code, and

benchmark the cycles needed for both programs.

Table 13.7 File listing for experiment exp13.5.2_intinsicMdct

Files Description

intrinsic_mdctTest.c Main function for testing experiment

intrinsic_mdct.c MDCT and IMDCT functions

intrinsic_mdctInit.c Experiment initialization

intrinsic_mdct.h C header file

intrinsic_mdct.pjt DSP project file

intrinsic_mdct.cmd C55x linker command file

input.pcm Data file

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 549

Table 13.8 File listing for experiment exp13.5.3_preEcho

Files Description

floatPoint_preEchoTest.c Main program for testing experiment

floatPoint_preEchoMdct.c Direct and inverse MDCT function

floatPoint_preEchoInit.c Generate widowing and coefficient tables

floatPoint_preEchoQnt.c Simulate log quantization

floatPoint_preEcho.h C header function

preEcho.pjt DSP project file

preEcho.cmd DSP linker command file

dtmf_digit2.pcm Data file

13.5.3 Experiments of Preecho Effects

Based on the experiment given in Section 13.5.2, we can add an MDCT coefficient quantization function

to verify the preecho effect. We will compare the preecho effects between using 512- and 64-point MDCT

block sizes with the original signal as shown in Figure 13.16(a). The files used for this experiment are

listed in Table 13.8.

Procedures of the experiment are listed as follows:

1. Start CCS, open the project, build, and load the program.

2. Run the program and examine the resulting data file.

3. Convert this floating-point C experiment to C55x assembly functions. Rerun the assembly version

of the experiment and compare the result with its floating-point experiment.

4. There are two constants FRAME and NUM_QNT defined in floatPoint_preEcho.h file. FRAME is

the frame size used for MDCT block. NUM_QNT is the number of levels in log scale that the MDCT

coefficients will be quantized. Change these two parameters to check the experiment results.

5. Perform 512-point MDCT/IMDCT with 50 % overlaps. The absolute values of MDCT coefficients

are quantized using 16 steps in log scale with 16-bit maximum (32 767) corresponding to the highest

step. The ripples before and after the signal segment are clearly shown in Figure 13.16(b) due to the

quantization errors.

6. For comparison, perform 64-point MDCT/IMDCT with 50 % overlaps. With the increased time-

domain resolution due to shorter length of MDCT, the ripples are reduced as shown in Figure

13.16(c).

13.5.4 Floating-Point C Implementation of MP3 Decoding

This section presents experiment of the MP3 decoding. The ISO reference source codes for MPEG-1

Layer I, II, and III in dist10.zip can be downloaded from Web sites. These files are listed in Table

13.9, where the file musicout.c is the main function that parsers the parameters and file I/O.

Unzip the file dist10.zip, and place the corresponding files under the src, inc, or tables fold-

ers as listed in Table 13.9. Using the provided workspace file lsfDec.dsw under Microsoft Visual C

environment, we can easily compile the files to have executable code under Debug folder. After running

the program, we will see the output as listed in Table 13.10.

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

550 AUDIO SIGNAL PROCESSING

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2

A
m

p
li

tu
d
e

0 200 400 600 800 1000

Sample

Original PCM data with 1024 samples(a)× 104

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2

A
m

p
li

tu
d
e

0 200 400 600 800 1000

Sample

512-point MDCT/IMDCT processed× 104 (b)

Figure 13.16 (a) Original PCM data with 1024 samples; (b) 512-point MDCT/IMDCT processed with 16-step

quantization in log scale; and (c) 64-point MDCT/IMDCT processed with 16-step quantization in log scale

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 551

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2

A
m

p
li

tu
d

e

0 200 400 600 800 1000

Sample

64-point MDCT/IMDCT processed(c)× 104

Figure 13.16 (continued)

Procedures of the experiment are listed as follows:

1. The executable code is located in the directory ..\debug\lsfDec.exe. Run the batch file

mp3 dec.bat in ..\data folder. MP3 data file musicD_44p1_128bps.mp3 is read as input.

2. The output information from MP3 decoder is listed in Table 13.10. This shows it is an MP3 encoded

at 44.1 kHz with the bit rate of 128 kbps in two-channel joint stereo format.

3. The output of the MP3 decoder musicD_44p1_128bps.mp3.dec is a stereo PCM file and its stereo

data samples are arranged in the order of left, right, left, right, The 16-bit PCM data sample is in

Motorola PCM format (MSB, LSB). Verify this PCM data as stereo audio at Motorola PCM format

sampled at 44.1 kHz using MATLAB. Since MATLAB uses Intel PCM format (LSB, MSB), you

need to change the data format from Motorola PCM to Intel PCM. The following C code can be used

to convert Motorola PCM format to Intel PCM format.

FILE *fpIn,*fpOut;
short x;

fpIn = fopen("musicD_44p1_128bps.mp3.dec", "rb");
fpOut = fopen("pcmFile.pcm", "wb");
while(fread(&x, sizeof(short), 1, fpIn) == 1)
{

x = ((x>>8)&0xff)| ((x&0xff)<<8);
fwrite(&x, sizeof(short), 1, fpOut);

}
fclose(fpIn);
fclose(fpOut);

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

552 AUDIO SIGNAL PROCESSING

Table 13.9 File listing for experiment exp13.5.4_isoMp3Dec

Directory File Description

exp13.5.4_isoMp3Dec lsfDec.dsw MP3 decoder workspace

musicout.c Main file to parser the parameters and

access all individual functions

common.c Common functions with sampling

frequency conversion, bit-rate conversion,

file I/O access

src decode.c Bit-stream decoding, parameter decoding,

sample dequantization, synthesis filters,

decoder used functions

huffman.c Huffman decoding functions

ieeefloat.c data format conversion

portableio.c I/O functions

inc

common.h Header file for common.c
decoder.h Header file for decoder.h
huffman.h Header file for huffman.h
ieeefloat.h Header file for ieeefloat.h
portableio.h Header file for portableio.h

tables

1cb0 - 1cb6, 1th0 - 1th6

Constant data

2cb0 - 2cb6, 2th0 - 2th6
absthr_0 - absthr_2
alloc_0 - alloc_4
dewindow, enwindow
huffdec

debug lsfDec.exe Executable files

data musicD_44p1_128bps.mp3 Input file for decoder

The following MATLAB script separates the stereo PCM into two channels, the left audio channel

and right audio channel, plots both channels, and plays each audio at 44.1 kHz rate.

fid=fopen('pcmFile.pcm', 'rb');
pcmData = fread(fid, 'int16');
len = length(pcmData);
leftChannel = pcmData(1:2:len-1);
rightChannel = pcmData(2:2:len);
subplot(2,1,1); plot(leftChannel);
subplot(2,1,2); plot(rightChannel);
soundsc(leftChannel, 44100);
soundsc(rightChannel, 44100);

4. Convert the floating-point C to fixed-point C and then to assembly program approach for the MP3

decoder using C55x DSK. The MP3 files to be decoded are stored in the computer. The MP3 files

can be read by DSK via file I/O we learned from previous experiments.

5. Configure DSK AIC23 in stereo output in 48 kHz.

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

EXERCISES 553

Table 13.10 Decoding information running of mp3_dec.bat

input file = '..\data\musicD_44p1_128bps.mp3'
output file = '..\ data\musicD_44p1_128bps.mp3.dec'
the bit stream file ..\data\musicD_44p1_128bps.mp3 is a BINARY file
HDR: s=FFF, id=1, l=3, ep=on, br=9, sf=0, pd=1, pr=0,

m=1, js=2, c=0, o=0, e=0
alg.=MPEG-1, layer=III, tot bitrate=128, sfrq=44.1
mode=j-stereo, sblim=32, jsbd=8, ch=2

6. Use PC version decoder as reference to test the C55x decoder.

7. Play back the MP3 music files via the DSK decoder through a loudspeaker.

References

[1] Digital Audio Compression (AC-3, Enhanced AC-3) Standard, ETSI TS 102 366 V1.1.1 Feb. 2005.

[2] ATSC Standard: Digital Audio Compression (AC-3), Revision A, Aug. 2001.

[3] S. Gadd and T. Lenart, A Hardware Accelerated MP3 Decoder with Bluetooth Streaming Capabilities, M.S.

Thesis, Nov. 2001, http://www.es.lth.se/home/tlt/publications/masterthesis.pdf.

[4] T. Painter and A. Spanias, ‘Perceptual coding of digital audio,’ Proc. IEEE, vol. 88, no. 4, pp. 415–513, Apr.

2000.

[5] R. Raissi, ‘The theory behind MP3,’ Dec. 2002, http://rassol.com/cv/mp3.pdf.

[6] P. Noll and D. Pan, ‘ISO/MPEG audio coding,’ Int. J High Speed Electron. Syst., vol. 8, no. 1, pp. 69–118, 1997.

[7] A. J. Ferreira, Spectral Coding and Post-Processing of High Quality Audio, Ph. D Thesis, University of Porto,

1998.

[8] ISO/IEC JTC1/SC29/WG11/N7018, Scalable Lossless Coding, Jan. 2005.

[9] K. Brandenburg, ‘MP3 and AAC explained,’ Proc. AES 17th Int. Conf. High Qual. Audio Coding, http://www.

telos-systems.com/techtalk/aacpaper 2/AAC 3.pdf.

[10] J. Li, ‘Embedded audio coding (EAC) with implicit auditory masking,’ Proc. ACM Multimedia 2002, pp. 592–601,

Dec. 2002, http://portal.acm.org/citation.cfm?doid=641126.

[11] ISO Reference Source Code of MPEG-1 Layer I, II and III: http://www.mp3-tech.org/programmer/sources/

dist10.tgz.

[12] I. Dimkovic, ‘Improved ISO AAC coder,’ http://www.mp3-tech.org/programmer/docs/di042001.pdf.

[13] Y. Wang, L. Yaroslavsky, M. Vilermo, and M. Vaananen, ‘Some peculiar properties of the MDCT,’ Proc. 5th Int.
Conf. Signal Process., pp. 61–64, 2000.

[14] Y. Wang and M. Vilermo, ‘The modified discrete cosine transform: Its implications for audio coding and error

concealment,’ Proc. AES 22nd Int. Conf. Virtual Synth. Entertain. Audio, pp. 223–232, 2002, http://www.comp.

nus.edu.sg/∼wangye/papers/AES/00027 aes22.pdf.

[15] K. Brandenburg and H. Popp, ‘An introduction to MPEG layer-3,’ http://www.mp3-tech.org/programmer/

docs/trev 283-popp.pdf.

Exercises

1. Draw a curve of masking threshold based on psychoacoustics experiment. Using MATLAB plays back a 1 kHz

tone (masker) at 60 dB plus one of the tones listed in the following table. Since the levels of these bark band tones

are changing, pick up the one you just cannot hear as the masking threshold. You may also try to raise the masker

tone by 20 dB (to 80 dB) to see if the masking threshold is still the same as at 60 dB. The published bark band

centers in Hz are listed in Table 13.11 [4].

JWBK080-13 JWBK080-Kuo March 8, 2006 12:1 Char Count= 0

554 AUDIO SIGNAL PROCESSING

Table 13.11 Summary of center frequencies of bark bands in Hz

Center Center Center Center

Band no. frequency Band no. frequency Band no. frequency Band no. frequency

1 50 7 700 13 1850 19 4800

2 150 8 840 14 2150 20 5800

3 250 9 1000 15 2500 21 7000

4 350 10 1175 16 2900 22 8500

5 450 11 1370 17 3400 23 10 500

6 570 12 1600 18 4000 24 13 500

2. Given a 36-point MDCT used in MP3, calculate the minimum number of multiplication and addition needed

for calculating the direct MDCT coefficients. Also, compare this number with three individual 18-point MDCT

blocks.

3. For preecho effect, do you think that higher resolution of quantization will also resolve the problem? Use the

experiment given in Section 13.5.3 as reference to calculate 512-point MDCT/IMDCT with 50 % overlap, and the

MDCT absolute coefficients are quantized using 64 steps in log scales. Verify that with the increased quantization

signal-to-noise ratio, the amplitude of ripples should be smaller as compared with the experiment given in Section

13.5.3, where the MDCT coefficients are quantized using 16 steps.

4. Section 13.5.1 uses three tables, win[], cos_enc[][], and cos_dec[]. These tables become larger

with the increase of frame size. Modify the experiment such that the MDCT and IMDCT will compute these table

values at run time using cosine and sine functions. To improve run-time efficiency, implement cosine and sine

functions in assembly for this experiment. Verify the implementation using frame sizes of 64, 256, and 512.

5. In experiment given in Section 13.5.3, we did not use table cos_enc[][] as in Section

13.5.1. Instead, we directly use the rum-time function cosCoef = ((float)cos((PI/(2*N))*
(2*k+1+N/2)*(2*j+1))/(N/4)) to generate the coefficients. This is not efficient but we have to do

so due to the memory limitation for 512-point MDCT. If we rearrange the data in the table, the table access may

become simple:

(a) Reduce the table size N by N /2 of cos_enc[][] to a reasonable number.

(b) Convert this two-dimensional table cos_enc[][] to one dimensional.

6. If MP3 encoded bit stream is 128 kbit/s using constant coding scheme and the sampling rate is 48 kHz, calculate

the compression ratio. If the sampling rate is 16 kHz and the bit rate remains the same, calculate the compression

ratio. For both cases, assume input is stereo.

7. The downloaded MPEG-1 Layer I, II, and III file dist10.zip also contains the MP3 encoder source code.

Using the experiment given in Section 13.5.4 as reference, compile the MP3 encoder program, and encode the

decoded linear stereo PCM data from Section 13.5.4 into MP3 bit stream.

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

14
Channel Coding Techniques

Channel coding is very important in digital communications. Many communication systems use the

forward error-correction (FEC) coding to detect and reduce transmission errors. In addition to FEC

codes, cyclic redundancy check (CRC) is also widely used to verify the data correctness at the receiver.

This chapter introduces basic channel coding techniques using convolutional codes, Viterbi decoding,

Reed–Solomon codes, and CRC.

14.1 Introduction

An error-correction code (ECC) protects data against noises or surface defects in communication or disk-

storage systems. The ECC allows decoder to detect and possibly correct transmission errors directly at the

receiver. An ECC adds redundancy that is a small fraction of the actual data for transmission. The ECC

achieves the coding gain by decreasing the required bit energy over noise for acceptable transmission

quality. The achieved coding gain can be used to save bandwidth or reduce power requirements.

Channel coding techniques are usually classified into two categories: block codes and convolutional

codes. In block codes such as Reed–Solomon codes, the data stream is divided into consecutive blocks

of certain length. The redundant bits are added to these data blocks for transmission, and the receiver

decodes the data block by block. In convolutional codes, redundant bits are added continuously to the

coder output. The values of these bits are determined by a combination of preceding information bits. The

convolutional code is commonly used as trellis-coded modulation in modem applications. Figure 14.1

shows a typical transmission system with channel coding.

The channel encoder introduces redundancy for error detection, error correction, or both, thus increases

data bit rate. If k is the number of information bits and n is the number of encoder output bits, the data

rate of the encoder is

db = (n/k)di , (14.1)

where di is the source (information) data rate. The ratio Rc = k/n is defined as the code rate. Channel

coding reduces the received energy per symbol. However, an increased symbol data rate also results in

an increased modulation bandwidth with the factor n/k.

The performance of channel coding can be improved through soft decoding, in which the channel

decoder uses information on previously received data. This can be achieved by using long constraint

lengths for convolutional codes, or long codewords for block codes. However, this results in undesired

longer delay in buffering data and highly complex channel decoders. Thus, the viable coding schemes

must consider the issues of the delay, complexity, and technological limitations.

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

555

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

556 CHANNEL CODING TECHNIQUES

Channel
codingInput

Modulator
Wireless or

wireline
channel

Demodu-
lator

Channel
decoding Output

di db dr

Eb/N0

do

Figure 14.1 A typical transmission system with channel coding

A simple technique called automatic request for retransmission scheme can be used in error control

applications. In this method, the transmitter stops and waits until a correct receipt of the data is acknowl-

edged, or a request for retransmission is received on the backward channel. The request for retransmission

can be simply based on a CRC method.

14.2 Block Codes

A block code [2] consists of a set of fixed-length vectors called codewords. The length n of a codeword

is the number of elements in the vector. The elements of a codeword are selected from an alphabet of

q elements. When the alphabet consists of two elements 0 and 1, the code is a binary code, and these

elements are called bits. The Galois field (GF) arithmetic is a finite state field, and GF(q) is Galois field

of order q. The finite field with two elements is denoted as GF(2). When the elements of a codeword

are selected from an alphabet having q elements where q > 2, the code is a nonbinary code. When q is

a power of 2 (i.e., q = 2m where m is a positive integer), each q-ary element has an equivalent binary

representation consisting of m bits. Thus, a nonbinary code of block length N can be mapped into a

binary code of block length n = mN. This nonbinary finite field is denoted by GF(q) or GF(2m) where

m > 1.

There are 2n possible codewords in a binary block code of length n. From these 2n codewords, we may

select M = 2k codewords (k < n) to form a code. Thus, a block of k information bits is mapped into a

codeword of length n selected from the set of M = 2k codewords. The resulting block code is called an

(n, k) code, and the code rate is Rc = k/n. An (n, k) Reed–Solomon (RS) code is capable of correcting

t symbol errors where t = (n − k)/2. The block length of standard Reed–Soloman codes is n = q − 1,

and the code rate is Rc = k/n. Examples of codes with different values of m, q, n, and t are summarized

in Table 14.1.

The family of linear block codes is illustrated in Figure 14.2. The cyclic, BCH (Bose–Chaudhuri–

Hocquenghem), Hamming, and Reed–Solomon codes are special classes of linear block codes:

Linear block codes [4]: Suppose C1 and C2 are two codewords in an (n, k) block code. Let α1 and α2 be

any two elements selected from the alphabet. The code is linear if and only if α1C1 + α2C2 is also a

codeword.

Table 14.1 Examples of Reed–Solomon codes

n (Block k (Information 2t(Parity

M q = 2m length) symbols) symbols) Rc = k/n Applications

6 64 63 47 6 47/63 U.S. cellular digital packet data

8 256 219 201 22 201/219 Intelsat IESS310

8 256 28 24 4 24/28 Compact CD C1 encoder

8 256 32 28 4 28/32 Compact CD C2 encoder

8 256 255 233 22 233/255 Infrared wireless audio

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

BLOCK CODES 557

Linear block codes

Reed−Solomon Hamming

Cyclic codes

BCH codes

Figure 14.2 Relationship of different block codes

Cyclic codes: A cyclic code is a linear block code with the property that a cyclic shift of a codeword

is also a codeword. For example, if C = [cn−1, cn−2, . . . , c1, c0] is a codeword of a cyclic code, then

[cn−2, . . . , c1, c0, cn−1] obtained from the cyclic shift of the element C is also a codeword. This cyclic

property means cyclic code possesses a considerable amount of structures that can be exploited in

the encoding and decoding operations. An (n, k) cyclic code is completely specified by the following

generator polynomial:

g(x) = 1 + g1x + · · · + gn−k−1xn−k−1 + gn−k xn−k . (14.2)

BCH codes [5]: The BCH code is a class of cyclic codes whose generator polynomial is the product of

distinct minimal polynomials corresponding to α, α2, . . . , α2t , where α ∈ G F(2m) is the root of the

primitive polynomial p(x). The most important and common class of nonbinary BCH codes is the

Reed–Solomon codes. Figure 14.3 shows a Reed–Solomon codeword in which the data is unchanged

while the parity bits are suffixed to the data bits. The Reed–Solomon codes are the most commonly

used for practical applications.

Reed–Solomon codes use nonbinary fields GF(2m). These fields have more than two elements and are

extensions of the binary field GF(2) = {0, 1}. The additional elements in the extension field use a new

symbol α to represent the elements other than 0 and 1. Each nonzero element can be represented by a

power of α. Some important Galois field properties are:

1. An element with order (q − 1) in GF(q) is called a primitive element. Each field contains at least

one primitive element α. All nonzero elements in GF(q) can be represented as (q − 1) consecutive

powers of a primitive element α.

k

n

2t

Figure 14.3 Codeword of Reed–Solomon codes

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

558 CHANNEL CODING TECHNIQUES

Table 14.2 Example of construction of GF(8)

Exponential representation Polynomial representation 3-bit symbol representation

0 0 0 0 0

α0, α7 1 0 0 1

α α 0 1 0

α2 α2 1 0 0

α3 α + 1 0 1 1

α4 α2+ α 1 1 0

α5 α3+ α2 = α2+ α + 1 1 1 1

α6 α2+ 1 1 0 1

2. Polynomials over Galois fields, GF(q)[x], are the collection of all polynomials α0 ⊕ α1x ⊕ α2x2

⊕ · · · ⊕ αn xn of arbitrary degree with coefficients {α j } in the finite field GF(q).

3. The operator ⊕ is an exclusive-OR (XOR) operation. The multiplication of two m-bit numbers under

GF(2m) can become exponential addition with modular (2m − 1).

Example 14.1: Construct GF(8) with p(x) = x3 + x + 1 being the primitive in GF(8)[x]. Let

α be the root of p(x) |x=α = α3 + α + 1 = 0 ⇒ α3 = α + 1. The exponential and 3-bit symbol

representations are shown in Table 14.2.

Using the equation α3 = α + 1 and the exponential and symbol representations listed in Table

14.2, we can easily calculate the following operations:

1. Addition: α5 + α3 = α2(α + 1) + (α + 1) = α2 + (α3 + α + 1) = α2. If we use 3-bit symbol

representation, the addition can be also derived as α5 + α3 = (111)2 + (011)2 = (100)2 = α2.

2. Multiplication: α5α3 = α8 mod (7) = α, α5(α3 + 1) = α5(α) = α6 and α5(α3 + 1) = α8 +
α5 = α1 + α5 = (010)2 + (111)2 = (101)2 = α6.

14.2.1 Reed–Solomon Codes

A Reed–Solomon code is a block sequence of finite field GF(2m) with 2m binary symbols, where m is the

number of bits per symbol. An (n, k) Reed–Solomon code with symbols from GF(2m) has the following

parameters [5]:

1. n ≤ 2m − 1 : codeword length in symbols;

2. k = n − 2t : number of information symbols; and

3. n − k = 2t : number of parity symbols.

Reed–Solomon encoder

The straightforward method of obtaining the remainder from the division process by the polynomial g(x)

is to connect a shift register according to g(x) as shown in Figure 14.4 [4]. In the figure, the symbol ⊕
represents an XOR operation of two m-bit numbers, the symbol ⊗ represents a multiplication of two

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

BLOCK CODES 559

b0 b2t−2 b2t−1

g0 g1 g2t−2 g2t−1

Input

k Output
d0, d1, … , dk−2, dk−1

Figure 14.4 Reed–Solomon code generator

m-bit numbers under GF(2m), and each m-bit register contains an m-bit number denoted by bi . The raw

information polynomial is expressed as

d(x) = c2t x
2t + c2t+1x2t+1 + · · · + cn−2xn−2 + cn−1xn−1. (14.3)

The parity polynomial is expressed as

pt (x) = c0 + c1x1 · · · + c2t−1x2t−1. (14.4)

The generator polynomial for t error corrections is

g(x) = (x + α)(x + α2) · · · (x + α2t) =
2t∑

i=0

gi x
i . (14.5)

A common method for encoding a cyclic code is to derive p(x) by dividing d(x) with g(x). This yields

an irrelevant quotient polynomial q(x) and an import remainder polynomial r (x) as

d(x) = g(x)q(x) + r (x). (14.6)

The codeword polynomial can be expressed as

c(x) = pt (x) + g(x)q(x) + r (x). (14.7)

If we define pt (x) = −r (x), then

c(x) = g(x)q(x). (14.8)

Equation (14.8) ensures that the codeword is always an integer of generator polynomial g(x). Fig-

ure 14.4 shows the block diagram of a basic Reed–Solomon encoder. The data sequence d(x) is shifted

through the encoder circuits beginning with symbol dk−1. After shifting d0 into the circuit, the 2t redun-

dant symbols are taken from the shift register stages, or these symbols are shifted out when the switch is

changed to upper position.

Example 14.2: Use the shift registers in Figure 14.4 to generate the parity data for a Reed–

Solomon (255, 239) code. The primitive polynomial is p(x) = 1 + x2 + x3 + x4 + x8. The re-

sulted generation polynomial coefficients are {g0, g1, . . . , g16}= {0x4f, 0x2c, 0x51, 0x64, 0x31,

0xb7, 0x38, 0x11, 0xe8, 0xbb, 0x7e, 0x68, 0x1f, 0x67, 0x34, 0x76, 0x01}. The input data is

listed in Table 14.3.

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

560 CHANNEL CODING TECHNIQUES

Table 14.3 The encoded Reed–Solomon (255, 239) codeword in Hex format

data 0x00: 33,6c,c1,c2,bf,c8,ad,fe,0b,e4,59,fa,17,c0,c5,b6
data 0x10: e3,5c,f1,32,6f,b8,dd,6e,bb,d4,89,6a,c7,b0,f5,26
data 0x20: 93,4c,21,a2,1f,a8,0d,de,6b,c4,b9,da,77,a0,25,96
data 0x30: 43,3c,51,12,cf,98,3d,4e,1b,b4,e9,4a,27,90,55,06
data 0x40: f3,2c,81,82,7f,88,6d,be,cb,a4,19,ba,d7,80,85,76
data 0x50: a3,1c,b1,f2,2f,78,9d,2e,7b,94,49,2a,87,70,b5,e6
data 0x60: 53,0c,e1,62,df,68,cd,9e,2b,84,79,9a,37,60,e5,56
data 0x70: 03,fc,11,d2,8f,58,fd,0e,db,74,a9,0a,e7,50,15,c6
data 0x80: b3,ec,41,42,3f,48,2d,7e,8b,64,d9,7a,97,40,45,36
data 0x90: 63,dc,71,b2,ef,38,5d,ee,3b,54,09,ea,47,30,75,a6
data 0xa0: 13,cc,a1,22,9f,28,8d,5e,eb,44,39,5a,f7,20,a5,16
data 0xb0: c3,bc,d1,92,4f,18,bd,ce,9b,34,69,ca,a7,10,d5,86
data 0xc0: 73,ac,01,02,ff,08,ed,3e,4b,24,99,3a,57,00,05,f6
data 0xd0: 23,9c,31,72,af,f8,1d,ae,fb,14,c9,aa,07,f0,35,66
data 0xe0: d3,8c,61,e2,5f,e8,4d,1e,ab,04,f9,1a,b7,e0,65,a2
parity 0xf0: a2,47,a1,b7,a4,f1,0c,65,91,13,b7,e7,d6,f3,0e,cc

In Figure 14.4, the multiplication operation of gi bi is over GF(256). The easy way to do multipli-

cation over GF(256) is to use exponential representation. For example, the symbol representation

of g0, 0x4f, can be converted to exponential representation as α0x88. By doing the same conversion

for register byte bi , the multiplication over Galois field becomes the addition of the exponents (see

Section 14.4.2 for details). In that example, the exponential representation of generation polyno-

mial coefficients are {g0, g1, . . . , g16} = {0x88, 0xf0, 0xd0, 0xc3, 0xb5, 0x9e, 0xc9, 0x64,

0x0b, 0x53, 0xa7, 0x6b, 0x71, 0x6e, 0x6a, 0x79, 0x00}.

The addition illustrated in Figure 14.4 is an XOR operation. In order to perform the XOR

operation, we convert gi bi from exponential format to symbol format. The table used for conversion

is given in \example14.2\rs_enc.dat. The encoded data is shown in Table 14.3.

Reed–Solomon decoder

A typical Reed–Solomon decoder includes five distinct algorithms as shown in Figure 14.5. The first

algorithm calculates 2t partial syndromes. The Berlekamp–Massev algorithm calculates the error locator

polynomial. The Forney algorithm computes the error magnitudes. The Chien search finds the error

location. Finally, we know both the error locations in the received codeword and the magnitude of error

at each location.

The decoder first constructs the syndrome polynomial by evaluating the received codeword at all the

roots of the generator polynomial g(x). From Equation (14.8), all the roots for g(x) will be the roots for

codeword polynomial c(x) if there is no transmission error. If there is error in the received codeword,

Calculate
syndrome

polynomial

Input
Berlekamp

Massev
Forney

algorithm

Chien
search

Error
magnitude

Output

Figure 14.5 A block diagram of the Reed–Solomon decoder

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

BLOCK CODES 561

received codeword polynomial r (x) can be expressed as

r (x) = c(x) + e(x), (14.9)

where e(x) is the error polynomial. The syndrome polynomial s(x) is obtained by evaluating the received

word at each root of the generator polynomial as follows:

s j (x) = r (x) |x=α j , j = 1, . . . , 2t. (14.10)

Once the syndrome polynomial has been constructed, it can be used to calculate the error locator

polynomial using the Berlekamp–Massev algorithm if they are not all zeros. This leads to finding the

error location by Chien search.

Example 14.3: Using the encoded data shown in Table 14.3, randomly change eight locations as

shown in Table 14.4 and assume this is the data received from the channel. Following the decoding

procedures illustrated in Figure 14.5, these eight errors (in boldface) are eventually corrected step

by step as presented in the following procedures.

If there is no error, the 16 syndrome polynomials defined in Equation (14.9) will equal to zero.

The syndrome polynomial evaluates the received data with roots of generation polynomial g(x).

In this example, the syndrome functions are not equal to zero and they are listed as {0x05, 0x23,

0x5a, 0x53, 0xd1, 0xb5, 0x6b, 0x01, 0x5e, 0x76, 0x80, 0xeb, 0x49, 0x1f, 0x4f, 0x35}. This

means there are errors in the received data. Berlekamp’s iterative algorithm finds the error locator

polynomial, and eventually finds the error locations via Chien search as {0x45, 0x52, 0x70, 0x76,

0x79, 0xcf, 0xdd, 0xe7}. Use Forney algorithm to compute the error magnitudes with respect

to the above locations; the error magnitudes are calculated as {0x8a, 0x95, 0x5b, 0x8e, 0x29,

0xf4, 0xd0, 0x67}. Once the error locations and amplitudes are found, the erased bytes can be

corrected by XOR operation of the error amplitude and received data as shown in Table 14.5.

MATLAB provides functions for the Reed–Solomon encoder rsenc(), decoder rsdec(), gener-

ator polynomial of Reed–Solomon code rsgenpoly(), and Galois field array creator gf(). Section

14.4.1 will present an experiment to encode and decode Reed–Solomon codes using these functions.

Table 14.4 The received codewords

data: 0x00: 33,6c,c1,c2,bf,c8,ad,fe,0b,e4,59,fa,17,c0,c5,b6
data: 0x10: e3,5c,f1,32,6f,b8,dd,6e,bb,d4,89,6a,c7,b0,f5,26
data: 0x20: 93,4c,21,a2,1f,a8, d,de,6b,c4,b9,da,77,a0,25,96
data: 0x30: 43,3c,51,12,cf,98,3d,4e,1b,b4,e9,4a,27,90,55,06
data: 0x40: f3,2c,81,82,7f,02,6d,be,cb,a4,19,ba,d7,80,85,76
data: 0x50: a3,1c,24,f2,2f,78,9d,2e,7b,94,49,2a,87,70,b5,e6
data: 0x60: 53,0c,e1,62,df,68,cd,9e,2b,84,79,9a,37,60,e5,56
data: 0x70: 58,fc,11,d2,8f,58,73,0e,db,5d,a9, a,e7,50,15,c6
data: 0x80: b3,ec,41,42,3f,48,2d,7e,8b,64,d9,7a,97,40,45,36
data: 0x90: 63,dc,71,b2,ef,38,5d,ee,3b,54,09,ea,47,30,75,a6
data: 0xa0: 13,cc,a1,22,9f,28,8d,5e,eb,44,39,5a,f7,20,a5,16
data: 0xb0: c3,bc,d1,92,4f,18,bd,ce,9b,34,69,ca,a7,10,d5,86
data: 0xc0: 73,ac,01,02,ff,08,ed,3e,4b,24,99,3a,57,00,05,02
data: 0xd0: 23,9c,31,72,af,f8,1d,ae,fb,14,c9,aa,07,20,35,66
data: 0xe0: d3,8c,61,e2,5f,e8,4d,79,ab,04,f9,1a,b7,e0,65,a2
parity: 0xf0: a2,47,a1,b7,a4,f1,0c,65,91,13,b7,e7,d6,f3,0e,cc

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

562 CHANNEL CODING TECHNIQUES

Table 14.5 Error-correction simulation results

Number Error location Send Receive Error amplitude Correction Output

7 0x45 0x88 0x02 0x8a 0x8a XOR 0x02 0x88

6 0x52 0xb1 0x24 0x95 0x95 XOR 0x24 0xb1

5 0x70 0x03 0x58 0x5b 0x5b XOR 0x58 0x03

4 0x76 0xfd 0x73 0x8e 0x8e XOR 0x73 0xfd

3 0x79 0x74 0x5d 0x29 0x29 XOR 0x5d 0x74

2 0xcf 0xf6 0x02 0xf4 0xf4 XOR 0x02 0xf6

1 0xdd 0xf0 0x20 0xD0 0xd0 XOR 0x20 0xf0

0 0xe7 0x1e 0x79 0x67 0x67 XOR 0x79 0x1e

14.2.2 Applications of Reed–Solomon Codes

This section briefly introduces two applications of Reed–Solomon codes in media storage and wireless

transmission.

Compact disc

In compact disc (CD), the audio signal is sampled with 16-bit A/D converter and these samples are

split into two 8-bit words called symbols. This technique is called the cross interleave Reed–Solomon

error-correction code (CIRC). This method can deal with both random and burst errors. The principle of

CIRC is shown in Figure 14.6. The following steps are performed from encoder to decoder [7]:

1. Twelve 16-bit samples (or 24 8-bit symbols) are applied to the scrambling, symbol delay, and Reed–

Solomon encoder for adding four parity symbols. The output is 28 symbols.

2. These 28 symbols are then applied to different delay lines with unique delays.

3. The second Reed–Solomon encoder adds another four parity bytes to form a 32-symbol block.

4. On play back, the decoding circuit restores the original 16-bit samples and sends them to the D/A

converter.

This technique results in the maximum correctable burst error of length 4000 bits. On average, 4 bits are

recorded for every three data bits [7].

Infrared wireless audio

In this application, the block size of Reed–Solomon codes is 255. One ECC superframe consists of two

ECC subframes. GF(28) is used, and the unit of the symbol is byte. The information data has 239 bytes

and the parity data has 16 bytes. The correctable errors are of 8 bytes. The block diagram of ECC is

shown in Figure 14.7 [8].

Interleaving
24-byte
input

C2 encoder
RS(28, 24)

Encoded
32 bytes

C1 encoder
RS(32, 28)

Figure 14.6 Compact disc encoding

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

BLOCK CODES 563

Organize data
into even and
odd subframes

Input

Output

RS(255, 239)
encoding of

MSBs

Separate even
and odd

subframes into
MSB and LSB

RS(255, 239)
decoding of

MSBs

Combine MSB
with LSB to

form a sample

Error
concealment

Wireless
channel

Figure 14.7 Reed–Solomon coding in wireless audio applications

This example only protects the MSB (8-bit). The separation of even and odd subframes enables the

receiver to interpolate the uncorrectable frame of data in the error concealment module if that frame is

corrupted.

14.2.3 Cyclic Redundant Codes

The CRC is an intelligent alternative for block checksum. It is also a special case of the block codes. The

CRC is calculated by dividing a block of bit string by a generator polynomial. The value of the CRC is

the remainder, which is 1 bit shorter than the generator polynomial. It can be implemented using shift

registers and XOR-operations in both hardware and software.

Most communication systems implement the CRC using the shift register to detect transmission errors.

For example, a 7-bit CRC uses the following polynomial generator:

bCRC = 1 ⊕ x ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x7. (14.11)

This CRC generator can produce a unique CRC code of a block sample up to 128 (27) bits. To generate the

CRC code for longer data streams, use a longer CRC generator such as the most commonly used CRC-16

or CRC-32 polynomial specified by the ITU standards. As the number of bits in the CRC increases,

the probability of encountering two different blocks with the same CRC during the data transmission

approaches zero. Thus, the CRC-32 is enough for many applications.

Each codeword of a binary (n, k) CRC code consists of n = k + r bits. The block of r parity bits is

computed from the block of k information bits. The code has a degree r generator polynomial g(x). It also

has the property of linear code, i.e., the bitwise addition of any two codewords yields a new codeword.

Error detection at the receiver is made by computing the parity bits from the received information block

and comparing them with the received parity bits. An undetected error occurs when the received word is

a codeword, but is different from the one that is transmitted. This is possible only when the error pattern

is a codeword by itself because of the linearity of the code. The performance of a CRC code is measured

by the probability of undetected errors. The comprehensive comparison among several different CRC

codes can be found in [10].

Example 14.4: The following CRC-32 generator polynomial is used to generate 32-bit CRC

codewords:

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1. (14.12)

The polynomial (0xEDB88320L) is used in Equation (14.12). Note that we take the reversed order

and put the highest order term in the lowest order bit. Thus, the term x32 is added and the LSB is

the term x31. The first term (x0) results in the MSB being 1.

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

564 CHANNEL CODING TECHNIQUES

Input bit

Convolutional
coded bit 0

Convolutional
coded bit 1

z−1 z−1 z−1 z−1 z−1

Figure 14.8 A rate 1/2, constraint length 5 convolutional encoder

14.3 Convolutional Codes

A convolutional code is generated by passing the information sequence through a linear finite-state shift

register. In general, the shift register consists of L(k-bit) stages and n linear algebraic function generators.

The encoder shifts the binary data into the shift register k bits at a time. The number of output bits is n for

each k-bit input sequence. This results in the code rate of Rc = k/n. The parameter L is the constraint

length of the convolutional code.

Convolutional code is a special case of error-control code. Unlike a block code, a convolutional coder

is a device with memory. Even though a convolutional coder accepts a fixed number of information

symbols and produces a fixed number of code symbols, its computation depends not only on the current

set of input symbols, but also on some of the previous input symbols.

14.3.1 Convolutional Encoding

Convolutional codes provide error-correction capability by adding redundancy bits to the information bits.

The convolutional encoder is implemented by either the table-lookup or shift register method. Figure 14.8

shows a rate one-half (1/2) convolutional coder.

The convolutional encoder shown in Figure 14.8 uses the following two polynomial generators:

b0 = 1 ⊕ x ⊕ x3 ⊕ x5 (14.13)

b1 = 1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5. (14.14)

For the rate 1/2 convolutional encoder, each input information bit has two encoded bits, where bit 0 is

generated by Equation (14.13) and bit 1 is generated by Equation (14.14). This redundancy enables the

Viterbi decoder to choose the correct bits under noise conditions.

14.3.2 Viterbi Decoding

Convolutional encoder can also be represented using the states. The basic block diagram of a 32-state

trellis is illustrated in Figure 14.9. In this scheme, each encoding state at time n is linked to two states

at time n + 1 as shown in Figure 14.9. Each link from the old state at time n to the new state at time

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

CONVOLUTIONAL CODES 565

State i

State i + 16

Time n Time n + 1

Path mx
State j

State j + 1

Path mx

Path my

Path my

Figure 14.9 Trellis diagram of the rate 1/2, constraint length 5 convolutional codes

n + 1 associates with a transition path. The new state at time n + 1 ending up with state j or state j + 1

depends on the input bit path being mx or my .

In the decoding side, decoder also maintains the states to track the minimum distance with consideration

of all possible transition paths. For example, the transition path mx is from state i to state j , and my is

the transition path from state i + 16 to state j . The accumulated path history is calculated as

state(j) = min
{
state(i) + mx, state(i + 16) + my

}
, (14.15)

where the new state history, state(j), is chosen as the small one of the two accumulated past history paths

state(i) and state(i + 16) plus the transition paths mx and my, respectively.

The Viterbi algorithm decodes the trellis coded information bits by expanding the trellis over the

received symbols. The Viterbi algorithm reduces the computational load by taking advantage of the

special structure of the trellis codes. It calculates the ‘distance’ between the received signal path and all

the accumulated trellis paths entering each state. After doing comparison at each state, keep only the

most likely path (called surviving path – the path with the shortest distance) based on the current and past

path history, and discard all other unlikely paths. Such early rejection of unlikely paths greatly reduces

the computation needed for the decoding process.

Example 14.5: Consider the following convolutional code:

b0 = 1 ⊕ x ⊕ x2. (14.16)

b1 = 1 ⊕ x2. (14.17)

The input is ‘00101001’ and the initial state is set to 00. The output of this 1/2 convolutional

encoder is ‘0000110100011111’. This can also be done by running MATLAB script as follows:

trel = poly2trellis(3,[5 7]); % Define trellis
msg = [0 0 1 0 1 0 0 1]'; % Information data
code = convenc(msg,trel) % Encode

In poly2trellis(3,[5 7]), 3 is the constraint length, 5 in octet format (101 in binary) is

the generator polynomial defined in Equation (14.17), and 7 in octet format (111 in binary) is

the generator polynomial defined in Equation (14.16). convenc(msg,trel) will return code =
0000110100011111. The decoding path is illustrated in Figure 14.10 without error.

In Figure 14.10, there is no error. The decoding path follows the minimum distance. The distance

is the Hamming distance [5] defined as

d = d(c, r) = r0 ⊕ c0 + r1 ⊕ c1 + · · · rn−1 ⊕ cn−1, (14.18)

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

566 CHANNEL CODING TECHNIQUES

Received bits

00

00

00
0 0

11 10 00 10
2 1 0 0

00

00

0

1111
2

00 00 00 00 00 00 00

00

000000000000

01010101

0 0

0

1 0 1 0 0 1

010101

01 01 01 01 01 01

0000000000

1111111111

11 11 11 1111

1111

10 10 10
10 10 10 10

11

11

Output 1

Output 0

Distance

Decoded bits

Figure 14.10 An example of trellis decoding without error

where c = (c0, c1, . . . , cn−1) is any n-bit source codeword and r = (r0, r1, . . . , rn−1) is the received

codeword. In this example, the possible d in a single node can be 0, 1, 2, or 3. Since there is no

error, there is only one path that makes all distance to be minimum 0.

Example 14.6: Using the same convolutional code given in Example 14.5, find the decoding path

that leads to the minimum Hamming distance. The following MATLAB script is used to simulate

the channel errors and perform Viterbi decoding:

ncode = code; % Copy code from Example 14.5
ncode(6) =0; % Error bit
ncode(11) =0; % Error bit
tblen = 3; % Trace back length
decoded = vitdec(ncode,trel,tblen,'cont','hard'); % Hard decision

The Viterbi decoding function vitdec() will return decoded = 00101001. The decoding

path has been illustrated in Figure 14.11. There is an error in the third pair of bits. Due to this error,

there is no path with distance 0. In this case, there are two possible paths resulting in 0 or 1 since

both path distances are the same. After the fourth pair comes, calculate four possible paths, and

only one path results in the accumulated minimum distance 1, which survives and decodes with

the proper value. Eliminate the bad paths, and a surviving path continues. The same rule applies

to the second error that occurs at the sixth pair of bits.

14.3.3 Applications of Viterbi Decoding

Wireless communication technologies have been greatly improved in recent years. Digital cellular systems

include both the infrastructures (such as the cellular base stations) and the handsets. A simplified wireless

communication system illustrated in Figure 14.12 consists of three sections: transmitter, receiver, and

channel. The system contains speech coding and decoding, channel coding and decoding, and finally,

modulation and demodulation.

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

CONVOLUTIONAL CODES 567

00 00 00 00

00 00 00 0000 00

11

01

10

11

00

01

11

01

10

11

00

01

11

01

10

11
00

01

11

01

10

11
00

01

11

01

10

11

00

01

11

01

10

11

00

01

00

01

10

11

00 00 10 10 00
Received bits

00 11 11
0 10 1 0 0 0 2

Decoded bits

0 0 1 0 1 0 0 0

Errorbit

1

0

0
0

1

11

Output 1

Output 0

Distance 0

00

Error bit

1

1

0

0000

Figure 14.11 An example of trellis decoding with error

Speech
samples

Transmitter
filter

Speech
encoder

CRC

InterleaveModulation

Convolutional
encoder

Rayleigh
fading

Gaussian
noise

Receiver
filter

SynchronizeDemodulation

EqualizerDeinterleave
Viterbi
decoder

Speech
decoder

CRC
Speech
samples

Transmitter

Receiver

Figure 14.12 Simplified wireless communication system

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

568 CHANNEL CODING TECHNIQUES

Write column
by columnRead in

row by row

(a) before interleave (a) after interleave

Read in
row by row

b0 b0

b5

b5

b10

b10

b15

b15

b20

b20

b21

b21

b22

b23

b24b22 b23 b24

b16

b16

b17

b18

b19

b17 b18 b19

b11

b11

b12

b13

b14

b12 b13 b14

b6 b6

b7

b8

b9

b7 b8 b9

b1

b1

b2

b3

b4

b2 b3 b4

Figure 14.13 A simple example of interleave scheme: (a) before interleave; (b) after interleave

The speech (or source) coding is one of the important DSP applications in wireless communications.

As discussed in Chapter 11, the vocoders compress speech signals for bandwidth limited communication

channels. The most popular vocoders for wireless communications compress speech from 64 kbps to the

range of 6–13 kbps.

The FEC used in the system shown in Figure 14.12 consists of the convolutional encoding and Viterbi

decoding algorithms. Modern DSP processors such as the TMS320C55x have special instructions for

efficient implementation of Viterbi decoders. The most computational intensive operations of the Viterbi

decoding comprise of many add-compare-select iterations. The number of add-compare-select calcu-

lations depends on the constraint length L and is equal to 2(L − 2). As L increases, the coding gain

increases with soft decision. However, the number of add-compare-select calculations increases ex-

ponentially. The C55x processors perform the add-compare-select operation in single cycle using the

dedicated instructions such as addsub, subadd, and maxdiff.

Channel equalization and estimation are important and challenging DSP tasks for digital commu-

nications. The channels of wireless mobile communications are far more complicated than the dial-up

channels due to the deep channel-fading characteristics and multipath interferences. Some of the wireless

communication devices use equalizers, but most of them use channel-estimation techniques. To combat

the burst errors, interleave schemes are used. Although a severe fading may destroy an entire frame, it

is unusual for the fading to last for several frames. By spreading the data bits across a longer sequence,

the Viterbi algorithm can recover some of the lost bits at the receiver. As illustrated in Figure 14.13, a

simple example of the interleaving technique is to read symbols row by row and write them out column

by column.

In this example, the input data is 5 bits per frame {b0, b1, b2, b3, b4}, {b5, b6 b7, b8, b9}, etc., as shown

in Figure 14.13(a). These bits are written into a buffer column by column as shown in Figure 14.13(b),

but are read out row by row as {b0, b5, b10, b15, b20}, etc. Therefore, not all the bits from one frame will

be lost by a bad received slot due to the channel fading.

Another important component in Figure 14.12 is the Rayleigh fading-channel model. In a mobile

communication environment, the radio signals picked up by a receiver antenna come from many paths

caused by the surrounding buildings, trees, and many other objects. These signals can become constructive

or destructive. As a mobile phone user travels, the relationship between the antenna and those signal paths

changes, which causes the fading to be randomly combined. Such effects can be modeled by the Rayleigh

distribution called Rayleigh fading. In order to provide a mobile communication environment for wireless

design and research, effects of multipath fading must be considered.

Example 14.7: Two Rayleigh fading models have been developed, one was proposed by Jackes

[14], and the second model uses a second-order IIR filter. The Jackes fading-channel model can be

implemented in C as listed in Table 14.6. The channel noise is simulated using a white Gaussian

noise.

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 569

Table 14.6 C implementation of fading-channel model proposed by Jakes

/* PI = 3.14
C = 300000000 m/s
V = Mobile speed in mph
Fc = Carrier frequency in Hz
N = Number of simulated multi-path signals
N0 = N/4 - 1/2, the number of oscillators

*/
wm = 2*PI*V*Fc/C;
xc(t) = sqrt(2)*cos(PI/4)*cos(wm*t);
xs(t) = sqrt(2)*sin(PI/4)*cos(wm*t);
for(n=1;n<=N0;n++)
{

wn = wm*cos(2*PI*n/N);
xc(t) += 2*cos(PI*n/N0)*cos(wm*t);
xs(t) += 2*sin(PI*n/N0)*cos(wm*t);

}

14.4 Experiments and Program Examples

In this section, we will implement the Reed–Solomon encoder, decoder, convolutional encoder, Viterbi

decoder, and CRC code using MATLAB, C, or C55x programs.

14.4.1 Reed–Solomon Coding Using MATALB

This section implements the RS(7, 3) Reed–Solomon code using MATLAB. The codeword length is

n = 7 and the message length is k = 3. The data to be encoded is given in Table 14.7. Using the primitive

polynomial (1011), the generator polynomial is generated by MATLAB function rsgenpoly(7,3)

provided in the Communication Toolbox.

In this experiment, the primitive polynomial is p(x) = 1 + x + x3. The output of generation poly-

nomial function rsgenpoly(7,3) is (1 3 1 2 3), which is in symbol format and can be con-

verted to polynomial presentation using Table 14.2. Thus, the generator polynomial generated by

rsgenpoly(7,3) is g(x) = x4 + (α + 1)x3 + x2 + αx + (α + 1), where α is the root of p(x).

Using MATLAB functions that support the Reed–Solomon encoder rsenc(), decoder rsdec(),

and Galois field array creator gf(), we can easily simulate a communication system. The MATLAB

script is listed in Table 14.8. In this experiment, a 3-symbol array msg is encoded and a 7-symbol code

Table 14.7 RS(7, 3) encoded, erased, and decoded data

Symbols Raw data (msg) Encoded (code) Erased (rxcode) Decoded (decod)

1 3 3 2 3

2 5 5 5 5

3 0 0 0 0

4 3 3

5 6 6

6 6 6

7 5 2

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

570 CHANNEL CODING TECHNIQUES

Table 14.8 Listing of Reed–Solomon (7, 3) encoding and decoding

msg1= [3 5 0]; % Information
m = 3; % Number of bits per symbol
n = 2^m-1; % Word lengths for code
k= 3; % Number of information symbols
msg=gf([msg1],m) % Galois array
gen=rsgenpoly(n,k); % Specify RS generation polynomial
code = rsenc(msg,n,k,gen) % Encode the information symbols
rxcode = code; % Transmit and receive
rxcode(1)= 2; % Error eraser
rxcode(7) = 2; % Error eraser
decod = rsdec(code,n,k,gen) % Decoding

is generated. The received rxcode contains two errors. The decoded symbols are stored in decod. All

these arrays are listed in Table 14.7.

Procedures of the experiment are listed as follows:

1. Start MATLAB and change the working directory to ..\experiments\exp14.4.1_RS_codec.

2. Run the experiment by typing rs_codec in the MATLAB command window.

3. Modify the error locations and the number of errors in a frame to check decoder output decod. The

maximum correctable errors in a frame are two symbols.

4. Modify the code to use RS(15, 11). Repeat the same tests.

5. Write floating-point C implementation of the RS(7, 3) and compare the result with the MATLAB

output.

6. Convert the floating-point C functions to C55x assembly functions, and compare the experiment

results against the MATLAB results.

14.4.2 Reed–Solomon Coding Using Simulink

Using the same generation polynomial given in the previous experiment and the same RS(7, 3) coding,

we can use a Simulink model to simulate a wireless system. As shown in Figure 14.14, we have signal

source Bernoulli binary generator, RS(7, 3) encoder and decoder modules, modulation and demodulation

modules, parallel to serial and serial to parallel conversions, AWGN channel, and bit-error monitors. The

parameters such as codeword length, bit-error rate (BER), n and k of RS(n, k) can be configured. For

example, double click on the AWGN module to change signal-to-noise ratio (SNR) which will affect the

BER.

Procedures of the experiment are listed as follows:

1. Start MATLAB and change the working directory to ..\experiments\exp 14.4.2_RS_

simulink.

2. Run the experiment by typing Reed_Solomon in the MATLAB command window. This starts the

Simulink and creates a window as shown in Figure 14.14.

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 571

Figure 14.14 Simulink model for Reed–Solomon code

3. Modify SNR of WGN channel, and then check the BER.

4. Modify the code to use RS(15, 11) encoder and decoder. Repeat the same tests.

5. Compare the BER before and after correction. As shown in Figure 14.14, there are 4678 and 14 bit

errors corresponding to BER of 0.005948 and 0.00004153, respectively, before and after correction.

Note that the bit rate before correction is 7/3 times higher than that of after correction.

14.4.3 Verification of RS(255, 239) Generation Polynomial

As discussed in Example 14.2, we used the generation polynomial {g0, g1, . . . , g16} = {0x4f, 0x2c,

0x51, 0x64, 0x31, 0xb7, 0x38, 0x11, 0xe8, 0xbb, 0x7e, 0x68, 0x1f, 0x67, 0x34, 0x76, 0x01}, stored

in gpoly_alpha, and the primitive polynomial p(x) = 1 + x2 + x3 + x4 + x8. All αi , i = 1, . . . , 16,

are the roots of this generation polynomial defined in Equation (14.5).

With the given primitive polynomial, we can compose a table for GF(256). The elements are populated

as follows:

α0 − α7 = 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
α8 = α4 + α3 + α2 + 1 = 0x1d
α9 = α8α1 = (α4 + α3 + α2 + α1)α1 = α5 + α4 + α3 + α1 = 0x3a

Using the same method, all data for αi , i = 0, . . . , 255 over GF(256) can be calculated and this data

is generated in the table alpha_tabl[].

Using a similar method, we can also convert the generation polynomial to index-based table as int

gpoly_index[17] = {0x88, 0xf0, 0xd0, 0xc3, 0xb5, 0x9e, 0xc9, 0x64,0x0b, 0x53, 0xa7, 0x6b,

0x71, 0x6e, 0x6a, 0x79, 0x00}. With these tables, we can verify that αi , i = 1, . . . , 16, are all the

roots of g(x). Table 14.9 lists the C code to verify if g(αi) = 0 for i = 1, . . . , 16. The files used for this

experiment are listed in Table 14.10.

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

572 CHANNEL CODING TECHNIQUES

Table 14.9 C code to verify the roots of generation polynomial

void main(void)
{

short i,j;
short x[17];
for (i=1;i<=16;i++) // alpha ^1, ^2, ..., ^16
{

x[i] = gpoly_alpha[0];
for (j=1;j<=16;j++)
{

x[i] = x[i] ^ (alpha_tabl[(gpoly_index[j]+j*i)%255]);
}
printf("alpha^%2d makes the generation polynomial = %d\ n",i, x[i]);

}
}

Procedures of the experiment are listed as follows:

1. Start CCS, open the project verify_root.prj, build, and load the program.

2. Check the output to see if all of them are zeros.

3. Modify x[i] with one error and do the same calculation to see if the corresponding output is zero.

14.4.4 Convolutional Codes

This experiment implements convolutional codes using the Simulink model conv_vit.mdl shown in

Figure 14.15. Using the modules given in Section 14.4.2, we replaced the Reed–Solomon encoder with

convolutional encoder and the Reed–Solomon decoder with the Viterbi decoder. This example uses the

rate 1/2 convolutional code with constraint length of 7.

The polynomial for bit 0 in the upper addition node is 1011011 (Octet 133), which can be expressed

as

b0 = 1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x6. (14.19)

The polynomial for bit 1 in the lower addition node is 1111001 (Octet 171), and can be expressed as

b1 = 1 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x6. (14.20)

Table 14.10 File listing for experiment exp14.4.3_RS_root

Files Description

verify_root.prj C55 project file

root_test.c C file calculates the polynomial with α

table.c α-indexed data over GF(256)

verify_root.cmd C55x linker command file

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 573

Figure 14.15 Convolutional encoding and Viterbi decoding with AWGN channel

We use function poly2trellis(7, [133 171]) in the field for the trellis structure. Similar to

Example 14.5, the constraint length is 7 in this trellis structure, 133 in octet format is the generator

polynomial defined in Equation (14.20), and 171 in octet format is the generator polynomial defined in

Equation (14.19). In the Viterbi decoding side, the trace-back depth or decision types can be modified as

in Example 14.6.

Procedures of the experiment are listed as follows:

1. Start MATLAB and change the directory to ..\experiments\exp14.4.4_Viterbi.

2. Run the experiment by typing conv_vit in the MATLAB command window. This starts the Simulink

and creates a window that contains the wireless communication system as shown in Figure 14.15.

3. Modify the SNR of WGN channel, and then check the BER.

4. Modify the convolutional encoder and Viterbi decoder modules to use poly2trellis(5, [27

25]), and check the BER.

5. Change track depth in Viterbi decoder module from 96 to 72 to see the performance difference.

6. Compare the BER before and after correction. As shown in Figure 14.15, there are bit errors of 26 190

and 24 corresponding to BER of 0.02289 and 0.00004196, respectively, before and after correction.

Note that the bit rate before correction is two times higher than that of after correction.

14.4.5 Implementation of Convolutional Codes Using C

This experiment implements the rate 1/2 convolutional code with constraint length 7. The files used for

this experiment are listed in Table 14.11.

The table xorOp[256] is generated to simulate the XOR operations of all 8 bits in byte. The C

code which performs 1/2 convolutional code is listed in Table 14.12, where encState represents the

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

574 CHANNEL CODING TECHNIQUES

Table 14.11 File listing for experiment exp14.4.5_CONV

Files Description

conv_trs27.pjt DSP project file

conv_trs27Test.c Main program for testing experiment

table.c Precalculated generation data

conv_trs27.c Calculation of convolutional code

conv_trs27.h Header file with constants and prototyping

conv_trs27.cmd C55x linker command file

dtmf12.pcm Data file

Table 14.12 C code of 1/2 rate convolutional encoding

#define POLYGEN0 0x6d
#define POLYGEN1 0x4f

void conv_trs27 (FILE *fpin ,FILE *fpout)
{

unsigned short encState;
short i,input;
unsigned char byte0,byte1;
encState = 0;
while((input=getc(fpin)) != EOF)
{

input = (input)&0x00ff;
byte0 = byte1 = 0;
for(i=7;i>=0;i--){

encState = (encState << 1) | ((input >> 7) & 1);
input <<= 1;
/* to compose a byte */
byte0 <<=1;
byte1 <<=1;
byte0 | = xorOp[encState & POLYGEN0];
byte1 | = xorOp[encState & POLYGEN1];

}
fwrite(&byte0,sizeof(char),1,fpout);
fwrite(&byte1,sizeof(char),1,fpout);

}
/* Generate last one */
byte0 = byte1 = 0;
for(i=5;i>=0;i--){

encState = encState << 1;
byte0 <<=1;
byte1 <<=1;
byte0 | = xorOp[encState & POLYGEN0];
byte1 | = xorOp[encState & POLYGEN1];

}
fwrite(&byte0,sizeof(char),1,fpout);
fwrite(&byte1,sizeof(char),1,fpout);

}

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 575

Input bit

Convolutional
coded byte1 0x5d

Convolutional
coded byte0 0x64

0 1 1 1 0 1 0 10 0 0 0 0 0 0

0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0s6 s5 s4 s3 s2 s1 s0

1 1 0 0 1 0 0

0

b7 b6 b5 b4 b3 b2 b1 b0

1 0 1 1 1 0 1

Upper byte
polynomial
0x6d

Lower byte
polynomial
0x4f

Figure 14.16 Example of 1/2 rate, 7-bit constraint convolutional encoding

encoder states, and byte0 and byte1 are the outputs of path 0 and path 1, respectively, as shown in

Figure 14.16.

When running the C55x program to encode the data from file dtmf12.pcm, the first four codewords are

listed in Table 14.13. Figure 14.16 illustrates this example by showing how to interpret the polynomials

POLYGEN0=0x6d and POLYGEN1=0x4f from the source code to the shift circuits.

Procedures of the experiment are listed as follows:

1. Start CCS, open the project conv_trs27.pjt, build, and load the program.

2. Using the MATLAB script given in Example 14.5 as reference, write a MATLAB program to perform

the same task.

3. Calculate the first four results by hand as shown in Table 14.13.

14.4.6 Implementation of CRC-32

This experiment implements the CRC-32 introduced in Example 14.4. The files used for this experiment

are listed in Table 14.14. Using the projectCRC32 in the directory..\experiments\exp14.4.6_CRC32,

compile, load, and run the code.

The code crc32_calc.c is listed in Table 14.15. The crcTable[256] in the file crc32Table.h

contains all the precalculated data that is the 1-byte output of the generation polynomial.

Table 14.13 The first four encoded codewords

Sequence Input Initial state End state Upper byte Lower byte

1 0x75 0x00 0x75 0x64 0x5d

2 0xfd 0x75 0xfd 0x45 0x14

3 0x18 0xfd 0x18 0xe1 0x85

4 0xfc 0x18 0xfc 0x78 0xc1

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

576 CHANNEL CODING TECHNIQUES

Table 14.14 File listing for experiment exp14.4.6_CRC32

Files Description

crc32.pjt C55 project file

crc32_test.c Main program for testing experiment

table.c Precalculated generation data

crc32_calc.c CRC-32 calculation

crc32.h Header file

crc32Table.h Precalculated CRC table data

crc32.cmd C55x linker command file

dtmf12.pcm Data file

Table 14.15 C code to calculate CRC-32

/*
poly: X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0

0xEDB88320L =1110,1101,1011,1000,1000,0011,0010,0000B
*/

unsigned long calcCrc(FILE *fp)
{

unsigned long crc, acc1,acc0;
short byteIn;
crc=0;
while((byteIn=getc(fp)) != EOF) {

acc0 = crc^MAX32BIT;
acc1 = (acc0>>8) & MAX24BIT;
acc0 = crcTable[(acc0^byteIn)&0xFF];
crc = acc0^(acc1) ;

}
return(crc);

}

If processing the same dtmf12.pcm using this code and the standard WinZip, the output CRC check

value is the same crc32 = 0x5290f9e8. Procedures of the experiment are listed as follows:

1. Start CCS, open the project crc32.prj, build, and load the program.

2. Compare the CRC value against the CRC generated from WinZip for the same file.

3. This experiment uses table for CRC-32 computation. Modify the experiment such that the CRC-32

is run-time computed using shift registers.

References

[1] D. J. Rauschmayer, ADSL/VDSL Principles: A Practical and Precise Study of Asymmetric Digital Subscriber
Lines and Very High Speed Digital Subscriber Lines, Indiana: Macmillian, 1999.

[2] K. Hiltunen, Coding and Interleaving in CDMA, System Services Department, FIN-02420 Jorvas, Finland, Oct.

1997.

[3] MATLAB, Version 7.0.1 Release 14, Sep. 2004.

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

EXERCISES 577

[4] T. S. Rappaport, Wireless Communications – Principles and Practice, Prentice Hall, NJ: IEEE Press, 1996.

[5] M. Y. Rhee, Error Correcting Coding Theory, New York: McGraw-Hill, 1989.

[6] A. Matache,‘Encoding/decoding Reed Solomon codes,’ Oct. 1996, http://www.ee.ucla.edu/∼matache/rsc/

slide.html.

[7] L. Baert, Digital Audio and Compact Disc Technology, 2nd Ed., UK: BH Newnes, 1995.

[8] W. Tian, ‘ECC scheme for wireless digital audio signal transmission,’ US patent no. 6 327 689, Dec. 2001.

[9] E. Alhoniemi, ‘Error detection and control in data transfer,’ Nov. 1998, http://users.tkk.fi/∼eal/essay10.html.

[10] D. Sheinwald, J. Satran, P. Thaler, and V. Cavanna. ‘Internet protocol small computer system interface (iSCSI)

cyclic redundancy check (CRC)/checksum considerations,’ IETF RFC 3385, Sep. 2002.

[11] A. J. Viterbi, ‘Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,’ IEEE
Trans. Inf. Theory, vol. IT-13, pp. 260–269, Apr. 1967.

[12] Texas Instruments, Inc.,Viterbi Decoding Techniques in the TMS320C54x Family, Literature no. SPRA071, 1996.

[13] Texas Instruments, Inc., TMS320C55x DSP Programmer’s Guide, Literature no. SPRU376A, 2001.

[14] W. C. Jakes, Jr., Microwave Mobile Communications, New York: John Wiley & Sons, 1974.

Exercises

1. Figure 14.17 shows a rate 1/2, constraint length 3 convolutional encoder:

(a) Find the upper and lower generation polynomials.

(b) Given the input data ‘00110011’ and assuming all initial states are zero, calculate the output bits from the

encoder.

Input bit

Convolutional
coded lower bit

Convolutional
coded upper bit

z−1 z−1 z−1

Figure 14.17 A rate 1/2, constraint length 3 convolutional encoder

2. For the primitive polynomial p(x) = 1 + x + x6, α is the root of the primitive polynomial. This

yields α6 + α + 1 = 0. Using Table 14.2 as an example, list the exponential, polynomial, and symbol

presentations. You may use MATLAB script to find these values.

3. In Figure 14.11, the trellis-encoded data contains errors. If the third pair of bits has been changed

from 11 to 00, draw a decoding path to see if this error can be corrected or not.

4. In wireless communications, if the FEC is used with convolutional code, usually a CRC will be

generated along with the convolutional encoded data. Why this CRC code is necessary? On the other

hand, why the Reed–Solomon encoded data may not need CRC?

JWBK080-14 JWBK080-Kuo March 2, 2006 16:22 Char Count= 0

578

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

15
Introduction to Digital
Image Processing

Digital images and videos have become an integral part of entertainment, business, and education in

our daily life. Since the video and image compression algorithms have a very broad scope, this chapter

will focus only on some fundamental image processing methods. We will use the C5510 DSK for

experiments and MATLAB functions available in the Image Processing Toolbox for image processing,

analysis, visualization, and algorithm development.

15.1 Digital Images and Systems

Image processing applications such as high-definition televisions (HDTV), digital still cameras, Internet

TV, and personal media centers are everywhere. Image processing and video signal processing have

become highly demanding skills for DSP engineers. Due to the tremendous amount of digital data to be

processed, DSP processors used for image and video processing require efficient processing units, fast I/O

throughput, and even to be equipped with hardware accelerators for special image processing functions

such as discrete cosine transform (DCT), inverse DCT (IDCT), and variable length coding and decoding.

Texas Instruments’ TMS320C55x family is capable of performing many image processing tasks. For

example, the TMS320C5510 includes hardware accelerators for motion estimation, DCT, and interpo-

lation functions. These image accelerators can dramatically improve the processing speed for video and

image compression algorithms used by H.263, MPEG-4, MPEG-2, and JPEG. Digital image processing

has many common characteristics as one-dimensional (1-D) signal processing introduced in previous

chapters, but with many specific aspects. In this section, we will introduce the basic concepts of digital

images and digital image systems.

15.1.1 Digital Images

A digital image is a set of sampled data that mapped onto a two-dimensional (2-D) grid of colors. Similar

to 1-D signals, digital images can be represented using digits (samples) in a 2-D space. Each image

sample is called a pixel, which stands for picture element. For a black-and-white (B&W) image, each

pixel consists of one number, while the color image consists of multiple numbers for each pixel. To

display the intensity used for B&W images, the digital numbers are usually converted to gray levels

between 0 and 255, where ‘0’ represents a black pixel, while ‘255’ corresponds to a white pixel. For

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

579

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

580 INTRODUCTION TO DIGITAL IMAGE PROCESSING

machine vision, B&W image usually can provide adequate information. Each pixel of color images can

be represented using three numbers for the three primary colors: red (R), green (G), and blue (B), thus

is often referred as RGB data. Proper mixing of these three primary colors can generate different colors.

Each data can be stored as a byte in memory, and this forms the commonly used 24-bit RGB data (8 bits

for R, 8 bits for G, and 8 bits for B). Color images are widely used in photographs, television broadcasts,

and computer displays.

The 1-D signal processing is constrained by the sampling theorem, while the digital image is bonded

in spatial domain. The image resolution is the ability of distinguishing spatial details of images. The

terms dots-per-inch and pixel-per-inch are commonly used for image resolution. In audio applications,

higher sampling rate generally yields better audio quality with the trade-off of higher data rate. Likewise,

an image with more pixels generally has better (or finer) spatial resolution since this image is equivalent

to having a higher ‘sampling rate’.

Another term often used is pixel dimensions, which means the image width and height in terms of

the numbers of pixels. For example, the National Television System Committee (NTSC) defines that the

television standard for North America is 720 pixels (width) by 480 pixels (height). Today, most of the

digital images are in the size of 1024 × 768 pixels or larger for computers and HDTVs, and 720 × 480

or smaller for real-time transmission via networks.

Although high-resolution images are desired for viewing, many applications still use lower resolution

images because the amount of data to be processed limits the real-time processing ability and the storage

and transmission capacity. For video applications, the data samples are usually measured in megabytes

per second.

15.1.2 Digital Image Systems

A simplified digital image system is shown in Figure 15.1. The input image captured by the sensor is

sent to the processing unit, and the processed image is presented to storage media, display device, or

RGB color
space

processing

Bayer RGB to
RGB CFA

interpolation

Gamma
correction
and white
balance

Image
compression-
DCT and etc.

RGB to
YCbCr

conversion

YCbCr color
space

processing

Sensor

(a) Simplified digital image system block diagram.

(b) Functional blocks of the image processing system.

Processing Display

Transmit

Storage

Figure 15.1 Block diagram of digital image system: (a) simplified digital image system block diagram; (b) func-

tional blocks of the image processing system

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

RGB COLOR SPACES AND COLOR FILTER ARRAY INTERPOLATION 581

G R G R G R G R G R G R G R G R

B G B G B G B G B G B G B G B G

G R G R G R G R G R G R G R G R
B G B G B G B G B G B G B G B G
G R G R G R G R G R G R G R G R
B G B G B G B G B G B G B G B G

G R G R G R G R G R G R G R G R
B G B G B G B G B G B G B G B G

G R G R G R G R G R G R G R G R
B G B G B G B G B G B G B G B G
G R G R G R G R G R G R G R G R
B G B G B G B G B G B G B G B G

Figure 15.2 A 16 × 12 Bayer RGB color pattern

transmitted over the network. The data acquisition device can be a charge-coupled device (CCD) or a

complimentary metal-oxide semiconductor (CMOS) sensor. These image sensors convert the light, or

scene, into electrical signals and store them in an array of area with n-by-m memory. Most CCD and CMOS

sensors for digital still cameras range from 2560 × 1920 pixels (5M pixels) to 3072 × 2304 (7M pixels).

The sensor image data stored in memory is usually arranged as an array of n-by-m colored digital

elements. This format is called Bayer RGB pattern. The Bayer RGB pattern is the most popular image

format used for CCD and CMOS sensors. Figure 15.2 shows a 16 × 12 Bayer RGB color image. For

these 192 pixels, half of them are green, one-quarter are red, and one-quarter are blue.

The CCD or CMOS sensors can output pixels in a line-by-line sequential order. For example, the

output can be in the form of GRGRGR. . . GR for even lines, and BGBGBG. . . BG for odd lines. There

are several representations of color images used in digital video display and image processing. A color

space represents colors using digital pixels. A B&W image uses one number for each pixel, while the

color image needs multiple numbers per pixel.

15.2 RGB Color Spaces and Color Filter Array Interpolation

For digital cameras or video camcorders, a sensor is often used to capture the photon signal and convert

it into electronic signal. A CCD sensor has high quality and often used for high-end photographic

equipments; however, the CCD sensor also has high power consumption. A CMOS sensor requires

less power, and thus is often used in portable devices such as wireless camera phones where power

consumption is an important issue. The image sensors output 2-D Bayer RGB color signals as shown in

Figure 15.2. The RGB pattern from an image sensor is called color filter array (CFA) RGB. In a CFA

RGB pattern, each pixel contains only partial information. As shown in Figure 15.2, the 16 × 12 Bayer

RGB pattern is consisted only of 96 green pixels, 48 red pixels, and 48 blue pixels. To make a true RGB

color space, each pixel must have three data values to represent the three primary color components. The

process of converting the Bayer RGB to a true RGB color space is called CFA RGB interpolation. The

interpolation process finds and fills in the missing pixels. Figure 15.3 shows the RGB color space after

the CFA interpolation from the Bayer RGB color pattern given in Figure 15.2. Since each color pixel

uses three numbers, the RGB color space contains three times of numbers than the Bayer RGB. The RGB

color space shown in Figure 15.3 contains 192 × 3 numbers. In RGB color space, the other colors are

obtained by proper mixing of the R, G, and B primary colors.

To convert the Bayer RGB pattern to the RGB color space, we need to interpolate two missing

color values for each pixel. There are several methods to perform CFA interpolation, including linear,

nearest neighbor, and cubic etc., with different complexities and speeds. Because the pixel interpolation is

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

582 INTRODUCTION TO DIGITAL IMAGE PROCESSING

R R R R R R R R R R R R R R R R
R R R R R R R R R R R R R R R R
R R G G G G G G G G G G G G G G G G
R R G G G G G G G G G G G G G G G G
R R G G B B B B B B B B B B B B B B B B
R R G G B B B B B B B B B B B B B B B B
R R G G B B B B B B B B B B B B B B B B
R R G G B B B B B B B B B B B B B B B B
R R G G B B B B B B B B B B B B B B B B
R R G G B B B B B B B B B B B B B B B B
R R G G B B B B B B B B B B B B B B B B
R R G G B B B B B B B B B B B B B B B B

G G B B B B B B B B B B B B B B B B
G G B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B
B B B B B B B B B B B B B B B B

Figure 15.3 A 16 × 12 RGB color space; each pixel has three numbers for R, G, and B

performed for every pixel of the Bayer RGB pattern to obtain the RGB color space, the CFA interpolation

demands a high computational load, especially for the real-time processing of large-size images.

The nearest neighbor interpolation method is illustrated here. To interpolate a red or blue pixel, there

are four possible conditions for each interpolation, as shown in Figure 15.4(a)–(h). For example, the

missing red pixel in Figure 15.4(b) can be interpolated from two neighboring red pixels R1 and R2. The

interpolated R0 or B0 is located in the center in the figures. The equations used for interpolating R and

B colors are listed as follows:

(a) R0 = R0.

(b) R0 = (R1 + R2) /2.

B G B G B G G R3 G R5 G R6

G R0 G R1 G R2 B G B G B G

B G B G B G G R4 G R7 G R8

(a)

(e) (f) (g) (h)

(b) (c) (d)

R G R G R G G B3 G B5 G B6

G B0 G B1 G B2 R G R G R G

R G R G R G G B4 G B7 G B8

G R G R G R G R1 G R B G B1 G B

B G B G B G B G1 B G G R G1 R G

G R G0 R G R4 G4 R G2 R2 B4 G4 B G2 B2

B G B G B G B G3 B G G R G3 R G

G R G R G R G R3 G R B G B3 G B

(i) (j) (k)

Figure 15.4 Interpolation of red, blue, and green pixels

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

RGB COLOR SPACES AND COLOR FILTER ARRAY INTERPOLATION 583

(c) R0 = (R3 + R4) /2.

(d) R0 = (R5 + R6 + R7 + R8) /4.

(e) B0 = B0.

(f) B0 = (B1 + B2) /2.

(g) B0 = (B3 + B4) /2.

(h) B0 = (B5 + B6 + B7 + B8) /4.

For green pixel interpolation, we refer to Sakamoto’s adaptive interpolation. As shown in Figure

15.4(i)–(k), there are three possible methods for green pixel interpolation. The adaptive interpolation

uses the correlation in the neighboring pixels to adapt the interpolation. When the horizontal correlation

is stronger, |R2 − R4| will be smaller than |R1 − R3|, the horizontal pixels G2 and G4 are used to

interpolate the missing center green pixel. When the vertical correlation is stronger, |R2− R4| will be

greater than |R1 − R3|, the vertical pixels G1 and G3 are used. When there is no dominating correlation,

we use all four neighboring green pixels. The CFA interpolation of missing pixels for the G color shown

in Figure 15.4(i)–(k) can be computed by the following equations. In the figures, the interpolated G0 is

in the center location.

(i) G0 = G0.

(j) G0 =
⎧⎨⎩

(G1 + G3) /2

(G2 + G4) /2

(G1 + G2 + G3 + G4) /4

if

if

if

R1 − R3	<	R2 − R4
R1 − R3	>	R2 − R4
R1 − R3	=	R2 − R4

.

(k) G0 =
⎧⎨⎩

(G1 + G3) /2

(G2 + G4) /2

(G1 + G2 + G3 + G4) /4

if

if

if

B1 − B3	<	B2 − B4
B1 − B3	>	B2 − B4
B1 − B3	=	B2 − B4

.

The wordlength of Bayer RGB samples from a sensor is usually from 8 to 14 bits. For the 8-bit RGB

color space, a pixel has three 8-bit numbers ranging from 0 to 255 to equally represent each color. The

RGB color can be viewed as a cube shown in Figure 15.5. For the 24-bit RGB space, the number 0

means no color and the number 255 represents the fully saturated color. In Figure 15.5, the primary color

number range of [0, 255] has been normalized to [0, 1].

Black
(0, 0, 0)

White
(1, 1, 1)

Green
(0, 1, 0)

Blue (0, 0,1) Cyan (0, 1,1)

Magenta
(1, 0, 1)

Figure 15.5 An RGB cube

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

584 INTRODUCTION TO DIGITAL IMAGE PROCESSING

15.3 Color Spaces

The RGB is the most widely used color space in color image processing. However, there are several other

color spaces for specific applications.

15.3.1 YCbCr and YUV Color Spaces

The RGB representation is based on technical reproduction of color information. However, the human

vision is more sensitive to brightness than color changes. This means a human being perceives a similar

image even if the color varies slightly. This fact leads to other representations such as the YCbCr color

space. The relation between the RGB color space and the YCbCr color space is defined by ITU CCIR

601 standard. The conversion matrix can be expressed as

⎡⎣ Y
Cb

Cr

⎤⎦ =
⎡⎣ 0.257 0.504 0.098

−0.148 −0.291 0.439

0.439 −0.368 −0.071

⎤⎦ ⎡⎣R
G
B

⎤⎦ +
⎡⎣ 16

128

128

⎤⎦ . (15.1)

The YCbCr is often used by JPEG and MPEG standards. ITU Recommendation 601 defines the number

Y with 220 positive quantization values, ranging from 16 to 235. The Cb and Cr values are ranged from 16

to 240, and centered at 128. The numbers 0 and 255 should not be used for image coding in the 8-bit color

spaces because these two numbers are used by some manufactures for special synchronization codes.

The YCbCr color space is mainly used for computer images, while the YUV color space is generally

used for composite color video standards, such as NTSC and PAL (phase alternating line), etc. The

relations between the RGB color space and the YUV color space are defined by ITU CCIR 601 standard as

⎡⎣Y
U
V

⎤⎦ =
⎡⎣ 0.299 0.587 0.114

−0.147 −0.289 0.436

0.615 −0.515 −0.100

⎤⎦ ⎡⎣R
G
B

⎤⎦ . (15.2)

MATLAB Image Processing Toolbox provides several color space conversion functions to convert

color images from one color space to another.

Example 15.1: MATLAB function rgb2ycbcr converts the RGB color space image to the YCbCr

color space. The function imshow displays image in either RGB color or gray level. The function

ycbcr2rgb converts the YCbCr color space back to the RGB color space. For example,

YCbCr = rgb2ycbcr(RGB); % RGB to YCbCr conversion
imshow(YCbCr(:,:,1)); % Show Y component of YCbCr data

The function imshow displays the luminance of the image Y=YCbCr(:,:,1) as a grayscale image.

The Cb and Cr are represented by the matrices YCbCr(:,:,2) and YCbCr(:,:,3), respectively.

The YUV and YCbCr data samples can be arranged in two ways: the sequential and the interleaved. The

sequential method is used for backward compatibility with the B&W television signals. The sequential

method stores all the luminance (Y) data in one continuous memory block, followed by the color difference

U block, and finally the V block. The data memory is arranged as YY. . . .YYUU. . . UUVV..VV. This

arrangement allows television decoder to access Y data continuously for the B&W televisions. For today’s

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

COLOR SPACES 585

image processing algorithms such as MPEG-4 and H.264, the data is usually arranged as interleaved

YCbCr format for fast access and to reduce the memory storage requirement.

15.3.2 CYMK Color Space

In addition to the RGB, YCbCr, and YUV color spaces, there are several other color spaces used by

modern digital image systems to fit their unique applications. For example, the CMYK (cyan, magenta,

yellow, and black) color space is a subtractive color space used primarily for color printers. The RGB

color space generates different colors by adding different portions of red, green, and blue color. On the

other hand, the CMYK describes different colors by subtracting from white color. This is because the

printer puts color on paper as a result of reflection. The color space conversion between the RGB and

CMYK color spaces is defined as

C = 1 − R
M = 1 − G
Y = 1 − B

(15.3)

The black (K) in the CMYK color space is the minimum of the C, M, and Y.

15.3.3 YIQ Color Space

The YIQ color space is similar to the YUV color space except that it uses an orthogonal quadrature

I–Q-axes. The I stands for in phase and the Q means quadrature phase. This color space takes advantage

of human visual color response. It is adapted by the early NTSC systems. The relationship between YUV

and YIQ color spaces is defined as

⎡⎣Y
I
Q

⎤⎦ =
⎡⎣1 0 0

0 − sin(33◦) cos(33◦)

0 cos(33◦) sin(33◦)

⎤⎦ ⎡⎣Y
U
V

⎤⎦ . (15.4)

Example 15.2: MATLAB function rgb2ntsc converts the RGB color space data to the YIQ

color space as for early NTSC standard. The MATLAB function ntsc2rgb converts the YIQ

color space back to the RGB color space. MATLAB script example15_2.m demonstrates the

RGB to YIQ color space conversion.

15.3.4 HSV Color Space

The HSV color space stands for hue, saturation, and value. The value is the gray level corresponding to

the luminance of the YUV color space. The saturation and hue (angle position) present the UV plane in

polar coordinates. The HSV function is a useful color space for publishing and art designing. The hue

(or angle) determines the color on a triangle as shown in Figure 15.6. Table 15.1 lists the relationship

between the hue and the color.

The saturation in HSV system represents the strength of the color. A large saturation number means

the color is purer. The value is responsible for the brightness or darkness of the color. A larger value

results in a brighter image.

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

586 INTRODUCTION TO DIGITAL IMAGE PROCESSING

Red GreenYellow

Blue

Magenta Cyan

HS

Figure 15.6 HSV triangle representation of color space

Example 15.3: MATLAB function rgb2hsv converts the RGB color space image to the HSV

color space. The MATLAB function hsv2rgb converts the HSV color space back to the RGB color

space. MATLAB script example15_3.m demonstrates the RGB–HSV color space conversion.

15.4 YCbCr Subsampled Color Spaces

The YCbCr color space can represent a color image more efficiently by subsampling the color space.

This is because the human vision does not perceive the chrominance with the same clarity as luminance.

Therefore, some data reduction from chrominance has little loss of visual content. Figure 15.7 shows four

YCbCr subsampling patterns. All four schemes have the identical image resolution; that is, they produce

the same size of images. However, the total numbers of bits used to represent these images are different.

YCbCr4:4:4 does not involve subsampling. For every Y sample, there is a Cr sample and a Cb sample

associated with it. Thus, this scheme preserves the full color fidelity of the chrominance. YCbCr4:2:2

scheme subsamples the chrominance of YCbCr4:4:4 by 2, which removes half of the chrominance sam-

ples. In this scheme, every four Y samples are only associated with two Cb and two Cr samples. More

chrominance samples are removed in YCbCr4:2:0 and YCbCr4:1:1 subsampling schemes. Table 15.2 lists

the total number of bits needed for a 720 × 480 digital image. For MPEG-4 video and JPEG image com-

pressions, YCbCr4:2:0 is often used to reduce the bit-stream requirement with reasonable image quality.

15.5 Color Balance and Correction

The images captured by an image sensor may not exactly represent the real scene as viewed by human

eyes. The differences come from many factors such as image sensor’s electronic characteristics are not

the same over the entire color spectrum, lighting condition variations when the images are captured, the

reflection of the object under different light sources, image acquisition system architectures, as well as

display or printing devices. Therefore, color correction includes color balance and color adjustment that

is necessary in digital cameras and camcorders.

Table 15.1 Hue and color relations

Color Hue angle RGB cube

Red 0◦ (1, 0, 0)

Yellow 60◦ (1, 1, 0)

Green 120◦ (0, 1, 0)

Cyan 180◦ (0, 1, 1)

Blue 240◦ (0, 0, 1)

Magenta 300o (1, 0, 1)

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

COLOR BALANCE AND CORRECTION 587

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y
CrCb

Y Y

Y Y

Y Y

Y

Y

Y

Y

Y Y

Y

Y Y

Y

Y

Y

Y

Y

Y Y

Y Y

Y Y

Y Y

Y

Y

Y

Y

444 422

420 411

Figure 15.7 YCbCr subsampling schemes, YCbCr4:4:4, YCbCr4:2:2, YCbCr4:2:0, and YCbCr4:1:1

15.5.1 Color Balance

Color balance is also called white balance. The white balance is intended to correct the color bias caused

by lighting and other variations in conditions. For example, a picture taken under the indoor incandescent

light may appear reddish, while a picture taken under the high noon of a sunny day may appear bluish.

The white balance algorithm is to mimic human vision system to adjust the images in digital cameras

and camcorders. The white balance of the RGB color space can be achieved by

Rw = RgR

Gw = GgG

Bw = BgB

, (15.5)

where the subscript w indicates the white balanced RGB color components, gR, gG, and gB are the

gain factors for red, green, and blue, respectively. The white balance algorithms can be applied in

spectral domain. The spectral-based algorithm requires spectral information of the imaging sensor and

Table 15.2 Number of bits needed for the YCbCr subsampling schemes

729 × 480 pixels Bits for Y Bits for Cb Bits for Cr Total bits

YCrCb4:4:4 720 × 480 × 8 720 × 480 × 8 720 × 480 × 8 8 294 400

YCrCb4:2:2 720 × 480 × 8 360 × 480 × 8 360 × 480 × 8 5 529 600

YCrCb4:2:0 720 × 480 × 8 360 × 240 × 8 360 × 240 × 8 4 147 200

YCrCb4:1:1 720 × 480 × 8 180 × 480 × 8 180 × 480 × 8 4 147 200

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

588 INTRODUCTION TO DIGITAL IMAGE PROCESSING

lighting source, and thus is more accurate but computational expensive. The RGB-color-space-based

white balance algorithm, on the other hand, is simple, less expensive, and easy to implement. The white

balance algorithm can be implemented on the Bayer RGB or RGB color spaces. If the white balance is

on the Bayer RGB, the following steps are needed:

1. Take the sensor output from the Bayer RGB pattern and save it in memory.

2. Calculate the total value of the Bayer RGB pattern data.

3. Take the reciprocal of the total value of the Bayer RGB to calculate all white balance gain factors.

4. Apply the white balance gain factors to the Bayer RGB data.

In order to obtain the accurate gain factors, the RGB data must contain a rich spectrum of colors. That

is, too few colors will result in false white balance gain factors. For example, the gain factor’s calculation

will be undesirable if the RGB color space consists of red color only.

Example 15.4: MATLAB function imread can read different image files including the widely

used JPEG, TIF, GIF, BMP, and PNG formats. Theimread function will return a three-dimensional

(3-D) array for color images and a 2-D array for grayscale images. For most images, the image

array is converted into 8-bit RGB from these files. In real applications, the white balance gains are

usually normalized to G pixels or 1. The following MATLAB script computes the white balance

gains from the RGB array:

R = sum(sum(RGB(:,:,1))); % Compute sum of R
G = sum(sum(RGB(:,:,2))); % Compute sum of G
B = sum(sum(RGB(:,:,3))); % Compute sum of B
gr = G/R; % Gain factor for R is normalized to G
gb = G/B; % Gain factor for B is normalized to G
Rw=RGB(:,:,1)*gr; % Apply normalized gain factor to R
Gw=RGB(:,:,2); % G has a gain factor of 1
Bw=RGB(:,:,3)*gb; % Apply normalized gain factor to B

15.5.2 Color Adjustment

The RGB color in a digital camera or camcorder may not be the same as seen by human eyes. Chromatic

correction can compensate the color offset to make the digital images close to what human beings see. The

chromatic correction is also called color correction or color saturation correction. The color correction

applies a 3 × 3 matrix to the white balanced RGB color space as⎡⎣RC

GC

BC

⎤⎦ =
⎡⎣c11 c12 c13

c21 c22 c23

c31 c32 c33

⎤⎦ ⎡⎣Rw

Gw

Bw

⎤⎦ , (15.6)

where

min

{
3∑

i=1

3∑
j=1

[
ci j × RG B(j)w − RG B(j)ref

]2

}
for i �= j (15.7)

ci j = 1 for i = j. (15.8)

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

COLOR BALANCE AND CORRECTION 589

250

200

150

100

50

50 100 150 200 250

Gamma correction curve

Display device transfer function

Figure 15.8 Gamma correction curve vs. display device transfer function

The 3 × 3 matrix in Equation (15.6) is called the color correction matrix. Equation (15.7) states that the

color correction is achieved by adjusting the coefficients ci j (rotating the color vector) to find an optimal

3 × 3 color correction matrix that minimizes the mean-square error between the white balanced RGB

color space and the reference RGB color space. In order to preserve the white balance and luminance,

the diagonal elements of the matrix need to be normalized to 1, as defined in Equation (15.8).

15.5.3 Gamma Correction

The electrical circuits of the televisions and computer monitors do not produce linear output with the

linear RGB input. When we send a color image directly to a TV, the displayed color will be dimmer

than the original image. This is because the display of TV monitors follows a gamma curve. The gamma

correction compensates for the nonlinearity of display devices to obtain a linear response of display.

Figure 15.8 shows the gamma correction curve vs. the nonlinearity of the display devices. In order to

display the image in linear output, the gamma correction prewraps the input RGB data with different

gamma values to compensate for the display device’s nonlinear characteristics. The gamma values for

TV systems are specified in ITU CCIR Report 624-4. Microsoft Window computer monitors use gamma

value of 2.20, while the Apple Power-PC monitors have gamma value of 1.80. For digital cameras

and video camcorders, the gamma correction is usually implemented using a table-lookup method. The

gamma correction table is precalculated and stored in the device’s memory.

For an 8-bit RGB sample, a 256-word table is needed. The formulas for gamma correction are given

as

Rγ = gR1/γ
c

Gγ = gG1/γ
c

Bγ = gB1/γ
c

, (15.9)

where g is the conversion gain factor, γ is the gamma value, and the Rc, Gc, and Bc form the color

corrected RGB color space. The gamma corrected RGB color space is denoted by Rγ , Gγ , and Bγ .

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

590 INTRODUCTION TO DIGITAL IMAGE PROCESSING

Figure 15.9 Gamma corrected image vs. the original image: (a) the original BMP image (γ = 1.00); (b) gamma

corrected image (γ = 2.20)

Example 15.5: Create an 8-bit gamma (γ = 2.20) correction table as shown in Figure 15.8, and

apply the gamma correction to the given bitmapped (BMP) image (γ = 1.00). The images before

and after gamma correction are shown in Figure 15.9 using the MATLAB script example15_5.m.

15.6 Image Histogram

A digital image can be analyzed using histogram, which represents an image’s pixel distribution. For an

8-bit image, the histogram will have 256 entries. The first entry shows the total number of pixels in the

image that equals to ‘0’, the second entry shows the numbers of pixels that equal to ‘1’, and so on. The

sum of all of the values in the histogram equals to the total number of the pixels in the image, expressed

as

N =
M−1∑
i=0

hi , (15.10)

where M is the number of entries in histogram, hi is the histogram, and N is the total number of pixels

of the image. The histogram counts the image pixels that have the same values, and can be efficiently

computed by DSP processors.

Histogram is an important characteristic of digital images. Since an image may contain millions of

pixels, we can compute the mean mx and the standard deviation σ 2
x of image easily using its histogram

as follows:

mx = 1

N

M−1∑
i=0

ihi (15.11)

σ 2
x = 1

N − 1

M−1∑
i=0

(i − mx)2 hi . (15.12)

Proper brightness and contrast will make the image easy to view. The brightness is the overall luminance

level of the image, and the contrast is the difference in brightness. For a digital camera, the brightness

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

IMAGE FILTERING 591

is associated with the exposure when the picture is taken. Brightness adjustments can improve viewing

ability of the darker or brighter areas by increasing or decreasing the luminance value of each pixel. Since

the modification of brightness changes every pixel in the image, the entire image will become brighter or

darker. Saturation may occur with the brightness adjustment. Changing brightness of an image will not

affect the contrast of the image. Contrast can be adjusted by varying the luminance value of each pixel.

The adjustment to the contrast may also result in saturation if the pixel values reach the limit.

Histogram equalization uses a monotonic nonlinear mapping process to redistribute the intensity

values of an image such that the resulting image has a much uniform distribution of intensities. Histogram

equalization may not work well on all images because the redistribution does not use the priori knowledge

of the image. Sometimes, it may even make the image worse. However, histogram equalization works

well especially for fine details in the darker regions or for B&W images. The histogram equalization

consists of the following three steps:

1. Compute the histogram of the image.

2. Normalize the histogram.

3. Normalize the image using the normalized histogram.

Example 15.6: This example computes the histogram of a given image and equalizes this image

based on its histogram. Figure 15.10 shows the original image, the equalized image, and their

histograms using the MATLAB script (example15_6.m).

As shown in the figure, the original image is very dark because it was taken in the evening without

using flashlight. Most of the pixels are concentrated in the lower portion of the histogram as shown

in Figure 15.10(c). The viewing quality of this image can be improved by increasing the contrast

using histogram equalization. Figure 15.10(b) shows that most of the dark background scene has

been clearly revealed. Figure 15.10(d) is the histogram of the equalized image. The histogram of

the equalized image redistributes the pixel values more evenly by adjusting the contrast level.

Example 15.6 shows that the histogram equalization is an automated process to replace the trial-and-

error manual adjustment. It is an effective way to enhance the contrast. However, since the histogram

equalization applies an approximated uniform histogram blindly, some undesired effects could occur.

For example, in Figure 15.10(b), the facial details are lost after the histogram equalization although

the surrounding scene is enhanced. This problem may be overcome by using an adaptive histogram

equalization, which divides the image to several regions and individually equalizes each smaller region

instead of entire image. To reduce the artifacts caused by the boundaries of the small regions, additional

smooth process should be used.

15.7 Image Filtering

Many video and image applications use 2-D filters for image processing. If the input to the system is

an impulse (delta) function δ(x, y) at the origin, the output is the system’s impulse response. When the

system’s response remains the same regardless of the position of the impulse function, the system is

defined as linear space-invariant system. A linear space-invariant system can be described by its impulse

response as Figure 15.11.

An image processing system is a 2-D system, and thus an image filtering uses a 2-D filter. Similar to a

1-D FIR filtering, the image filtering is a 2-D convolution of the filter kernel with the image, which can

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

592 INTRODUCTION TO DIGITAL IMAGE PROCESSING

5000

4000

3000

2000

1000

0

0 50 100 150 200 250

(c) Histograms of the original image.

5000

4000

3000

2000

1000

0

0 50 100

(d) Histogram of the equalized image.

150 200 250

Figure 15.10 Image equalization based on its histogram: (a) original image; (b) equalized image based on his-

togram; (c) histograms of the original image; and (d) histogram of the equalized image

x(i, j)
h(i, j)

y(i, j) = x(i, j)* h(i, j)

Figure 15.11 A linear space-invariant 2-D system

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

IMAGE FILTERING 593

h00x(3, 3) x(3, 4) x(3, 5)

x(4, 3) x(4, 4) x(4, 5)

x(5, 3) x(5, 4) x(5, 5)

h10

h20 h21 h22

h01 h02

h12h11

Filter kernelImage block

Figure 15.12 An example of 3 × 3 image convolution: (a) image block; (b) filter kernel

be expressed as

y(n, m) =
N−1∑
i=0

M−1∑
j=0

h(i, j)x(n − i, m − j), (15.13)

where M and N are the width and height of the 2-D filter, respectively. Figure 15.12 shows an example

of 3 × 3 image convolution expressed as

y(4, 4) = h0,0x(3, 3) + h0,1x(3, 4) + h0,2x(3, 5)

+h1,0x(4, 3) + h1,1x(4, 4) + h1,2x(4, 5)

+h2,0x(5, 3) + h2,1x(5, 4) + h2,2x(5, 5)

where the image data is denoted as x(n, m), and the filter kernel is denoted by hi, j .

Image filtering can affect the digital image in many ways, such as reducing the noise, enhancing the

edges, sharpening the image, and blurring the image. Image filtering can also generate many special effects

for the digital photos. Linear filters are widely used in image processing and editing. Linear smoothing

(or lowpass) filters are effective in reducing noises. The common noises in images are Gaussian noise

introduced by camera’s image sensors, impulse noise caused by sudden intensity change in white values

(may also result from bad image sensor), and B&W high-frequency noises called salt and pepper noises.

The linear filters usually use weighted coefficients. Typically, the sum of the filter coefficients equals

to 1 in order to keep the same image intensity. If the sum is larger than 1, the resulting image will be

brighter; otherwise, it will be darker. Some commonly used 2-D filters are the 3 × 3 kernels summarized

as follows:

(a) Delta filter: hi, j =
⎡⎣0 0 0

0 1 0

0 0 0

⎤⎦.

(b) Lowpass filter: hi, j = 1

9

⎡⎣1 1 1

1 1 1

1 1 1

⎤⎦.

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

594 INTRODUCTION TO DIGITAL IMAGE PROCESSING

(c) Highpass filter: hi, j = 1

6

⎡⎣−1 −4 −1

−4 26 −4

−1 −4 −1

⎤⎦.

(d) Sobel filter: hi, j =
⎡⎣ 1 2 1

0 0 0

−1 −2 −1

⎤⎦.

(e) Laplacian filter: hi, j =
⎡⎣1 4 1

4 −20 4

1 4 1

⎤⎦.

(f) Emboss filter: hi, j =
⎡⎣−4 −4 0

−4 1 4

0 4 4

⎤⎦.

A 3 × 3 lowpass filter (b) is called mean filter. An important note for a smoothing filter is that the filter

kernel must have only one peak value and must be symmetric in both horizontal and vertical directions.

A highpass filter (c) can be obtained by subtracting the lowpass filter kernel from the delta filter kernel.

In real applications, highpass filters are often used for image sharpening.

Edges have sharp changes of local intensity level. Edge detection is the first and the key step in image

analysis and recovery. For machine vision, edge detection is used to determine the objects. Sobel filter

kernel is widely used as an edge filter. Similar to the Sobel kernel, Prewitt filter kernel can be used for

edge filtering. However, both operators can apply only to one direction at a time. The horizontal Sobel

kernel (d) can be rotated by 90o to obtain the vertical kernel. A vertical kernel using the Prewitt operator

is given in MATLAB script example15_7.m. Laplacian kernel (e) is a 2-D operator that checks the

numbers of zero crossing.

Example 15.7: MATLAB Image Processing Toolbox provides the function filter2 to imple-

ment a 2-D filtering using 2-D correlation method. The examples of using filter2 are:

R = filter2(coeff, RGB(:,:,1));
G = filter2(coeff, RGB(:,:,2));
B = filter2(coeff, RGB(:,:,3));

where coeff is the 2-D filter kernel, RGB is the input image matrix, and R, G, and B are the arrays of

filtered output of the RGB components. MATLAB also provides the built-in function imfilter

for filtering images. The imfilter can replace the filter2 function with the following syntax:

newRGB = imfilter(RGB, coeff); The 2-D filtering results are shown in Figure 15.13.

Figure 15.13(a) shows the image after applying delta function. The output image remains unchanged

when it uses delta filter kernel. The lowpass filter averages the image pixels so the filtered image is

smoothed as shown in Figure 15.13(b). The lowpass filter is often used to reduce the noise in images.

Figure 15.13(c) is the result of highpass filter, which emphasizes the high-frequency components to

increase its sharpness. The Laplacian filter sharpens the edges as shown in Figure 15.13(d), where the

edges of output image are highlighted. Figure 15.13(e) shows the Emboss filter creating a 3-D like image.

A Sobel filter kernel emphasizes the image’s horizontal edge as shown in Figure 15.13(f), but the edges

in vertical direction are not being emphasized. Since the sum of the filter kernel equals to zero, the output

image is very dark with only the edges being highlighted. When placing the filter coefficients in the

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

IMAGE FILTERING 595

Figure 15.13 Results of 2-D image filtering using different 3 × 3 filter kernels: (a) the result using delta kernel;

(b) the result using lowpass kernel; (c) the result using highpass kernel; (d) the result using Laplacian kernel; (e) the

result using Emboss kernel; (f) the result using Sobel kernel; (g) the result using Prewitt kernel; and (h) the result

using blur kernel

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

596 INTRODUCTION TO DIGITAL IMAGE PROCESSING

Figure 15.13 (continued)

vertical direction, the filter can be used to emphasize the vertical edges of the image. Figure 15.13(g)

shows that the vertical edges are emphasized using a Prewitt filter. Figure 15.13(h) is the result of using

a blur filter kernel, which blurs the image by averaging the four neighboring pixels with the center pixel.

When implementing a fixed-point filter for image processing, the overflow problem must be carefully

handled. For example, when an image with 8-bit data is processed, the pixel value must be limited to 255

if the filtered output is greater than 255. The data must be set to zero when the filter output is negative.

The implementation of a 2-D filter requires four nested loops on each pixel for every coefficient of the

filter kernel. Therefore, the image filtering is a very computational intensive process in image applications.

For many real-time image and video applications, it is limited to low-order filter kernels such as 3 × 3

or 5 × 5.

15.8 Image Filtering Using Fast Convolution

A 720 × 480 image’s RGB color space consists of 720 × 480 × 3 data samples. For the NTSC motion

video at 30 frames per second, there will be 720 × 480 × 3 × 30 = 31 104 000 bytes/s. As the image

filtering requires four nested loops for each pixel and every filter coefficient in the kernel, this can be

very computational intensive for large-size image even by using a 3 × 3 filter. An alternative approach

is to use fast convolution method. The 2-D fast convolution using the 2-D FFT is considerably fast for

filtering a large-size image because the spatial-domain convolution becomes multiplication in frequency

domain. If the image signal is orthogonal, we can further reduce computational requirements by applying

filter in one direction at a time.

Given a function f (m, n) of two spatial variables m and n, the 2-D M-by-N DFT F(k, l) is defined

as

F(k, l) =
M−1∑
m=0

N−1∑
n=0

f (m, n)e− j(2π/M)kme− j(2π/N)ln, (15.14)

where k and l are frequency indices for k = [0, M− 1] and l = [0, N− 1], respectively. The 2-D inverse

DFT is defined as

f (n, m) = 1

M N

M−1∑
k=0

N−1∑
l=0

F(k, l)e j(2π/M)kme j(2π/N)ln . (15.15)

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

PRACTICAL APPLICATIONS 597

MATLAB Image Processing Toolbox provides a 2-D FFT function fft2 and an inverse FFT function

ifft2. The 2-D fast convolution can be computed using the following steps:

1. The filter coefficient matrix and image data matrix must have the same dimensions. If one matrix is

smaller than the other, we can pad zeroes on the smaller matrix.

2. Compute the 2-D FFT of both the image and coefficient matrices using the MATLAB function fft2.

3. Multiply the frequency-domain coefficient matrix with image matrix using dot product.

4. Apply the inverse 2-D FFT function ifft2 to obtain the filtered results.

Example 15.8: Instead of performing 2-D convolution, the frequency-domain filtering uses mul-

tiplication. The use of MATLAB functions fft2 and ifft2 on RGB images can be expressed

as

fft2R = fft2(double(RGB(:,:,1)));
[imHeight imWidth] = size(fft2R);
fft2Filt = fft2(coeff, imHeight, imWidth);
fft2FiltR = fft2Filt .* fft2R;
newRGB(:,:,1) = uint8(ifft2(fft2FiltR));

Here, fft2FiltR is the 2-D fast convolution result of the red components. The filter coefficients

are zero padded and the frequency-domain matrix is obtained using the fft2 function. The symbol

‘.*’ in the fourth line of MATLAB script is the dot-product operator. Figure 15.14 shows the 2-D

filtering results.

The fast convolution results (Figure 15.14) show that when dealing with a large image, the filtering

can be performed in frequency domain. The computational requirement for fast convolution is much less

than the computation in the spatial domain using the 2-D convolution.

15.9 Practical Applications

Image processing has been used in many practical applications. More and more images we have today

become larger and larger in size. Therefore, image compression plays a key role in image applications.

Many international standards, such as JPEG, are commonly used for efficient storage and transmission.

JPEG can achieve up to 10:1 compression ratio.

15.9.1 JPEG Standard

JPEG compression is defined in the ITU-T Recommendation T.81. JPEG file format has been widely

used in printing, digital photography, video editing, security, and medical imaging applications. Figure

15.15 shows the basic functions of JPEG encoder.

In JPEG encoding process, the image pixels are grouped into 8 × 8 blocks. Each block is transformed

by a forward DCT to obtain 64 DCT coefficients. The first coefficient is called the DC coefficient, and the

rest coefficients are referred as AC coefficients. These 64 DCT coefficients are quantized by a quantizer

using one of 64 corresponding values from a quantization table specified by ITU-TT.81.

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

598 INTRODUCTION TO DIGITAL IMAGE PROCESSING

Figure 15.14 Results of 2-D image filtering using fast convolution: (a) the result using delta kernel; ((b) the result

using edge filter kernel; (c) the result using motion filter kernel; and (d) the result using Gaussian filter kernel

Instead of quantizing the current DC coefficient, JPEG computes the differences between the previous

quantized DC coefficient and the current DC value, and encodes the difference. The rest of the 63 AC

coefficients are quantized. These 64 quantized DCT coefficients are arranged as a 1-D zigzag sequence

shown in Figure 15.16. The quantized and reordered coefficients are then passed to an entropy coder that

further compresses the coefficients.

Image input
JPEG file
outputForward

DCT
Quantizer

Entropy
encode

Quantizer
table

Entropy
table

Figure 15.15 Baseline JPEG encoder block diagram

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

PRACTICAL APPLICATIONS 599

DC AC01 AC07

AC77AC70

Figure 15.16 Reordering of zigzag DCT coefficients

There are two entropy-coding procedures defined by JPEG standard: Huffman encoding and arithmetic

encoding. Each encoding method uses its own encoding table as specified by T.81 standard. The baseline

JPEG is a sequential DCT-based operation. The image pixels are arranged as 8 × 8 blocks. We process

one block at a time from left to right for the first row of blocks, repeat the processing for the second row

of blocks, and so on from top to bottom. After the last data block has been processed by the forward DCT

and quantization, the 64 quantized DCT coefficients can be entropy encoded and output as compressed

image bit stream.

15.9.2 2-D Discrete Cosine Transform

Two-dimensional DCT and IDCT are important algorithms in many image and video compression tech-

niques including the JPEG standard. The 2-D DCT and IDCT of N × N image are defined as

F(u, v) = 2

N
C(u)C(v)

N−1∑
x=0

N−1∑
y=0

f (x, y) cos

[
(2x + 1)uπ

2N

]
cos

[
(2y + 1)vπ

2N

]
, (15.16)

f (x, y) = 2

N

N−1∑
x=0

N−1∑
y=0

C(u)C(v)F(u, v) cos

[
(2x + 1)uπ

2N

]
cos

[
(2y + 1)vπ

2N

]
, (15.17)

where f (x, y) is the pixel intensity and F(u, v) is the corresponding DCT coefficient at the image

location (x, y), and

C(u) = C(v) =
{√

2/2,

1,

u = v = 0

otherwise
.

Most image compression algorithms use N = 8, and the 8 × 8 DCT and IDCT specified in the ITU-

TT.81 are expressed as

F(u, v) = 1

4
C(u)C(v)

7∑
x=0

7∑
y=0

f (x, y) cos

[
(2x + 1)uπ

16

]
cos

[
(2y + 1)vπ

16

]
(15.18)

f (x, y) = 1

4

7∑
x=0

7∑
y=0

C(u)C(v)F(u, v) cos

[
(2x + 1)uπ

16

]
cos

[
(2y + 1)vπ

16

]
. (15.19)

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

600 INTRODUCTION TO DIGITAL IMAGE PROCESSING

The 2-D DCT and IDCT can be implemented using two separate 1-D operations: one for horizontal

direction and the other for vertical direction. Using efficient 1-D DCT and IDCT, the computation can be

reduced dramatically. The 1-D 8-point DCT and IDCT can be implemented using the following equations:

F(u) = 1

2
C(u)

7∑
x=0

f (x) cos

[
(2x + 1)uπ

16

]
(15.20)

f (x) = 1

2

7∑
x=0

C(u)F(u) cos

[
(2x + 1)uπ

16

]
, (15.21)

where

C(u) =
{√

2/2,

1,

u = 0

otherwise
.

Example 15.9: MATLAB provides both 1-D and 2-D DCT and IDCT functions. The use of 1-D

functions given by Equations (15.20) and (15.21) to transform an image is identical to the use

of the 2-D functions defined in Equations (15.18) and (15.19). The MATLAB implementation is

given in script example15_9.m.

JPEG applies the DCT to an image in a block of 8 × 8 (64) pixels at a time. This is called a block

transform. The resulting DCT coefficients are then quantized by the entropy encoder and reordered in a

zigzag fashion. This process is shown in Figure 15.17.

Make 8 × 8 blocks

222 222 224 225 …

222 223 224 225 …

223 224 225 226 …

224 224 226 226 …

225 226 226 228 …

226 226 227 227 …

226 226 228 227 …

227 226 228 227 …

An 8 × 8 image data

635 636 639 640 …

−5 −5 −4 −2 …

0 0 0 0 …

0 0 0 −1 …

0 0 1 0 …

0 0 0 0 …

0 0 0 0 …

0 −0 0 0 …

1812 −9 −2 −1 …

−10 −2 1 0 …

−2 −2 0 0 …

−1 0 0 −0 …

0 0 0 0 …

1 −1 1 0 …

0 1 0 1 …

1-D DCT horizontal

Original image

1-D DCT vertical

0 0 0 1 …

Figure 15.17 A DCT block transform in JPEG coding process

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 601

Example 15.10: JPEG encoding process divides the image into many smaller 8 × 8 blocks, and

then apply the DCT on these 8 × 8 image blocks. The following MATLAB code performs the

block DCT:

for n=1:8:imHeight
for m=1:8:imwidth

for i=0:7
for j=0:7

mbY(i+1,j+1) = Y(n+i,m+j,1); % Form an 8x8 block
end

end
mbY = dct(double(mbY)); % Perform 1-D DCT horizontally
mbY = dct(double(mbY')); % Perform 1-D DCT vertically

end
end

The use of 1-D functions dct and idct to perform DCT is given in script example15_10.m.

15.10 Experiments and Program Examples

This section uses MATLAB, CCS, and C5510 DSK for experiments with digital images. The speed is

usually very critical for processing digital images, especially for real-time video, and the finite wordlength

effects are also very important for fixed-point implementation. MATLAB supports Link for CCS including

the TMS320C55x, which can prepare image data files. We will use MATLAB Link for CCS for most of

the experiments using the C5510 DSK.

15.10.1 YCbCr to RGB Conversion

The color space conversion between the RGB and the YCbCr introduced in Section 15.3 will be imple-

mented in this experiment using the C5510 DSK. Since the 24-bit RGB color space is widely used by

today’s image applications, we will implement the 8-bit YCbCr to RGB color space conversion using

the fixed-point C language. The RGB to YCbCr color space conversion will be introduced in the next

experiment.

The conversion matrix is expressed as⎡⎣R
G
B

⎤⎦ =
⎡⎣0.046 0 0.0063

0.046 −0.0015 −0.0032

0.046 0.0079 0

⎤⎦ ⎡⎣ Y
Cb

Cr

⎤⎦ −
⎡⎣ 16

128

128

⎤⎦ , (15.22)

which is used by MATLAB function ycbcr2rgb. When choosing the Q15 format for the conversion

coefficients in the fixed-point implementation, the conversion matrix can be represented as⎡⎣R
G
B

⎤⎦ =
⎡⎣151 0 206

151 −49 −105

151 259 0

⎤⎦ ⎡⎣ Y
Cb

Cr

⎤⎦ −
⎡⎣ 16

128

128

⎤⎦ .

Because the YCbCr uses only an 8-bit data, the wordlength of the conversion matrix will affect accuracy

and cumulative errors mitigation during the conversion process. In order to achieve higher precisions and

minimize finite wordlength effects, we shall use a data format that provides adequate integer range for

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

602 INTRODUCTION TO DIGITAL IMAGE PROCESSING

coefficients. In this experiment, we represent the fixed-point coefficients by 24-bit integers in the range

from 0x800000 (–1.0) to 0x7FFFFF (1.0–2−23). The conversion coefficient matrix using 24-bit integer

is expressed as

⎡⎣R
G
B

⎤⎦ =
⎡⎣4823 0 6606

4823 −1573 −3355

4823 8284 0

⎤⎦ ⎡⎣ Y
Cb

Cr

⎤⎦ −
⎡⎣ 16

128

128

⎤⎦ .

The result of conversion must be scaled back to maintain the proper 8-bit RGB data format. Since two

8-bit data can be packed into one 16-bit memory location, this experiment uses packed data format and

processes two pixels at a time. To prevent overflow and underflow, the upper and lower limits are set to

255 and 0, respectively. Table 15.3 lists the C function for the YCbCr to RGB conversion.

Table 15.3 Fixed-point C function to convert YCbCr to RGB color space

#define SHIFT 12
#define UINT (0x100000-1)

static short COEF_YCbCr2RGB[7] = {
(short)(0.00456621*UINT+0.5),(short)(0.00625893*UINT+0.5),
(short)(0.00456621*UINT+0.5),(short)(-0.00153632*UINT-0.5),
(short)(-0.00318811*UINT-0.5),(short)(0.00456621*UINT+0.5),
(short)(0.00791071*UINT+0.5) };

void ycbcr2rgb_cdsp(ycbcr2rgbImg img)
{

long AC0, AC1;
short *cPtrB;
unsigned short *r,*g,*b,*y,*cb,*cr;
unsigned short i,j,len;
short yhi,ylo,cbhi,cblo,crhi,crlo;

len = img.width>>1;
y = img.y;
cb = img.cb;
cr = img.cr;
r = img.r;
g = img.g;
b = img.b;
// This implementation is very sensitive to overflow and underflow
// R,G,B must be limited to the range of [0, 255]
for (j=0; j<img.height;j++)
{

for (i=0;i<len;i++)
{

cPtrB = COEF_YCbCr2RGB;
ylo = ((*y>>8)&0xff) - 16;
yhi = ((*y++)&0xff) - 16;
cblo = ((*cb>>8)&0xff) - 128;
cbhi = ((*cb++)&0xff) - 128;
crlo = ((*cr>>8)&0xff) - 128;
crhi = ((*cr++)&0xff) - 128;

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 603

Table 15.3 (continued)

AC0 = (long)yhi * *cPtrB;
AC1 = (long)ylo * *cPtrB++;
AC0 += (long)crhi * *cPtrB;
AC1 += (long)crlo * *cPtrB++;
AC0 >>= SHIFT;
AC1 >>= SHIFT;
if (AC0 < 0) AC0 = 0;
if (AC1 < 0) AC1 = 0;
if (AC0 > 255) AC0 = 255;
if (AC1 > 255) AC1 = 255;
*r++ = (short)(AC0 | (AC1<<8));
AC0 = (long)yhi * *cPtrB;
AC1 = (long)ylo * *cPtrB++;
AC0 += (long)cbhi * *cPtrB;
AC1 += (long)cblo * *cPtrB++;
AC0 += (long)crhi * *cPtrB;
AC1 += (long)crlo * *cPtrB++;
AC0 >>= SHIFT;
AC1 >>= SHIFT;
if (AC0 < 0) AC0 = 0;
if (AC1 < 0) AC1 = 0;
if (AC0 > 255) AC0 = 255;
if (AC1 > 255) AC1 = 255;
*g++ = (short)(AC0 | (AC1<<8));
AC0 = (long)yhi * *cPtrB;
AC1 = (long)ylo * *cPtrB++;
AC0 += (long)cbhi* *cPtrB;
AC1 += (long)cblo* *cPtrB++;
AC0 >>= SHIFT;
AC1 >>= SHIFT;
if (AC0 < 0) AC0 = 0;
if (AC1 < 0) AC1 = 0;
if (AC0 > 255) AC0 = 255;
if (AC1 > 255) AC1 = 255;
*b++ = (short)(AC0 | (AC1<<8));

}
}
return;

}

This experiment takes in 8-bit YCbCr data and converts the image to the RGB color space. After the

conversion, a bitmap file will be created using the resulting RGB data for display. Table 15.4 lists the

files used for this experiment.

Procedures of the experiment are listed as follows:

1. Open the DSP project and rebuild the project.

2. Run the project to convert the given YCbCr data files located in ..\data directory to RGB data files.

3. Display the resulting bitmap file to view the conversion result.

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

604 INTRODUCTION TO DIGITAL IMAGE PROCESSING

Table 15.4 File listing for experiment exp15.10.1_ycbcr2rgb

Files Description

YCbCr2RGB.c YCbCr to RGB color space conversion function

YCbCr2RGBTest.c Main program for testing experiment

RGB2BMPHeader.c C function uses RGB data to create a BMP file

ycbcr2rgb.h C header file

ycbcr2rgb.cmd DSP linker command file

param.txt Parameter file

ycbcr2rgb.pjt DSP project file

Jenni160x120Y8.YUV Y component data file

Jenni160x120Cb8.YUV Cb component data file

Jenni160x120Cr8.YUV Cr component data file

4. Replace the conversion matrix given in Equation (15.22) with a Q15-valued matrix, and evaluate the

conversion results in different wordlengths.

5. Rewrite the C function ycbcr2rgb() with C55x intrinsics to improve the run-time efficiency of

conversion function. Verify the intrinsics implementation by comparing the results with the fixed-

point C function.

6. Write the ycbcr2rgb() function using C55x assembly language. Verify the correctness by exam-

ining the bit-exactness of resulting R, G, and B data with the results obtained using C function.

7. Measure the run-time benchmark of the ycbcr2rgb() function written by fixed-point C, intrinsics,

and assembly language using the CCS profile tool. What percentage of improvement can be achieved

by using the intrinsics over the fixed-point C function? What percentage of gain the assembly routine

implementation can achieve over the fixed-point C function?

15.10.2 Using CCS Link with DSK and Simulator

In Chapter 9, we have shown how to use MATLAB Link for CCS to control and manipulate the DTMF

experiments with the C5510 DSK. This experiment uses the Link for CCS to conduct the RGB to YCbCr

color space conversion using the C5510 DSK. The flow of experiment is shown in Figure 15.18.

The MATLAB script ccsLink.m used for this experiment is listed in Table 15.5. The top portion of the

script uses MATLAB Image Processing Toolbox functions to open the given image file for experiment.

The bottom portion of the script displays the image after conversion. Using the MATLAB image functions

MATLAB
creates data
files from
given images
for DSP
experiment

MATLAB
opens DSP
project, builds,
and loads DSP
code for the
experiment

C55x DSK
reads in data
files, performs
experiment,
and writes
data results

MATLAB
reads DSP
experiment
results and
displays the
images

Figure 15.18 MATLAB Link for CCS experiment flow

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 605

Table 15.5 MATLAB script for converting RGB to YCbCr

RGB = imread(name); % Read in image data
RGB = uint8(RGB); % Convert to uint8
[height, width, color] = size(RGB);

fid=fopen('.\\ccsLink\\data\\R8.RGB', 'wb'); % Write RGB data out
fwrite(fid, RGB(:,:,1)', 'uint8'), fclose(fid); % Write R
fid=fopen('.\\ccsLink\\data\\G8.RGB', 'wb');
fwrite(fid, RGB(:,:,2)', 'uint8'), fclose(fid); % Write G
fid=fopen('.\\ccsLink\\data\\B8.RGB', 'wb');
fwrite(fid, RGB(:,:,3)', 'uint8'), fclose(fid); % write B

board = ccsboardinfo; % Get DSP board and processor information
dsp = ccsdsp('boardnum',...% Link DSP with CCS

board.number,...
'procnum',...
board.proc(1,1).number);

set(dsp,'timeout',100); % Set CCS default timeout value to 100(s)
visible(dsp,1); % Force CCS to be visible on PC desktop
open(dsp,' ccsLink\\ccsLink.pjt'); % Open project file
build(dsp,'all',1500); % Build the project if necessary
load(dsp, ... % Load project with timeout 300(s)

'.\\ccsLink\\Debug\\ccsLink.out',300);
reset(dsp); % Reset the DSP processor
restart(dsp); % Restart the program
run(dsp); % Start execution
cpurunstatus = isrunning(dsp);
while cpurunstatus == 1, % Wait until DSP completes the task

cpurunstatus = isrunning(dsp);
end

% Read YCbCr data
fid = fopen('.\\ccsLink\\data\\Y8.YUV','r');
Y = fread(fid); fclose(fid);
fid = fopen('.\\ccsLink\\data\\Cb8.YUV','r');
Cb = fread(fid); fclose(fid);
fid = fopen('.\\ccsLink\\data\\Cr8.YUV','r');
Cr = fread(fid); fclose(fid);

% Form the YCbCr color space
YCbCr = cat(3, reshape(Y/255, width, height)', ...

reshape(Cb/255, width, height)', ...
reshape(Cr/255, width, height)');

RGB1 = ycbcr2rgb(YCbCr); % Convert to RGB color space
RGB1 = uint8(RGB1*255); % Convert double to uint8
figure; imshow(RGB1); % Show result as RGB image

along with the Link for CCS functions, the development, debug, as well as the test procedure can be

simplified.

The middle portion of the script listed in Table 15.5 controls the execution of DSP experiment.

The MATLAB function ccsboardinfo obtains the DSP development system’s information. The

MATLAB function ccsdsp creates the link object for the CCS using the information obtained from the

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

606 INTRODUCTION TO DIGITAL IMAGE PROCESSING

Table 15.6 File listing for experiment exp15.10.2_ccsLink

Files Description

ccsLink.m MATLAB script controls the experiment

RGB2YCbCr.c RGB color space to YCbCr conversion function

RGB2YCbCrTest.c Main program for testing experiment

rgb2ycbcr.h C header file

ccsLink.cmd DSP linker command file

param.txt Parameter file

ccsLink.pjt DSP project file

loveStar160x120.bmp Image file

image300x300.jpg Image file

color960x720.jpg Image file

function call to ccsboardinfo. In this experiment, the function isrunning continuously monitors the

processing.

The software used for this experiment includes the DSP project, source files, data files, and MATLAB

script files as summarized in Table 15.6.

The MATLAB script automatically starts the experiment if the DSP program does not have any error.

This experiment reads the given images from the data directory and writes these images to the RGB

color space in R, G, and B data files. Finally, MATLAB reads in the converted YCbCr data files and

displays the conversion results.

Procedures of the experiment are listed as follows:

1. Connect the C5510 DSK or simulator to the computer.

2. Start MATLAB and set the MATLAB working directory to the directory ..\exp15.10.2_ccsLink
where the MATLAB script ccsLink.m is located.

3. Enter ccsLink from the MATLAB command window to start the script. The CCS will be started,

DSK will be initialized, and the DSP project will be opened. Then MATLAB script will command the

CCS to rebuild the project, load, and run the code for color space conversion. After the conversion,

MATLAB reads and displays the resulting images.

4. MATLAB imread()function supports different image files. Replace the experiment image file,

loveStar.bmp, with the image300x300.jpg (included in the CD) and rerun the experiment. Note

that since the image sizes are different, the DSP parameter file, param.txt, needs to be modified

accordingly.

5. Because the C5510 DSK has limited memory, the size of the image used by the experiment will be

limited by the DSK memory. For large-size images, we need to adjust data block size. Modify the

program such that the experiment can perform image color space conversion for the large-size image,

color960x720.jpg (included in the data directory).

6. Image processing on a pixel-by-pixel basis requires very high computational power. The conversion

function should be implemented in assembly language to take the advantages of C55x architectures

such as parallel processing, dual-MAC units, and zero-overhead local-repeat loop features. Write an

assembly routine to replace the RGB to YCbCr conversion function.

7. Profile the assembly language for the RGB to YCbCr conversion routine and compare its performance

against the fixed-point C function.

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 607

Table 15.7 Color temperatures of different light sources

Color temperature (Kelvin) Light sources

1000–2000 K Candle light

2500–3500 K Incandescent (household) lights

3000–4000 K Sunrise or sunset

4000–5000 K Fluorescent (office) lights

5000–5500 K Electronic flash lights

5000–6500 K Sunny daylight

6500–8000 K Bright overcast sky

15.10.3 White Balance

Under different lighting sources, the object will show in different colors. Human vision can adapt these

differences to view the proper colors. However, machine vision devices as well as digital cameras and

camcorders cannot automatically adjust the colors. If the device is not correctly configured, the image

color will differ under various light sources.

White balance is a process that corrects the unrealistic color resulted from different light sources.

Traditional mechanical cameras use special optical filters for color corrections when taking pictures,

while digital cameras use the auto-white balance and the manual-white balance. Auto-white balance

uses the data from image sensor to compute the ‘true’ white color to balance the R, G, and B color

components. Manual (or fixed) white balance uses predefined color balance setting on the particular

lighting conditions, such as beach and snow scenes, outdoor daylight, and indoor candescent light. The

light sources are usually described using color temperatures. Table 15.7 lists the common light sources

and their temperatures.

Incorrect color balance will produce the bluish or reddish images. Example 15.4 in Section 15.5 shows

an example of performing image auto-white balance. In this experiment, we will write a C55x program

for auto-white balance. MATLAB Link for CCS will be used to control the experiment. Figure 15.19

shows the flow of the auto-white balance color correction.

Table 15.8 lists a section of the fixed-point C function that computes the sum of the pixels for white

balance process, Table 15.9 shows a portion of the C program that calculates the white-balance gain, and

Table 15.10 provides an example of the white balance correction on image pixels.

The experiment is controlled by MATLAB script whiteBalance.m. MATLAB Link for CCS allows

MATLAB program to access global data variables using the write() function. The experiment also

uses MATLAB function size() to find the width and height of the image file and pass these parameters

to DSP object as follows:

[height, width, color] = size(RGB);
write(dsp,address(dsp,'imWidth'), uint16(width));
write(dsp,address(dsp,'imHeight'),uint16(height));

Compute sum
for each color
component, R,
G, and B

Calculate gain
factor for each
R, G, and B
component

Adjust each
pixel with
corresponding
gain factor

Figure 15.19 Auto-white balance color correction

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

608 INTRODUCTION TO DIGITAL IMAGE PROCESSING

Table 15.8 Auto-white balance code example for computing the sum

AC0 = 0;
for (j=0; j<height; j++)
{

for (i=0; i<width/2; i++)
{

AC0 += (*r>>8)&0xff;
AC0 += (*r++)&0xff;

}
}

Table 15.9 Auto-white balance code example for calculating gain

rGain = 255;
gGain = 255;
bGain = 255;
if ((gSum <= rSum)&&(gSum <= bSum))
{

rGain = (unsigned short)((gSum*255) / rSum);
bGain = (unsigned short)((gSum*255) / bSum);

}

In the above example, the image width and height are obtained from the RGB matrix. The width and

height are then written to processor’s global data variables imWidth and imHeight as 16-bit unsigned

integers. This feature creates a flexible program that is no longer depending on the parameter file. This

experiment also uses two packed pixels for each 16-bit data memory. The white balance program is written

for handling dual-pixel data format. We use three pictures taken by a digital camera, which is set to fixed

white balance at 4150 K for this experiment. These pictures are taken under incandescent light source

(2850 K), fluorescent light source (4150 K), and daylight (6500 K). Before applying the white balance,

the picture taken under candescent light looks reddish, while the picture taken under the bright daylight

Table 15.10 Auto-white balance code example for white balance function

for (j=0; j<height; j++)
{

for (i=0; i<width/2; i++)
{

AC0 = (*r>>8)&0xff;
AC0 *= rGain;
if (AC0 > 0xff00)

AC0 = 0xff00;
AC0 &= 0xff00;
AC1 = (*r)&0xff;
AC1 *= rGain;
AC1 >>= 8;
if (AC1 > 0xff)

AC1 = 0xff;
*r++ = (unsigned short)(AC0| AC1);

}
}

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 609

Table 15.11 File listing for experiment exp15.10.3_whiteBalance

Files Description

whiteBalance.m MATLAB script controls the experiment

whitebalance.c Fixed-point C function for white balance

whitebalanceTest.c Program for testing experiment

whitebalanceGain.asm C55x assembly routine calculates white-balance gain

whitebalanceSum.asm C55x assembly routine computes the sum

whiteBalance.h C header file

whiteBalance.cmd DSP linker command file

whiteBalance.pjt DSP project file

Tory_2850k.jpg Image file

Tory_4150k.jpg Image file

Tory_6500k.jpg Image file

appears bluish. The white balance function corrects the unrealistic color so they all look similar as they

were taken under the fluorescent light source. The files used for this experiment are listed in Table 15.11.

The experiment has three stages: (1) compute the sums of R, G, and B pixels, (2) calculate the gain

values for R, G, and B correction, and (3) perform white balance on R, G, and B pixels. These three

stages are controlled by setting the img->status to 0, 1, and 2.

Procedures of the experiment are listed as follows:

1. Connect the C5510 DSK or simulator to the computer.

2. Start MATLAB and set the MATLAB working directory to the directory ..\exp15.10.3_white-
Balance where the MATLAB script whiteBalance.m is located.

3. Enter whiteBalance from MATLAB command window to start script for white balance experiment.

When the experiment is completed, it displays both the original image and the white-balanced image

for comparison.

4. Profile these stages using CCS profile function.

5. In the src directory, there are two C55x assembly files whitebalanceSum.asm and whitebal-

anceGain.asm. Replace the C function whitebalance.c with these two assembly routines in

the DSP project. Open the C header file whiteBalance.h from the DSP project and define the

compiling-time condition to enable the use of assembly functions. This can be done by chang-

ing //#define USE_ASM to #define USE_ASM. After enabling the compiler condition for using

assembly routines, rebuild the project.

6. Profile the experiment using fixed-point C functions and assembly functions. The profile result will

show when the optimization option is set; the fixed-point C function requires 3.45 cycles per pixel

to compute the sum, while it takes about 2.2 cycles if using the assembly routine. For a 320 × 240

image, the C function requires 320 × 240 × 3 × 3.45 = 794 880 cycles to compute the sums of R,

G, and B pixels; while the assembly routine only uses 320 × 240 × 3 × 2.2 = 506 880 cycles. It

clearly shows that the assembly routine can improve the efficiency by about 40 %.

7. Refer to the C function under the condition img->status==1 to write an assembly routine that

performs the white balance. Profile the performance improvement of the assembly routine over the

C function.

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

610 INTRODUCTION TO DIGITAL IMAGE PROCESSING

8. Compare the performance improvements obtained by the assembly routines with the C functions that

compute the sums and make white balance correction. It shows that the DSP code optimization should

be concentrated on the portion of program that has nested loops and process data frequently. Profile the

performance differences between C function that calculates the gain factors (img->status==2) and

the assembly routine. This experiment shows the gain calculation using assembly routine reducing

the run time from 610 cycles per call to 465 cycles. However, because this routine is called only

once, it makes minor contributions to the overall run-time improvement. We can leave it in C code if

it is possible. Identifying bottlenecks is an important task for real-time DSP programmers. We must

know where the computational intensities are located and find ways to improve their efficiency. For

some functions that are rarely called, we may be able to leave them in C functions. A careful analysis

and proper trade-offs can yield a good balance among performance, code development complexity,

and ease of maintenance.

15.10.4 Gamma Correction and Contrast Adjustment

Image gamma correction and contrast adjustment are often implemented using lookup tables. For an

8-bit image system, this method requires a 256-value table to map the image. Figure 15.20 shows the

relations between the input image (solid line) and the table mapped output image (dotted line). Figure

15.20(b) maps each pixel according to the gamma curve γ = 2.20. Figure 15.20(c) maps input image

pixels to a low-contrast image. Finally, Figure 15.20(d) maps the input image to produce an image with

high contrast.

The tables used for table-lookup methods are usually generated off line or during the system initializa-

tion. In this experiment, we generate the gamma table, low contrast table, and high contrast table during

initialization. If a dynamic table generation is required at run time, an efficient DSP program with fast

200

100

0
0 100

(a) Linear

200

200

100

0
0 100

(c) Low contrast

200

200

100

0
0 100

(d) High contrast

200

200

100

0
0 100

(b) Gamma curve

200

Figure 15.20 Table-lookup methods for different image mappings: (a) linear; (b) gamma; (c) low-contrast; and (d)

high-contrast

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 611

Table 15.12 File listing for experiment exp15.10.4_gammaContrast

Files Description

gammaContrast.m MATLAB script controls the experiment

tableGen.c Fixed-point C function generates gamma table

imageMapping.c Fixed-point C function for gamma correction

gammaContrastTest.c Program for testing experiment

gammacontrast.h C header file

gammaContrast.cmd DSP linker command file

gammaContrast.pjt DSP project file

boat.jpg Image file

temple.jpg Image file

implementation will be needed. Some of the math functions may be realized using function approxima-

tion methods introduced in Chapter 3. As discussed in Section 15.5, gamma correction is a prewarping

process to compensate the display devices’ nonlinear output characteristics. Most personal computers

use a gamma value of 2.20. The contrast adjustment is achieved by changing the image distribution as

described by the contrast curves shown in Figure 15.20.

The experiment programs and MATLAB scripts are under the directory exp15.10.4_ gammaCon-

trast. Two images are used for this experiment. One is for gamma correction and the other is for contrast

adjustment. Table 15.12 lists the files used for this experiment.

Procedures of the experiment are listed as follows:

1. Connect the C5510 DSK or simulator to the computer.

2. Start MATLAB and set the MATLAB working directory to the directory ..\exp15.10.
4_gammaContrast where the MATLAB script gammaContrast.m is located.

3. Start the experiment using the MATLAB script and observe the resulting images. The gamma curve

correction makes the image more bright for viewing. Applying low contrast adds more information

in the middle range, but reduces the image dynamic range in bright and dark regions. High contrast

can provide better details in the bright areas, but the image loses fine details in darken areas.

4. We can use MATLAB to prepare static data for DSP programs. We can remove the C file tableGen.c

and use MATLAB to generate the gamma table, low contrast table, and high contrast table. Modify the

script gammaContrast.m such that the MATLAB will generate these tables and use the MATLAB

write function to initialize the gamma table and contrast table.

5. Some applications require both gamma correction and contrast adjustment. In order to improve the

run-time efficiency, these two table-lookup implementations can be combined. Modify the experiment

such that it will use a combined table that is generated with gamma γ = 1.80 and high contrast

a = −0.00035.

15.10.5 Histogram and Histogram Equalization

In Example 15.6, we have shown the histogram equalization on luminance of the YCbCr color space.

In this experiment, we will implement the histogram equalization using the C5510 DSK. The histogram

equalization includes three important functions as shown in Figure 15.21.

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

612 INTRODUCTION TO DIGITAL IMAGE PROCESSING

Compute the
histogram of the
digital image

Make
equalization
table from the
histogram

Remap each
pixel using the
equalization
table

Figure 15.21 Process flow of the histogram equalization

We write the computation of histogram and equalization functions using C55x assembly language. The

assembly program takes advantages of zero-overhead local-block-repeat loop (rptblocal) instruction

and bit-field extract (bfxtr) instruction to effectively improve the run-time speed. Tables 15.13 and

15.14 list the histogram and histogram equalization routines, respectively.

Table 15.13 Assembly implementation of histogram

_historgam:
mov dbl(*AR0+), XAR4 ; x = hist->x;
mov dbl(*AR0+), XAR2 ; hBuf = hist->histBuf;
mov *AR0+, T0 ; Get width
mov *AR0+, AR1 ; Get height
sub #1, AR1
mov AR1, BRC0
sftl T0, #-1
sub #1, T0
mov T0, BRC1
rptblocal hightLoop-1 ; for (j=0; j<hist->height; j++){
rptblocal widthLoop-1 ; for(i=0; i<hist->width>>1; i++){
mov *AR4+, AC0 ; pixel = *x++;
bfxtr #0xff00, AC0, T0 ; hBuf[(pixel>>8)&0xff] += 1;
add #1, *AR2(T0)
and #0x00ff, AC0, T0 ; hBuf[pixel&0xff] += 1;
add #1, *AR2(T0)

widthLoop: ; }
nop

hightLoop: ; }
ret

Table 15.14 Assembly implementation of histogram equalization

_histEqualizer:
mov dbl(*AR0), XAR3 ; x = hist->x;

|| aadd #4, AR0 ; Add 4 for large memory pointer offset
mov *AR0+, AR1 ; Get width
sftl AR1, #-1

|| mov *AR0+, AR2 ; Get height
sub #1, AR1
mov AR1, BRC1
sub #1, AR2
mov AR2, BRC0
mov dbl(*AR0), XAR2 ; eqTbl = hist->eqTable;

|| rptblocal heightLoop-1 ; for (j=0; j<hist->height; j++){

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 613

Table 15.14 (continued)

rptblocal widthLoop-1 ; for(i=0; i<hist->width>>1; i++){
mov *AR3, AC0 ; data = *x;
bfxtr #0xff00, AC0, T0 ; out1 = eqTbl[(data>>8)&0xff];
and #0x00ff, AC0, T0 ; out2 = eqTbl[data&0xff];

|| mov *AR2(T0), AC1
mov *AR2(T0), AC0
or AC1<<#8, AC0
mov AC0, *AR3+ ; *x++ = (out1<<8)| out2;

widthLoop: ; }
nop

heightLoop: ; }
ret

This experiment is controlled using the MATLAB script histogramEqualization.m. Table 15.15

lists the files used for this experiment.

Procedures of the experiment are listed as follows:

1. Connect the C5510 DSK or simulator to the computer.

2. Start MATLAB and set the MATLAB working directory to the directory ..\exp15.10.
5_histogramEQ where the MATLAB script histogramEqualization.m is located.

3. Run the experiment using the MATLAB script and observe the resulting images. The equalized image

has a larger dynamic range.

4. The histogram equalization is a useful tool for adjusting underexposed images especially for the B&W

images. Try different underexposed and overexposed images and observe the histogram equalization

results.

15.10.6 2-D Image Filtering

In this experiment, we introduce the basic image filtering using a 3 ×3 filter kernel. Image filtering requires

extremely high computational power because of the large amount of pixels. For real-time applications,

Table 15.15 File listing for experiment exp15.10.5_histogramEQ

Files Description

histogramEqualization.m MATLAB script controls the experiment

histEqTable.c Fixed-point function computes histogram EQ table

histogramInit.c Fixed-point function for initialization

histogramEqTest.c Program for testing experiment

histogram.asm C55x assembly routine computes histogram

histEqualizer.asm C55x assembly routine performs equalization

histogramEQ.h C header file

histogramEQ.cmd DSP linker command file

histogramEQ.pjt DSP project file

hallway.jpg Image file

street.jpg Image file

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

614 INTRODUCTION TO DIGITAL IMAGE PROCESSING

Table 15.16 C code for 2-D filtering of image

for(x=0; x<imageWidth; x++)
{

for(m=0; m<M; m++)
{

for(n=0; n<N; n++)
{

temp32 += (unsigned long)pixel[row++][x] * filter[n][m];
if (row == 3)
{

row = 0;
}

}
}

}

the image filtering must be implemented efficiently using assembly routines, or we should rely on specific

hardware accelerator to meet the real-time constraints.

Fixed-point C implementation

This experiment uses the basic 3 × 3 kernel as the image filter to achieve different effects as shown in

Example 15.7. The implementation of the 2-D filtering defined in Equation (15.13) is listed in Table 15.16.

In Table 15.16, the input image located at position x of row in the data array, pixel[row][x], is

filtered by an n-by-m 2-D filter filter[n][m]. The middle pixel corresponds to the current input. The

input and its neighboring pixels are all contributing to the filtering results. To utilize the limited DSK

memory, this experiment uses three rows of input image data for the 3 × 3 image filter kernel. These

rows are arranged as shown in Figure 15.22.

The processing starts with three rows of data. The current input and output are represented by index

n as shown in Figure 15.22(a). The row indexed with n − 1 contains the previous row of image data and

n + 1 contains the next row. The filtering process continues from the first column to the last column for

each row. The update of the data buffer is carried one row at a time. The update of the filter delay line

(three rows) is actually achieved by adjusting the 2-D data array index, row. As shown in Figure 15.22(a),

row n is the current center row when the filtering process starts. After the first update, the new current

row is labeled with index n + 1 (see Figure 15.22(b)). After another update, the current row is n + 2 as

shown in Figure 15.22(c). This pattern is repeated. The filtering process is depicted in Figure 15.12. It

computes the dot product starting from columns then rows between the 3 × 3 data block and the 3 × 3

filter kernel.

Image row: n−1 (previous)

Image row: n+1 (previous)

Image row: n (previous)Image row: n (current)

Image row: n+1 (next) Image row: n+1 (current)

Image row: n+2 (current)Image row: n+2 (next)

Image row: n+3 (next)

(a) (b) (c)

Figure 15.22 Image data update scheme

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 615

Table 15.17 File listing for experiment exp15.10.6_2DFilter

Files Description

image2DFilter.m MATLAB script controls the experiment

filter2D.c Fixed-point 2-D filter kernel function

filter2D.asm C55x assembly 2-D filter kernel function

filter2DTest.c Program for testing experiment

filter2D.h C header file

2DFilter.cmd DSP linker command file

2DFilter.pjt DSP project file

eagle.jpg Image file

flower.jpg Image file

This experiment uses a 3 × 3 highpass filter kernel. The MATLAB script generates RGB data set from

the given images, commands the DSP processor to perform the 2-D filtering, and finally, displays the

results on the computer screen. Table 15.17 lists the files used for this experiment.

Procedures of the experiment are listed as follows:

1. Connect the C5510 DSK or simulator to the computer.

2. Start MATLAB and set the MATLAB working directory to the directory..\exp15.10.6_2DFilter
where the MATLAB script image2DFilter.m is located.

3. Start the experiment using the MATLAB script and observe the resulting images. The filtered images

have sharpened edges from the highpass filtering.

4. Use CCS to profile the DSP run-time requirements for filtering each pixel.

5. This experiment filters R, G, and B data in the RGB domain. Modify the MATLAB script such that

the image data to be filtered is the luminance component Y in the YCbCr color space. Modify the

experiment to filter the luminance only. Use MATLAB to reconstruct the filtered image and display

it on computer.

6. Compare the RGB color space filtering results with the YCbCr color space. What are the DSP loading

requirements for the RGB and YCbCr color spaces using the same image?

7. Since the 2-D filtering uses a 3 × 3 image filter kernel, the center element of the matrix corresponds

to the current input and output. This means the boundary conditions are not considered by this

experiment. The first row of filtered output is actually corresponding to the second row of the image

data, and the last row is not processed correctly. The data in the first column and last column are

also not processed. This problem can be solved by patching one row of data values on the top and

the bottom of the image, one column to the left and the right of the image. The patch value can be

0 (black), 0xFF (white), or can use the neighboring pixels. Implement a patching scheme so the 2-D

filtering will process all the pixels of any given image.

TMS320C55x assembly language implementation

The 2-D image filtering is usually written in assembly language because it requires very intense compu-

tation. This experiment presents assembly implementation of 2-D filtering listed in Table 15.18.

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

616 INTRODUCTION TO DIGITAL IMAGE PROCESSING

Table 15.18 Assembly implementation of 2-D filter kernel

.global _filter2D

_filter2D:
psh T3, T2

; Initialization
;

mov *AR0+, T0 ; mn = imfilt->m2D * imfilt->n2D
mpym *AR0+, T0, AC0
sub #1, AC0
mov mmap(AC0L), BRC1
mov *AR0+, T3 ; row = imfilt->state
mov *AR0+, T0 ; state
neg T0, T2

|| mov dbl(*AR0+), XAR4 ; filter
mov dbl(*AR0+), XAR3 ; pixel = imfilt->inData
mov dbl(*AR0+), XAR1
mov *AR0, T1 ; imfilt->imWidth
mov XAR1,XAR0
sub #1, T1, AR1
mov AR1, BRC0

;
; Process one row of data
;

mov #0, AC2
|| rptblocal row_loop-1 ; for(x=0; x<imfilt->imWidth; x++)

amar *AR4, XAR2 ; filter = imfilt->filter
mov #0, AC0

|| rptblocal filter_loop-1 ; for(temp32=0, i=0; i<mn; i++)
macm *(T3), T1, AC2, AC1 ; temp32 +=
mov AC1, T0 ; (long)pixel[(row*w)+x] * *filter++;
mov *AR3(T0) << #16, AC1
macm *AR2+, AC1, AC0
add #1, T3 ; row++
cmp *(T3) == #3, TC1 ; if (row == 3)
xcc TC1 ; row = 0

|| mov #0, T3
filter_loop:
;
; Shift to compensate integer coefficient then limit to 8-bit
;

sfts AC0, T2, AC0 ; temp32 >>= imfilt->shift
|| mov #256, AC1

cmp AC0 >= AC1, TC1 ; if (temp32 > 255) temp32 = 255
xcc AC0 < #0 ; if (temp32 < 0) temp32 = 0
mov #0, AC0
xcc TC1
mov #255, AC0
mov AC0, *AR0+ ; *imfilt->outData++ = (char)(temp32)
add #1, AC2

row_loop:
pop T3,T2
ret

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 617

Procedures of the experiment are listed as follows:

1. Connect the C5510 DSK or simulator to the computer.

2. Start MATLAB and set the MATLAB working directory to the directory..\exp15.10.6_2DFilter
where the MATLAB script image2DFilter.m is located.

3. Replace the fixed-point C function filter2D.c with the C55x assembly routine filter2D.asm.

4. Run the experiment using the MATLAB script and observe the resulting images. The filtered images

have sharpened edges from the highpass filter.

5. Use the FIR filtering techniques that we have learned in Chapter 4 to further improve the efficiency

of assembly routine. Try to use dual-MAC or asymmetric filtering methods.

15.10.7 Implementation of DCT and IDCT

In this experiment, we implement the most commonly used 8 × 8 DCT on the C55x. We will show the

fixed-point C functions and use assembly language routines for the forward DCT and IDCT. Assembly

functions or hardware accelerators are often chosen for DCT and IDCT implementations.

Fixed-point C implementation

The 8 × 8 DCT and IDCT can be implemented using fixed-point C as shown in Table 15.19. The 64

pixels for DCT are arranged in a 1-D array pointed by the pointer block, and the DCT coefficients are

stored in a 2-D array pointed by the pointer dctCoef. The implementation separates the 2-D DCT into

two 1-D DCTs. First, the DCT is applied on each column of the 8 × 8 matrix. The results are stored in

an intermediate 8 × 8 buffer temp16[64]. Then the DCT is applied to the rows of the matrix to obtain

the final results. The final DCT results are stored back to the original data buffer pointed by the pointer

block. This method is called in-place DCT because the results overwrite the original data when the

transform is completed. Although the pixels and coefficients can be arranged in 2-D arrays, 1-D pointers

are used in the DCT implementation. Using data pointers allows us to write more effective assembly

code with autoincrement addressing mode, thus avoids extra computations to update the array pointers.

Table 15.19 C code of 8 × 8 DCT function

void dct8x8(short *block, short (*dctCoef)[8])
{

long AC0;
short i,j,h;
short *tmpDat,*curData,*tmpCoef;
short temp16[64];

// Apply 1-D DCT on the columns of 8x8 data block
for(i=0; i<8; i++)
{

curData = block + i;

continues overleaf

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

618 INTRODUCTION TO DIGITAL IMAGE PROCESSING

Table 15.19 (continued)

tmpCoef = &dctCoef[0][0];
for(h=0; h<8; h++)
{

tmpDat = curData;
AC0 = *tmpCoef++ * (long)*tmpDat;
tmpDat += 8;
for(j=0; j<7; j++)
{

AC0 += *tmpCoef++ * (long)(*tmpDat);
tmpDat += 8;

}
temp16[i+(h<<3)] = (short)(AC0>>12);

}
}
// Apply 1-D DCT on the resulting rows
for(i=0; i<64; i+=8)
{

curData = temp16 + i;
tmpCoef = &dctCoef[0][0];
for(h=0; h<8; h++)
{

tmpDat = curData;
AC0 = *tmpCoef++ * (long)(*tmpDat++);
for(j=0; j<7; j++)
{

AC0 += *tmpCoef++ * (long)(*tmpDat++);
}
block[i+h] = (short)(AC0>>15);

}
}

}

The DCT coefficients are generated according to Equation (15.20). In order to reduce quantization

effects and preserve enough resolution, the DCT coefficients are converted to 12-bit integers. Table 15.20

shows the C function that generates 12-bit DCT coefficients. By examining the DCT and IDCT coefficients

computed from Equations (15.20) and (15.21), respectively, we found that the IDCT coefficient array is

the transpose of the DCT coefficient array.

Table 15.20 C function to generate DCT coefficients

#define PI 3.1415926
#define UNITS (short)(4095*1.414*2)
void DCTcoefGen(short (*dctCoef)[8])
{

short u,x;
double cu;
for (u=0;u<8;u++)
{

for(x=0;x<8;x++)

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 619

Table 15.20 (continued)

{
if (u==0)
{

cu = 0.70710678/2.0;
}
else
{

cu = 1.0/2.0;
}
dctCoef[u][x]=(short)(cu*cos(((2.0*x+1.0)*PI*u)/16.0)*UNITS+0.5);

}
}

}

Due to the memory limitation of C5510 DSK, it is difficult to load entire image file for experiments.

In this experiment, we read eight rows of image data each time for the 8 × 8 DCT processing. Once all

eight rows of image data have been processed, the experiment will read next eight rows until it reaches

the bottom eight rows. In this case, the width and height of digital image are constrained to the multiple

of 8 pixels. The files used for this experiment are listed in Table 15.21.

Procedures of the experiment are listed as follows:

1. Connect the C5510 DSK or simulator to the computer.

2. Start MATLAB and set the MATLAB working directory to the directory ..\exp15.10.7_DCT
where the MATLAB script DCT.m is located.

3. Run the experiment using the MATLAB script and observe the resulting images.

4. Use CCS to profile the DSP run-time requirements of DCT and IDCT functions.

5. Due to the memory constraint of DSK, the test image width is 120 pixels. Modify the experiment

such that it can accept any size of image files. Validate the changes by using a JPEG image of size

greater than 640 × 480.

Table 15.21 File listing for experiment exp15.10.7_DCT

Files Description

DCT.m MATLAB script controls the experiment

DCT.c Fixed-point DCT function

IDCT.c Fixed-point IDCT function

DCT.asm C55x assembly DCT function

IDCT.asm C55x assembly IDCT function

DCTTest.c Program for testing experiment

DCT.h C header file

DCT.cmd DSP linker command file

DCT.pjt DSP project file

totem.jpg Image file

monument.jpg Image file

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

620 INTRODUCTION TO DIGITAL IMAGE PROCESSING

Assembly language implementation

The DCT and IDCT are computational intensive functions for image processing applications. Implement-

ing these functions in assembly language is often necessary to meet strict real-time constraints. Table

15.22 lists the assembly routine for the IDCT function. Using local-repeat loop and index addressing

mode, assembly routine reduces the processing time by about 37 %.

Table 15.22 Assembly routine of IDCT

_idct8x8:
pshboth XAR5
aadd #-BLOCK_SIZE, SP ; Adjust for temp16[64] buffer

;
; Apply 1-D IDCT on columns of 8x8 data block
;

mov #7, BRC0
mov #7, BRC1
mov #8, T0

|| amar *AR0, XAR5
mov #0, T1

|| rptblocal columnLoop-1 ; for(i=0; i<8; i++)
mov XSP, XAR4
amar *AR1, XAR2 ; tmpCoef = &idctCoef[0][0]
aadd T1, AR4

|| rptblocal dataLoop1-1 ; for(h=0; h<8; h++)
amar *AR5, XAR3 ; tmpDat = curData
mpym *(AR3+T0), *AR2+, AC0 ; AC0=*tmpCoef++*(long)(*tmpDat)

; tmpDat += 8
|| rpt #6 ; for(j=0; j<7; j++)

macm *(AR3+T0), *AR2+, AC0 ; AC0 += *tmpCoef++ * (long)(*tmpDat)
; tmpDat += 8

sfts AC0, #-12 ; temp16[i+(h<<3)] = (short)(AC0>>12)
mov AC0, *(AR4+T0)

dataLoop1
add #1, T1

|| amar *AR5+
columnLoop
;
; Apply 1-D IDCT on resulting rows
;

mov #7, BRC0
mov #7, BRC1
mov XSP, XAR5
rptblocal rowLoop-1 ; for(i=0; i<64; i+=8)
amar *AR0, XAR4
amar *AR1, XAR2 ; tmpCoef = &idctCoef[0][0]

|| rptblocal dataLoop2-1 ; for(h=0; h<8; h++)
amar *AR5, XAR3 ; tmpDat = curData
mpym *AR3+, *AR2+, AC0 ; AC0 = *tmpCoef++ * (long)(*tmpDat++)

|| rpt #6 ; for(j=0; j<7; j++)
macm *AR3+, *AR2+, AC0 ; AC0 += *tmpCoef++ * (long)(*tmpDat++)
sfts AC0, #-15 ; block[i+h] = (short)(AC0>>15)
mov AC0, *AR4+

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 621

Table 15.22 (continued)

dataLoop2
amar *(AR0+T0)
amar *(AR5+T0)

rowLoop
aadd #BLOCK_SIZE, SP
popboth XAR5
ret

Procedures of the experiment are listed as follows:

1. Connect the C5510 DSK or simulator to the computer.

2. Start MATLAB and set the MATLAB working directory to the directory ..\exp15.10.7_DCT
where the MATLAB script DCT.m is located.

3. Replace the fixed-point C functions DCT.c and IDCT.c with the C55x assembly routines DCT.asm

and IDCT.asm.

4. Run the experiment using the MATLAB script and observe the resulting images. Compare the run-

time improvement with the fixed-point C functions.

5. The DCT and IDCT routines can be further optimized using parallel processing features of the C55x

processors and taking advantages of double memory read and store instructions. Modify the given

assembly routines such that they are processing two pixels in parallel in each iteration.

15.10.8 TMS320C55x Image Accelerator for DCT and IDCT

The TMS320C5510 processors contain hardware accelerators to boost the performance of image and

video processing algorithms. These hardware accelerators (extensions) treated as coprocessors are suit-

able for image and video applications such as JPEG and MPEG algorithms. The coprocessor achieves

high performance using its built-in highly parallel hardware extensions. User can issue special commands

to control the coprocessors to achieve the predetermined functions. The coprocessor instructions can be

categorized into three types as summarized in Table 15.23.

The 8-bit constant k8 in the coprocessor instructions represents the instruction code. The input values

are represented using Xmem and Ymem. ACx, ACy, and ACz are the accumulators that contain data values

and intermediate results. To use the hardware accelerator, the proper instruction sequences must be

executed according to Texas Instruments’ IMGLIB (image/video processing library) requirements. For

Table 15.23 TMS320C55x coprocessor instructions

Syntax Description

copr #k8, ACx, Xmem, Ymem, Acy Load + computation + transfer to accumulators

copr #k8, ACx, ACy, ACy Computation + transfer to accumulators + write to memory

|| mov ACz, dbl(Lmem)
corp #k8, ACx, Acy Special instructions

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

622 INTRODUCTION TO DIGITAL IMAGE PROCESSING

Table 15.24 DCT hardware accelerator instruction code

Sequence Column code Row code Example

1 36 36 copr #36,AC0,*(AR2+T0),*(AR1+T0),AC0
2 32 32 copr #32,AC0,AC1

|| mov AC0, dbl(*AR3+)

3 33 33 copr #33,AC1,AC0
|| mov AC1, dbl(*AR3+)

4 51 51 copr #51,AC0,AC1
|| mov AC0, dbl(*AR3+)

5 50 50 copr #50,AC1,AC0
|| mov AC1, dbl(*AR3+)

6 38 38 copr #38,AC0,*(AR2+T0),*(AR1+T0),AC1
7 39 29 copr #39,AC0,*(AR2+T0),*(AR1+T0),AC0
8 37 34 copr #37,AC0,*(AR2-T1),*(AR1-T1),AC1

example, the 8 × 8 DCT and IDCT can be separated into 8-column transfers and 8-row transfers. Each

transfer takes one cycle. The hardware accelerator instruction code for the DCT operation is given in

Table 15.24, and the code for the IDCT operation is given in Table 15.25.

These instructions are defined for the TMS320C55x coprocessor to accomplish the DCT and IDCT

algorithms. More details about the instruction codes for other video and image algorithms can be found

in reference [6]. Table 15.26 lists the files used for this experiment. Because C55x hardware accelerator

contains DCT and IDCT coefficients, we do not need to generate these coefficients.

Table 15.27 lists the performance of DCT and IDCT using the fixed-point C, assembly program, and

hardware accelerator. The profile results show that the C55x hardware accelerator improves the perfor-

mance of DCT and IDCT algorithms by a factor of 10 as compared with the fixed-point C implementation.

The DCT and IDCT functions prototypes are

void hwdct8x8 (short *data, short *buffer);
void hwidct8x8 (short *data, short *buffer);

where *data is the pointer to the 8 × 8 image data block and *buffer is the intermediate working

buffer of size 8 × 9. The DCT or IDCT results are written back to the data buffer pointed by *data.

Table 15.25 IDCT hardware accelerator instruction code

Sequence Column code Row code Example

1 45 45 copr #45,AC0,*(AR2+T0),*(AR1+T0),AC0
2 47 47 copr #47,AC0,AC1

|| mov AC0, dbl(*AR3+)

3 46 46 copr #46,AC1,AC0
|| mov AC1, dbl(*AR3+)

4 58 58 copr #58,AC0,AC1
|| mov AC0, dbl(*AR3+)

5 59 59 copr #59,AC1,AC0
|| mov AC1, dbl(*AR3+)

6 41 41 copr #41,AC0,*(AR2+T0),*(AR1+T0),AC1
7 40 40 copr #40,AC0,*(AR2+T0),*(AR1+T0),AC0
8 44 42 copr #44,AC0,*(AR2-T1),*(AR1-T1),AC1

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

EXPERIMENTS AND PROGRAM EXAMPLES 623

Table 15.26 File listing for experiment exp15.10.8_HwAccelerator

Files Description

hwAccelerator.m MATLAB script controls the experiment

hwDCT.asm C55x assembly DCT using HW accelerator

hwIDCT.asm C55x assembly IDCT using HW accelerator

hwAcceleratorTest.c Program for testing experiment

DCT.h C header file

hwAccelerator.cmd DSP linker command file

hwAccelerator.pjt DSP project file

flower.jpg Image file

statue.jpg Image file

Table 15.27 DCT and IDCT performance analysis

Cycles per 8 × 8 block Cycles per pixel

DCT IDCT DCT IDCT

Fixed-point C 2422 2423 37.8 37.8

C55x assembly 1521 1524 23.8 23.8

Hardware accelerator 251 182 3.9 2.8

Both data[64] and buffer[72] arrays must be aligned to 32-bit boundary because the double-store

instruction is used. To avoid memory access contention, the data[64] and buffer[72] arrays are placed

into two separated memory blocks. We use the pragma keyword to control where and how the data[64]

and buffer[72] arrays are placed.

Procedures of the experiment are listed as follows:

1. Connect the C5510 DSK to the computer and power on the DSK.

2. Start MATLAB and set the MATLAB working directory to the directory ..\exp15.10
.8_HwAccelerator where the MATLAB script hwAccelerator.m is located.

3. Run the experiment using the MATLAB script and observe the resulting images.

4. Examine the source code hwDCT.asm and refer to reference [6] for knowing how to use the copro-

cessor.

15.10.9 TMS320C55x Hardware Accelerator Image/Video
Processing Library

The C55x hardware accelerator can perform several other video and image algorithms, including motion

estimation, pixel interpolations, and computing absolute distances. These algorithms are essential for

video and image applications such as the MPEG-4. To simplify the programming requirements for using

these algorithms, Texas Instruments provides the IMGLIB library with C-callable interfaces to these

video and image functions.

The IMGLIB can be downloaded from Texas Instruments’ Web site. The version of the IMGLIB used

in this experiment is Version 2.30. Table 15.28 lists the IMGLIB functions supported by the hardware

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

624 INTRODUCTION TO DIGITAL IMAGE PROCESSING

Table 15.28 List of IMGLIB functions using the hardware accelerator

Function Description

IMG_fdct_8x8 2-D DCT for 8 × 8 image block

IMG_idct_8x8 2-D IDCT for 8 × 8 image block

IMG_scale_by_2 Image upscale by factor of 2

IMG_mad_8x8 8 × 8 minimum absolute difference

IMG_mad_16x16 16 × 16 minimum absolute difference

IMG_sad_8x8 Sum of absolute difference on single 8 × 8 block

IMG_sad_16x16 Sum of absolute difference on single 16 × 16 block

IMG_pix_inter_16x16 Pixel interpolation

IMG_mad_16x16_4step Motion estimate by four-step search

accelerator for video and image applications. The complete list of the image library functions can be

found in reference [7]. User can avoid directly programming coprocessor by using the C-callable IMGLIB

functions. Many other video and image algorithms without using hardware accelerators are also included

in the IMGLIB. In this experiment, we will use the hardware DCT and IDCT functions from the IMGLIB.

To use the IMGLIB functions, the C header files imagelib.h and 55ximage.lib (or 55cimagex

.lib for large memory model) must be included in the DSP project. The DCT and IDCT functions

syntaxes are

void IMG_fdct_8x8 (short *data, short *buffer);
void IMG_idct_8x8 (short *data, short *buffer);

where *data is the pointer to the 8 × 8 image data block and *buffer is the intermediate working

buffer of size 8 × 9. The DCT or IDCT results are written back to the data buffer pointed by *data.

Both data[64] and buffer[72] arrays must be aligned to 32-bit boundary in order to use double-store

instruction. The data[64] and buffer[72] arrays are placed into two separated memory blocks to avoid

possible memory access contention. Table 15.29 lists the files used for this experiment.

Procedures of the experiment are listed as follows:

1. Connect the C5510 DSK to the computer and power on the DSK.

2. Start MATLAB and set the MATLAB working directory to the directory ..\exp15.10.9_IMGLIB
where the MATLAB script imglib.m is located.

3. Add 55ximagex.lib and imagelib.h to the project.

Table 15.29 File listing for experiment exp15.10.9_HwAccelerator

Files Description

imglib.m MATLAB script controls the experiment

imgLibTest.c Program for testing experiment

imglib.h C header file for the experiment

imagelib.h C header file for IMGLIB functions

55ximagex.lib IMGLIB for large memory model

imglib.cmd DSP linker command file

imglib.pjt DSP project file

ship.jpg Image file

smokingClock.jpg Image file

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

EXERCISES 625

4. Run the experiment using the MATLAB script and observe the resulting images.

5. Using the TMS320C5510 IMGLIB histogram function, IMG_histogram(), implement the his-

togram equalization experiment.

6. Using the 3 × 3 convolution function IMG_conv_3x3() in the TMS320C5510 IMGLIB, implement

the image filtering experiment. Repeat the filtering experiment in Section 15.10.6 and compare the

filtering results.

References

[1] T. Sakamoto, C. Nakanishi, and T. Hase, ‘Software pixel interpolation for digital still cameras suitable for a 32-bit

MCU,’ IEEE Trans. Consum. Electron., vol. 44, pp. 1342–1352, Nov. 1998.

[2] ITU-R Recommendation BT.601–5, Studio Encoding Parameters of Digital Television for Standard 4:3 and
Wide-Screen 16:9 Aspect Ratios, Oct. 1995.

[3] ITU CCIR Report 624-4, Characteristics of Systems for Monochrome and Color Television, June 2003.

[4] ITU-T Recommendation T.81, Information Technology – Digital Compression and Coding of Continuous-Tone
Still Images – Requirements and Guidelines, 1992.

[5] F. A. McGovern, R. F. Woods, and M. Yan, ‘Novel VLSI implementation of (8x8) point 2-D DCT,’ Electron. Lett.,
vol. 30, pp. 624–626, Apr. 1994.

[6] Texas Instruments, Inc., TMS320C55x Hardware Extensions for Image/Video Applications Programmer’s Refer-
ence, Literature no. SPRU 098, Feb. 2002.

[7] Texas Instruments, Inc., TMS320C55x Hardware Extensions for Image/Video Processing Library Programmer’s
Reference, Literature no. SPRU 037B, Mar. 2003.

Exercises

1. Refer to Example 15.1 to write a MATLAB script that reads in R, G, and B data files resulting from the YCbCr

to RGB conversion in Section 15.10.1, and display the RGB image using MATLAB function imshow. Use

visual inspection to compare the RGB image displayed by MATLAB and the bitmap image generated by Sec-

tion 15.10.1.

2. Implement the HSV to RGB color space conversion in fixed-point C. The data file Sunset160x120.HSV is

provided in the companion CD.

3. Develop an experiment that converts the HSV color space to RGB color space using C55x assembly language.

4. Example 15.8 implements 2-D image filter in frequency domain. The resulting image has been shifted toward the

bottom right. Modify the MATLAB script such that edge-affects will be minimized.

5. In Section 15.10.3, the white-balanced image for Tory_2850k.jpg is dimmed slightly. What causes this

problem? Modify the white balance algorithm such that it will keep the image intensity unchanged after white

balance.

6. Develop a new experiment that uses adaptive histogram equalization to divide the image into several regions and

individually equalizes each smaller region instead of entire image.

7. Develop an experiment that uses a lowpass filter to remove the high-frequency noise in the image file

noiseImage.jpg.

JWBK080-15 JWBK080-Kuo March 2, 2006 16:27 Char Count= 0

626 INTRODUCTION TO DIGITAL IMAGE PROCESSING

8. In experiments 15.10.1 and 15.10.2, we have introduced RGB and YCbCr conversion and in experiment 15.10.6,

we have presented 2-D image filtering. Combine the RGB and YCbCr conversion with the 2-D image filter to

develop a new experiment. For this new experiment, the image data is converted from RGB color space to YCbCr

space, and then the 2-D image filter applies only to the luminance in the YCbCr color space. After the filtering,

convert the YCbCr to RGB color space. Finally, use the RGB data to create a bitmap file for computer display.

9. McGovern et al. [5] have shown that the 8 × 8 DCT can be implemented with only 12 multiplications instead of

64 by taking advantage of the DCT and IDCT coefficients’ redundancies. Implement the McGovern’s algorithm

and profile the improved DCT performance.

Appendix-A JWBK080-Kuo March 2, 2006 11:33 Char Count= 0

Appendix A
Some Useful Formulas
and Definitions

This appendix briefly summarizes some basic formulas and definitions of algebra that will be used

extensively in this book.

A.1 Trigonometric Identities

Trigonometric identities are often required in the manipulation of Fourier series, transforms, and

harmonic analysis. Some of the most common identities are listed as follows:

sin(−α) = − sin α (A.1a)

cos(−α) = cos α (A.1b)

sin(α ± β) = sin α cos β ± cos α sin β (A.2a)

cos(α ± β) = cos α cos β ∓ sin α sin β (A.2b)

2 sin α sin β = cos(α − β) − cos(α + β) (A.3a)

2 cos α cos β = cos(α + β) + cos(α − β) (A.3b)

2 sin α cos β = sin(α + β) + sin(α − β) (A.3c)

sin α ± sin β = 2 sin

(
α ± β

2

)
cos

(
α ∓ β

2

)
(A.4a)

cos α + cos β = 2 cos

(
α + β

2

)
cos

(
α − β

2

)
(A.4b)

cos α − cos β = −2 sin

(
α + β

2

)
sin

(
α − β

2

)
(A.4c)

sin(2α) = 2 sin α cos α (A.5a)

cos(2α) = 2 cos2 α − 1 = 1 − 2 sin2 α (A.5b)

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

627

Appendix-A JWBK080-Kuo March 2, 2006 11:33 Char Count= 0

628 SOME USEFUL FORMULAS AND DEFINITIONS

sin
(α

2

)
=

√
1

2
(1 − cos α) (A.6a)

cos
(α

2

)
=

√
1

2
(1 + cos α) (A.6b)

sin2 α + cos2 α = 1 (A.7a)

sin2 α = 1

2
[1 − cos(2α)] (A.7b)

cos2 α = 1

2
[1 + cos(2α)] (A.7c)

e± jα = cos α ± j sin α (A.8a)

sin α = 1

2 j

(
e jα − e− jα

)
(A.8b)

cos α = 1

2

(
e jα + e− jα

)
(A.8c)

In Euler’s theorem given in Equation (A.8), j = √−1. The basic concepts and manipulations of

complex number will be reviewed in Section A.3.

A.2 Geometric Series

The geometric series is used in discrete time signal analysis to evaluate functions in closed form. Its basic

form is

N−1∑
n=0

xn = 1 − x N

1 − x
, x �= 1. (A.9)

This is a widely used identity. For example,

N−1∑
n=0

e− jωn =
N−1∑
n=0

(
e− jω

)n = 1 − e− jωN

1 − e− jω
. (A.10)

If the magnitude of x is less than 1 and not equal to zero, the infinite geometric series converges to

∞∑
n=0

xn = 1

1 − x
, 0 < |x | < 1. (A.11)

A.3 Complex Variables

A complex number z can be expressed in rectangular (Cartesian) form as

z = x + j y = Re[z] + jIm[z]. (A.12)

Since the complex number z represents the point (x , y) in the two-dimensional plane, it can be drawn

as a vector illustrated in Figure A.1. The horizontal coordinate x is called the real part, and the vertical

coordinate y is the imaginary part.

Appendix-A JWBK080-Kuo March 2, 2006 11:33 Char Count= 0

COMPLEX VARIABLES 629

Im [z]

Re [z]

(x, y)

x

y

0

θ

r

Figure A.1 Complex numbers represented as a vector

As shown in Figure A.1, the vector z can also be defined by its length (radius) r and its direction

(angle) θ . The x and y coordinates of the vector are given by

x = r cos θ, and y = r sin θ. (A.13)

Therefore, the vector z can be expressed in polar form as

z = r cos θ + jr sin θ = re jθ , (A.14)

where

r = |z| =
√

x2 + y2 (A.15)

is the magnitude of the vector z and

θ = tan−1
(y

x

)
(A.16)

is its phase in radians.

The basic arithmetic operations for two complex numbers z1 = x1 + j y1 and z2 = x2 + j y2 are listed

as follows:

z1 ± z2 = (x1 ± x2) + j (y1 ± y2) (A.17)

z1z2 = (x1x2 − y1 y2) + j (x1 y2 + x2 y1) (A.18a)

= (r1r2) e j(θ1+θ2) (A.18b)

z1

z2

= (x1x2 + y1 y2) + j (x2 y1 − x1 y2)

x2
2 + y2

2

(A.19a)

= r1

r2

e j(θ1−θ2) (A.19b)

Note that addition and subtraction are straightforward in rectangular form, but are difficult in polar form.

Division is simple in polar form, but is complicated in rectangular form.

The complex arithmetic of the complex number x can be listed as

z∗ = x − j y = re− jθ , (A.20)

Appendix-A JWBK080-Kuo March 2, 2006 11:33 Char Count= 0

630 SOME USEFUL FORMULAS AND DEFINITIONS

Re [z]

e j(2π/N)

Im [z]

|z| = 1, unit circle

Figure A.2 Graphical display of the N th roots of unity, N = 8

where * denotes complex-conjugate operation. In addition,

zz∗ = |z|2 (A.21)

z−1 = 1

z
= 1

r
e− jθ , (A.22)

zN = r N e j Nθ . (A.23)

The solution of

zN = 1 (A.24)

is

zk = e jθk = e j(2πk/N), k = 0, 1, . . . , N − 1. (A.25)

As illustrated in Figure A.2, these N solutions are equally spaced around the unit circle |z| = 1. The

angular spacing between them is θ = 2π/N.

A.4 Units of Power

Power and energy calculations are important in circuit analysis. Power is defined as the time rate of

expending or absorbing energy, and can be expressed in the form of a derivative as

P = dE

dt
, (A.26)

where P is the power in watts, E is the energy in joules, and t is the time in seconds. The power associated

with the voltage and current can be expressed as

P = vi = v2

R
= i2 R, (A.27)

where v is the voltage in volts, i is the current in amperes, and R is the resistance in ohms.

In engineering applications, the most popular description of signal strength is decibel (dB) defined as

N = 10 log10

(
Px

Py

)
dB. (A.28)

Appendix-A JWBK080-Kuo March 2, 2006 11:33 Char Count= 0

REFERENCES 631

Therefore, the decibel unit is used to describe the ratio of two powers and requires a reference value, Py

for comparison.

It is important to note that both the current i(t) and the voltage v(t) can be considered as an analog

signal x(t), and thus the power of signal is proportional to the square of signal amplitude. For example, if

the signal x(t) is amplified by a factor g, that is, x(t) = gy(t), the signal gain can be expressed in decibel

as

Gain = 10 log10

(
Px

Py

)
= 20 log10(g), (A.29)

since the power is a function of the square of the voltage (or current) as shown in Equation (A.27). As the

second example, consider that the sound-pressure level, Lp, in decibels corresponds to a sound pressure

Px referenced to Py = 20μ Pa (pascals). When the reference signal y(t) has power Py equal to 1 mW,

the power unit of x(t) is called dBm (dB with respect to 1 mW).

Digital reference level dBm0 is the digital milliwatt as defined in ITU-T Recommendation G.168. The

method defined for measuring the input level of the signals is a root mean square (RMS) method. The

dBm0 is measured as

Pk = 3.14 + 20 log

⎡⎢⎢⎢⎢⎣
√

2
N

k−N+1∑
i=k

x2
i

4096

⎤⎥⎥⎥⎥⎦ (A-law encoding), (A.30a)

Pk = 3.17 + 20 log

⎡⎢⎢⎢⎢⎣
√

2
N

k−N+1∑
i=k

x2
i

8159

⎤⎥⎥⎥⎥⎦ (μ-law encoding), (A.30b)

where Pk is signal level in dBm0, xi is linear equivalent of the PCM encoded signal at time i , k is a

discrete time index, and N is the number of samples over which the RMS measurement is made.

References

[1] J. J. Tuma, Engineering Mathematics Handbook, New York: McGraw-Hall, 1979.

[2] ITU-T Recommendation G.168, Digital Network Echo Cancellers, 2000.

Appendix-A JWBK080-Kuo March 2, 2006 11:33 Char Count= 0

632

JWBK080-APP˙B JWBK080-Kuo March 2, 2006 16:31 Char Count= 0

Appendix B
Software Organization and
List of Experiments

The companion CD includes all the program and data files used for examples and experiments. Figure B.1

shows the directory structure of the software including examples, exercises, and experiments in the

companion CD. The software is arranged by chapters where the software is referenced.

Each chapter contains two directories: examples and experiments. Some chapters include the

exercises directory, which contains the necessary data files and software programs for the exercise

problems at the end of that chapter. The examples directory consists of one or more subdirectories.

Each subdirectory is named according to its example number. For example, the directory named by

example7.8 contains the MATLAB program example7_8.m that is used by Example 7.8 in Chapter 7.

The experiments directory contains all the experiments for that chapter. The name of the subdirectory

under the experiments directory begins with the experiment number and is followed by the experiment

name. For example, exp7.6.8_realtime_predictor as shown in Figure B.1 consists of all the pro-

gram and data files for experiment given in Section 7.6.8. The data directory under the experiment

subdirectory contains the data files used by the given experiment. The Debug directory is used by the

CCS to store temporary files and the executable program. The inc directory is used for C and assembly

include files (.h and .inc). The src directory has all the source programs including .C and .asm files.

Table B.1 lists the file types and formats used by the book.

Table B.2 lists the experiments provided by the book. These experiments are primarily designed for

using C5510 DSK; however, some experiments use MATLAB, Simulink, and C.

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

633

JWBK080-APP˙B JWBK080-Kuo March 2, 2006 16:31 Char Count= 0

634 SOFTWARE ORGANIZATION AND LIST OF EXPERIMENTS

Figure B.1 Software directory structure

JWBK080-APP˙B JWBK080-Kuo March 2, 2006 16:31 Char Count= 0

SOFTWARE ORGANIZATION AND LIST OF EXPERIMENTS 635

Table B.1 File types and formats used in the book

File extension File type and format Description

.asm ASCII text C55x assembly program source file

.bin Binary Data file

.bmp Binary Bitmap image file

.c ASCII text C program source file

.cdb ASCII text C55x CCS DSP/BIOS configuration file

.cmd ASCII text C55x linker command file

.dat ASCII text Data file or parameter file

.dsp ASCII text Microsoft Visual C IDE build file

.dsw ASCII text Microsoft Visual C IDE workspace file

.exe Binary Microsoft Visual C IDE executable file

.fig Binary MATLAB M-file

.h ASCII text C program header file

.HSV Binary HSV image file

.inc ASCII text C55x assembly program include file

.jpg Binary JPEG image file

.lib Binary C55x CCS run-time support library

.m ASCII text MATLAB script file

.map ASCII text C55x linker generated memory map file

.mdl ASCII text MATLAB Simulink script file

.mp3 Binary MP3 audio file

.obj Binary C55x C compiler generated object file

.out Binary C55x linker generated executable file

.pcm Binary Linear PCM data file

.pjt ASCII text C55x DSP project file

.RGB Binary RGB image file

.txt ASCII text ASCII text file

.wks Binary C55x CCS IDE workspace file

.wav Binary Microsoft linear PCM wave file

.YUV Binary YUV or YCbCr image file

Table B.2 List of experiments for the book

Chapter Experiment Purpose Platform

1 1.6.1 Familiar with CCS and DSK CCS and C5510 DSK
1.6.2 Learning CCS debugging tools CCS and C5510 DSK
1.6.3 Use CCS probe point CCS and C5510 DSK
1.6.4 Use CCS file IO CCS and C5510 DSK
1.6.5 Learn CCS profile CCS and C5510 DSK
1.6.6 Real-time loopback CCS and C5510 DSK
1.6.7 Sampling theory MATLAB
1.6.8 Understand ADC quantization MATLAB

2 2.10.1 Use mixed C-and-assembly code CCS and C5510 DSK
2.10.2 C55x addressing mode CCS and C5510 DSK
2.10.3 Work with C55x DSP timer CCS and C5510 DSK
2.10.4 Use C55x EMIF and SDRAM CCS and C5510 DSK
2.10.5 Program DSK flash memory CCS and C5510 DSK
2.10.6 Build a McBSP library CCS and C5510 DSK
2.10.7 Set up AIC23 CCS and C5510 DSK
2.10.8 Use C55x DMA CCS and C5510 DSK

continues overleaf

JWBK080-APP˙B JWBK080-Kuo March 2, 2006 16:31 Char Count= 0

636 SOFTWARE ORGANIZATION AND LIST OF EXPERIMENTS

Table B.2 (continued)

Chapter Experiment Purpose Platform

3 3.6.1 Quantization of sinewave CCS and C5510 DSK
3.6.2 Quantization of audio signal CCS and C5510 DSK
3.6.3 Quantization of coefficients CCS and C5510 DSK
3.6.4 Manage overflow CCS and C5510 DSK
3.6.5 Function approximation CCS and C5510 DSK
3.6.6 Real-time signal generation CCS and C5510 DSK

4 4.5.1 Fixed-point block FIR filter CCS and C5510 DSK
4.5.2 FIR in assembly function CCS and C5510 DSK
4.5.3 Symmetric block FIR filter CCS and C5510 DSK
4.5.4 Dual-MAC block FIR filter CCS and C5510 DSK
4.5.5 Decimation and decimator CCS and C5510 DSK
4.5.6 Interpolation and interpolator CCS and C5510 DSK
4.5.7 Sample rate converter CCS and C5510 DSK
4.5.8 Real-time SRC CCS and C5510 DSK

5 5.7.1 Floating-point IIR filer CCS and C5510 DSK
5.7.2 Fixed-point IIR filter CCS and C5510 DSK
5.7.3 Cascade second-order IIR CCS and C5510 DSK
5.7.4 Using intrinsics CCS and C5510 DSK
5.7.5 Assembly implementation of IIR CCS and C5510 DSK
5.7.6 DSP/BIOS real-time application CCS and C5510 DSK
5.7.7 Parametric equalizer CCS and C5510 DSK
5.7.8 Real-time two-band equalizer CCS and C5510 DSK

6 6.6.1 Floating-point DFT CCS and C5510 DSK
6.6.2 Assembly implementation of DFT CCS and C5510 DSK
6.6.3 Floating-point FFT CCS and C5510 DSK
6.6.4 Intrinsics implementation of FFT CCS and C5510 DSK
6.6.5 Assembly implementation of FFT CCS and C5510 DSK
6.6.6 Fast convolution CCS and C5510 DSK
6.6.7 Real-time FFT with DSP/BIOS CCS and C5510 DSK
6.6.8 Real-time FFT filter CCS and C5510 DSK

7 7.6.1 Floating-point LMS CCS and C5510 DSK
7.6.2 Fixed-point leaky LMS CCS and C5510 DSK
7.6.3 ETSI normalized LMS CCS and C5510 DSK
7.6.4 Assembly implementation of DLMS CCS and C5510 DSK
7.6.5 System identification CCS and C5510 DSK
7.6.6 Adaptive predictor CCS and C5510 DSK
7.6.7 Channel equalizer CCS and C5510 DSK
7.6.8 Real-time adaptive predictor CCS and C5510 DSK

8 8.4.1 Sinewave generator CCS and C5510 DSK
8.4.2 White Noise generator CCS and C5510 DSK
8.4.3 Siren generator CCS and C5510 DSK
8.4.4 DTMF generator CCS and C5510 DSK
8.4.5 MATLAB DTMF generation MATLAB

9 9.4.1 Fixed-point DTMF detector CCS and C5510 DSK
9.4.2 Assembly implementation DTMF CCS and C5510 DSK
9.4.3 MATLAB Link for CCS CCS and MATLAB
9.4.4 LPC MATLAB

JWBK080-APP˙B JWBK080-Kuo March 2, 2006 16:31 Char Count= 0

SOFTWARE ORGANIZATION AND LIST OF EXPERIMENTS 637

Table B.2 (continued)

Chapter Experiment Purpose Platform

10 10.7.1 MATLAB implementation of AEC MATLAB
10.7.2 Floating-point AEC CCS and C5510 DSK
10.7.3 Intrinsics implementation of AEC CCS and C5510 DSK
10.7.4 Delay detection MATLAB

11 11.5.1 Floating-point implementation of
LPC

CCS and C5510 DSK

11.5.2 Intrinsics implementation of LPC CCS and C5510 DSK
11.5.3 MATLAB implementation of PWF MATLAB
11.5.4 Intrinsics implementation of PWF CCS and C5510 DSK

12 12.7.1 Floating-point VAD CCS and C5510 DSK
12.7.2 MATLAB implementation of NR MATLAB
12.7.3 Floating-point noise reduction CCS and C5510 DSK
12.7.4 Mixed C-and-assembly VAD CCS and C5510 DSK
12.7.5 Floating-point AEC with NR CCS and C5510 DSK

13 13.5.1 Floating-point MDCT CCS and C5510 DSK
13.5.2 Intrinsics implementation of MDCT CCS and C5510 DSK
13.5.3 Floating-point pre-echo CCS and C5510 DSK
13.5.4 ISO MP3 decoder PC

14 14.4.1 Reed-Solomon code MATLAB
14.4.2 Simulink Reed-Solomon code MATLAB/Simulink
14.4.3 Verify Reed-Solomon root CCS and C5510 DSK
14.4.4 Viterbi decoding MATLAB/Simulink
14.4.5 Convolutional code CCS and C5510 DSK
14.4.6 CRC-32 implementation CCS and C5510 DSK

15 15.10.1 YCbCr to RGB conversion CCS and C5510 DSK
15.10.2 RGB to YUV conversion MATLAB/CCS/DSK
15.10.3 White balance MATLAB/CCS/DSK
15.10.4 Gamma correction and contrast MATLAB/CCS/DSK
15.10.5 Histogram equalization MATLAB/CCS/DSK
15.10.6 Image 2-D filtering MATLAB/CCS/DSK
15.10.7 DCT implementation MATLAB/CCS/DSK
15.10.8 Use C55x HW accelerator MATLAB/CCS/DSK
15.10.9 Introduction to IMGLIB MATLAB/CCS/DSK

JWBK080-APP˙B JWBK080-Kuo March 2, 2006 16:31 Char Count= 0

638

JWBK080-IND JWBK080-Kuo March 6, 2006 22:19 Char Count= 0

Index

2’s complement, 149, 157, 174

3-dB bandwidth, 245, 280–281, 457

60 Hz hum, 6, 188

A
AC-3, 6, 532, 537–538, 541–542, 544

Accumulator (AC0-AC3), 13, 30, 49, 72, 84, 86, 92,

154, 158, 164, 231

Acoustic

echo, 443, 454, 456

echo cancellation, 454, 459, 464, 516

echo path, 455–456

Adaptive

algorithm, 354, 366, 369, 374, 446, 459

channel equalization, 375, 448

filter, 351, 354, 361, 364, 372, 445, 450, 456–457

linear prediction (predictor), 369, 479

notch filter, 374

system identification, 368

Adaptive multi-rate (AMR), 476, 483–484, 490–492,

495, 499

Address-data flow unit (AU), 50–51

Addressing modes, 15, 65–66, 68, 70–71

Advanced audio coding (AAC), 532, 539,

542–543

Algebraic CELP (ACELP), 483–485, 492

Aliasing, 5–6, 9, 42, 220–221, 255, 323, 402, 456,

536

Allpass filter, 188, 265

Analog

filter, 6, 250, 252, 255, 257

interface chip (AIC), 9, 106

Analog-to-digital converter (ADC), 3, 9–11

Ancillary data, 533

Antialiasing filter, 6, 9, 220

Application specific integrated circuits (ASIC),

10–13

Archiver, 25

Arithmetic and logic unit (ALU), 13, 49, 53

Arithmetic

error, 2, 121, 151

instruction, 76

ASCII (text) file, 25

Assembler directives, 23–24, 82, 84

Assembly statement syntax, 84

Auditory-masking, 532–534, 541

Autocorrelation matrix, 357, 362, 375

Auxiliary register (AR0-AR7), 51, 55, 68, 72

B
Bandlimited, 6, 306

Bandpass filter, 6, 140, 188, 207, 255, 264, 275

Bandstop (band-reject) filter, 188, 207, 254, 264,

267

Bandwidth, 2, 5, 16–17, 220, 225, 255, 257, 280,

307, 409, 457, 482, 531, 533, 541, 555, 568

Bark, 534–536

Barrel shifter, 51, 53

Bessel

filter, 252, 254, 264

function, 203

Bilinear transform, 255–257

Binary

file, 35–36

point, 14, 148, 150

Bit manipulation instruction, 77

Bit-reversal, 315–318

Blackman window, 203

Real-Time Digital Signal Processing: Implementations and Applications S.M. Kuo, B.H. Lee, and W. Tian
C© 2006 John Wiley & Sons, Ltd

639

JWBK080-IND JWBK080-Kuo March 6, 2006 22:19 Char Count= 0

640 INDEX

Block

codes, 555–559, 563

FIR filter, 218, 226

processing, 17, 194, 218, 329, 459, 497

Bose-Chaudhuri-Hocquenghem (BCH) code,

556–557

Breakpoint, 26, 29

Built-in parallel instruction, 74

Bus contention, 229, 231

Buses, 9, 14, 50, 53–54, 74–75, 229

Butterfly network (computation), 314, 318

Butterworth filter, 252–254

C
Cascade form, 132, 261–262, 274

Causal, 121, 130, 250, 129

C compiler, 13, 15, 21–23, 86–92, 219, 290

CD player, 3, 531

Center

clipper, 412, 453

frequency, 255, 268, 374

Channel

coding, 487, 491, 555, 566

equalization, 375, 448, 568

Characteristic equation, 140

Chebyshev

approximation, 172, 206

filter, 224, 252–254, 264

Circular

addressing, 14, 50, 55–66, 72, 287

buffer, 50–51, 72–73, 185, 196

convolution, 311–312, 328

pointer, 73, 402

shift, 311

Clipping threshold, 412, 453

Coefficient

data pointer (CDP), 55, 68–69, 163

quantization, 151, 153, 274, 549

Coder/decoder (CODEC), 9–10, 25, 42, 413, 443,

490–492, 495, 497, 499, 532, 539

Code-excited linear predictive (CELP), 475–477,

484, 488

Color balance, 586–587, 607

Comb filter, 188–189, 509

Combined parallel instruction, 74

Comfort noise, 411–412, 453–454, 490, 496

Common object file format (COFF), 22

Companding, 8, 63, 475

Compiler optimization, 89, 101

Complex

arithmetic, 135, 426

LMS algorithm, 362, 392

variable, 130, 249, 251, 309, 322

Complex-conjugate, 317

Continuous-time signal, 1, 3, 306

Conjugate-structure (CS)-ACELP, 488,

490–492

Contrast adjustment, 610–611

Convergence

factor, see step size

speed, 354, 358, 363–364, 447, 456

Convolution, 128, 131–132, 194–195, 250, 303,

311–312, 365, 424, 555, 591, 596

Convolutional encoding, 564, 568

Correlation function, 351–352, 356, 427, 449

Cosine function, 167, 171–175

Critical

band, 532–535

frequencies, 257

Crosscorrelation, 353, 356, 449

Crosstalk, 373

C-to-ASM interlister, 22–23

Cumulative probability distribution function,

143

Cutoff frequency, 6, 162, 188, 190, 206, 220–221,

253–254, 267

Cyclic codes, 557

Cyclic redundant codes (CRC), 563

CYMK color space, 585

D
Data

computation unit (DU), 50–51

generation unit (DAGEN), 74

page pointer (DP), 66–67

dBm 409, 429

DC

component, 303, 484

offset, 6, 188

Debugger, 29

Decibel (dB), 630

Decimation, 8, 220–221, 224, 232, 314, 316

Delay unit, 123–124

Delta function, 121, 591, 594

Deterministic signal, 121

DFT matrix, 309

Differentiator, 207

Digital

filter, 121, 129, 153, 185, 187, 207, 216, 252,

255–256, 265, 354–355

signal, 1, 3, 7, 10, 121, 123, 130, 151

signal processors, 10, 13–16

Digital-to-analog converter (DAC), 3, 9

Direct addressing mode, 55, 65–66, 68

Direct form, 258–260, 269, 274–275

Direct memory access (DMA), 15, 17

JWBK080-IND JWBK080-Kuo March 6, 2006 22:19 Char Count= 0

INDEX 641

Discrete

cosine transform (DCT), 17, 536, 579, 590

Fourier transform (DFT), 86, 141, 303, 305,

307–308

Discrete-time

Fourier transform (DTFT), 305

signal, 1, 4–5, 7, 151, 305

Dispersive delay, 445–446

Doubly AC-3, see AC-3

Double-talk, 450–451, 460, 465

DSP

software development, 20–22

system design, 17, 19

DTMF (dual-tone multi-frequency)

frequencies, 415, 423, 428

tone detection, 422, 428

tone generator, 410

Dual slope, see analog-to-digital converter

Dynamic range, 2–3, 8, 15, 65, 296, 363, 365, 422,

460, 490, 531

E
Echo

cancellation, 412, 443, 445, 450, 454, 457,

460–461, 516, 519

path, 445–446, 448, 450, 452–453, 456, 459

return loss (ERL), 446, 451

return loss enhancement (ERLE), 446–447,

466

Eigenvalue spread, 363

Elliptic filter, 252, 254

Encoding process, 4, 7, 539, 542, 597

Equalizer, 284, 296, 354, 375, 568

Error

contours, 358

surface, 357–358

Error-correction code (ECC), 555, 562

Ethereal, 496

Euler’s

formula, 304

theorem, 628

Even function, 138, 142, 187, 303–304, 352

Excess mean-square error (MSE), 363

Excitation signal, 368, 476, 482, 486, 489

Expectation

operation, 144

value, see mean

F
Far-end, 444–445, 447, 449, 451, 453–454, 460

Fast

convolution, 194, 303, 322, 328, 343, 596

Fourier transform (FFT), 14, 142, 303, 313, 317

Feedback coefficients, 129–130

Feedforward coefficients, 129–130

Field-programmable gate array (FPGA), 10–13

Filter specifications, 187, 189, 256–257

Filterbank, 532, 536, 540–543

Finite impulse response, see FIR filter

Finite wordlength (precision) effects, 258, 261, 271,

364–365

FIR filter, 76, 127, 139, 154, 157–158, 164, 185,

188, 191, 194, 196, 206, 207, 213, 354

Fixed-point, 13, 15, 49, 147, 150, 154

Flash ADCs, see analog-to-digital converter

Flat delay, 445, 448

Floating-point, 13, 15, 153

Folding frequency, see Nyquist frequency

Forced response, 136

Forward error correction (FEC), 555, 568

Fourier

coefficient, 303–304

series, 197, 200, 303

series (window) method, 196–197, 206

transform, 250, 303–305

Four-wire facility, 443

Fractional number, 147–150

Frequency

offset test, 429–430

resolution, 142, 309, 322, 325, 423

response, 138, 141, 250, 284

transform, 249, 254, 267

warping, 256

Fundamental frequency, 303–304

G
Galois field (GF), 556–560, 562, 571–572

Gamma correction, 580, 589–590, 610–611

Generator polynomial, 557, 559–561, 563, 565, 569,

573

Geometric series, 131, 135, 628

Gibbs phenomenon, 198, 200

Goertzel algorithm, 423, 431

Gradient estimate, 360

Group delay, 186, 192, 197, 254

Guard bits, 55, 159

H
Half-wave rectification, 515

Hamming window, 201, 206, 484, 511

Hands-free telephone, see speakerphone

Hann (Hanning) window, 201

Harmonics, 189, 431

Harvard architecture, 12, 14

Highpass filter, 188–189, 254–255, 484, 514, 594

Hilbert transformer, 188

JWBK080-IND JWBK080-Kuo March 6, 2006 22:19 Char Count= 0

642 INDEX

Histogram, 590–592, 611–613

HSV color space, 585–586

Hybrid, 443, 445, 454

loss, see echo return loss

I
Ideal

filter, 6, 190, 252–253

sampler, 4

IIR Filters, 129, 134, 151, 153, 157, 185, 249, 255,

258, 261, 263

Impedance, 109, 409, 443

Implied parallel instructions, 74

Impulse

function, 591

response, 126–129, 133, 194, 197, 250, 255, 282

Impulse-invariant method, 255

Indirect addressing mode, 55, 68–71, 76

Infinite impulse response, see IIR filters

Input

autocorrelation matrix, 375

quantization, 152

vector, 217, 224, 275, 355, 365, 367

Instantaneous

power, 452

squared error, 360

Instruction

buffer queue (IBQ), 49

buffer unit (IU), 50–51

set, 13, 15, 76, 81, 318

Interleave, 483, 562, 568, 584

Internet protocol (IP), 475, 492–493, 495–498

IP telephony, see voice over IP (VoIP)

Interpolation, 8, 13, 220–223, 323, 402

filter, 222, 225, 233

Interrupt, 15, 17, 51, 55, 58, 97

service routine (ISR), 89

vector table, 98

Intersymbol interference (ISI), 375

Intrinsics, 21, 23, 289, 291, 338

Inverse

discrete cosine transformation (IDCT), 13

discrete Fourier transform (IDFT), 308

fast Fourier transform (IFFT), 317, 336, 339

Fourier transform, 305

z-transform, 132, 135

IP network, 421, 431, 444, 493, 531

J
Jitter buffer, 493, 497

JPEG (Joint Photographic Experts Group), 584, 586,

597, 599–600

K
Kaiser window, 203, 205, 325

Kronecker delta function, 121

L
Laplace transform, 130, 249, 251

Leakage (or smearing), 201, 323–324, 515

factor, 205, 366

Leaky LMS algorithm, 366, 379

Learning curve, 363

Least-mean-square, see LMS algorithm

Least significant bit (LSB), 9, 148

Limit cycle oscillation, 151

Line

echo, 443, 454, 456, 460

spectrum, 304, 319

Linear

chirp signal, 404

congruential method, 405

convolution, 128, 194–195, 250, 312, 328

interpolation, 402

phase, 185–186, 191–192, 197, 204, 206, 254, 459

phase filter, 185–186

prediction, 369, 426, 488

predictive coding (LPC), 426, 439, 454, 475–476,

479, 484, 486, 488, 499

time-invariant, 126

Linearity (superposition), 131, 310, 589

Linker, 13, 20, 22, 24

command file, 24

LMS algorithm, 354, 360–361, 376

Logarithmic quantizer, 9

Long division, 132

Lookup-table method, 401, 404

Loop unrolling, 232

Lossless coding, 532, 538–539, 541, 543

Lowpass filter, 6, 8, 162, 186–187, 220, 252, 254,

267, 307, 456, 593

M
MAC unit, see multiply-accumulate

Magnitude, 130

bit, 147

response, 138–142, 185–191, 198–209, 211, 216,

252–255, 264–270, 277, 280–281, 323, 422,

428, 457–458, 462, 479, 481, 504

spectrum, 142–143, 147, 310, 319, 325, 332–338,

347, 510–512, 515

test, 429, 434

Mainlobe, 200–201, 203, 205, 323–326

Mapping properties, 249, 251

Marginally stable, 137, 272

JWBK080-IND JWBK080-Kuo March 6, 2006 22:19 Char Count= 0

INDEX 643

Maskee, 533

Masker, 533–536

Masking threshold, 531–532, 534–536, 540

McBSP, see multi-channel buffered serial port

Mean, 144–146, 160, 213, 352–353, 367, 371, 450,

515, 631

Mean-square error (MSE), 446–447, 487, 517,

589–590, 594

Mean-squared value, 145, 352

Memory map, 22, 24, 53–54, 635

Memory-mapped register addressing mode, 66,

70–71

Memory mapped registers (MMRs), 53–56, 62, 66,

68, 70–71, 97, 107

Microprocessor, 1, 10–13, 86

Microcontrollers, 10, 12, 14

Minimum MSE, 357–358, 476

Mix C and assembly, 21, 90–93, 170, 522, 526

Mnemonic assembly code, 22

Modified DCT (MDCT), 532, 536–538, 540–551

Modulo operation, 89, 177–178, 290, 311, 406

Most significant bit (MSB), 9, 110, 147, 211, 241,

382, 484, 488, 496, 551, 563

Moving average filter, 127, 130, 134, 186

MPEG, 6, 476, 531–532, 539, 542–543, 549, 579,

584–586, 621, 623

MP3, 6, 20, 531–533, 537–541, 543–544, 549,

551–553

MSE surface, 357–358, 360

Multichannel audio coding, 531, 539, 541

Multi-channel buffered serial port, 62–64, 106–109

Multipliers, 11, 124

Multiply-accumulate, 14, 49, 53, 74, 77, 81, 89,

230

N
Natural response, 136

Near-end, 444–447, 449–455, 458–469, 471, 527

Negative symmetry, see anti-symmetric

Network echo, 443, 497, 518

Noise

generators, 405

reduction, 373, 426, 509, 516, 518

subtraction, 509, 511

Nonlinear processor, 453

Normalized, 157, 591

digital frequency, 122

frequency, 140, 187, 189, 206–207, 216, 267, 268,

281, 306, 326, 404

LMS algorithm, 364, 367, 446, 456

step size, 364, 456–457

Notch filter, 188, 372, 374–375

Nyquist

frequency, 5, 6, 142, 225, 265

interval, 5, 6

rate, 5

O
Odd function, 138, 303

One-sided z-transform, 130

Operand types, 66

Optimum

filter, 356–357, 364

weight vector, 357

Oscillatory behavior, 198, 200

Overflow, 16, 52, 55, 77–78, 151, 154–155,

157–159, 164–166, 210, 229, 274, 288, 293,

318, 321, 365–366, 432–434, 499, 596, 602

Overlap-add, 330–331, 343–345

Overlap-save, 330

Oversampling, 6, 9–10, 220

Overshoot, 185–186

P
Parallel

connection, 132–133

converter, 9

execution, 14, 74, 96

form, 133, 262

Parallelism, 15, 73, 75, 318, 383

Parametric equalizer, 284, 296–297, 636

Parseval’s theorem, 325

Partial-fraction expansion, 132, 262, 264

Passband

edge (cutoff) frequency, 191, 208, 211, 269–270

ripple, 190–191, 208, 211, 265–266, 269–270,

275

Peak value, 516, 594

Perceptive (perceptual) weighting filter, 448,

476–477, 481–484, 486, 489, 504, 506–507,

533

Performance

(or cost) function, 355, 357

surface, 357–360

Periodic signal, 189, 303–304

Periodicity, 308–309

Periodogram, 325–327

Peripheral data-page pointer (PDP), 66, 68

Phase

distortion, 6, 186, 188

response (shift), 6, 138–140, 185–187, 189, 204,

254, 266–267, 274, 277, 354

spectrum, 186, 310

Pipeline protection unit, 51–52

JWBK080-IND JWBK080-Kuo March 6, 2006 22:19 Char Count= 0

644 INDEX

Pixel, 13, 579–583, 587–588, 590–591, 594,

596–597, 599–600, 602, 606–610, 612–617,

619, 621, 623–624

PN sequence, see pseudo-random number

Polar form, 130, 138, 309

Pole, 135–138, 140–141, 153, 185, 188–189,

250–254, 261, 263–264, 271–274, 277,

279–282, 284, 355, 424–428, 439–441, 454,

475

Pole-zero

cancellation, 136,

plot (diagram), 135–137

Polynomial approximation, 167, 252, 401

Positive symmetric, see symmetric

Power

density spectrum (PDS), 325, 327, 517

estimator, 411

spectral density, see PDS

spectrum, see PDS

Preecho effect, 538, 549

Prewhitening, 447–448, 460

Probability density function, 143–144

Probe point, 26, 29, 32–36, 635

Processing time, 16, 196, 620

Profiler (profiling), 29, 37–38, 96

Program

address generator, 51

counter (PC), 31–32, 51–52, 56, 436

execution pipeline, 73

fetch pipeline, 73

flow control instructions, 76, 78

flow unit (PU), 50–52

Program-read address bus (PAB), 50, 52–53,

73

Program-read data bus (PB), 50–51, 53

Pseudo-random

binary sequence generator, 407

numbers, 149, 405–406

Psychoacoustics

model, 532, 540

masking, 534

Q
Q format, 150, 172, 174

Quadrature mirror filterbank (QMF), 536

Quadrature phase, 585

Quantization,

effect, 147, 153, 159, 161, 164

errors (noise), 4, 7, 9, 44, 151–152, 160, 274, 534,

543, 549

process, 4, 152, 210

step (interval, width, resolution), 151–152

Quiet threshold, 534–535

R
Radix-2 FFT, 317–318, 320, 336, 339

Raised cosine function, 201

Random

number generation, 177–178, 405

process (signals), 121, 142, 144, 154, 177–178,

351–353, 369, 388

variable, 7, 142–146, 215, 351

Rayleigh fading, 568

Realization of IIR filter, 133, 258

Real-time constraint, 16, 614, 620

Real-time transport protocol (RTP), 422, 431–432,

444, 493, 495–498

Reconstruction filter, 2, 9

Recovery time, 461

Rectangular

pulse train, 303–304

window, 198, 200–203, 323, 325–327, 536–537

Recursive

algorithm, 477

computation (calculation), 284, 424–425

moving-window, 136

oscillator, 280

path, 432–435, 438

Reed–Solomon (RS) codes, 555–563, 569–572

Region of convergence, 130

Register, 9, 11, 15, 21, 26, 29–32, 50–72, 75, 77–84,

88–97, 101, 103, 105, 107–109, 112, 114,

116–147, 157–158, 163, 165–166, 171, 174,

228–229, 232, 290–293, 333–340, 407–408,

434, 558–560, 563–564, 576

Reliability, 2, 20

Remez algorithm, 206

Repeat operation, 49–50, 80

Residual

echo, 411–412, 446–447, 450, 453–454, 467

echo suppressor, 441

noise reduction, 516

Resonator (peaking) filter, 280

Reverberation, 456

RGB color space, 580–589, 596, 601–606, 615

Room transfer function, 456

Root of the primitive polynomial, 557, 577

Rounding and saturation control logic, 51

Roundoff error, 153–154, 260–261, 274, 366

Run-time support library, 23, 28, 30, 96, 102, 105,

114, 167–168, 635

S
Sample

autocorrelation function, 353

mean, 353

space, 142–143

JWBK080-IND JWBK080-Kuo March 6, 2006 22:19 Char Count= 0

INDEX 645

Sampling

frequency (rate), 4–5, 9, 42–44

process, 3–4, 220

theorem, 5–6, 43, 122, 206–207, 580

Saturation arithmetic, 157–159, 164, 365

Scaling factor, 6, 158, 189, 274–275, 307, 320–321,

511, 533

Schur-Cohn stability test, 273

Second harmonic test, 431

Serial converter, 9

Settling time, 185–186

Shannon’s sampling theorem, 5

Sidelobes, 200–201, 205, 323, 325

Sigma-delta ADC, see analog-to-digital converter

Signal buffer, 195–196, 218, 221, 227–229,

231–232, 259, 275, 284–285, 287–290, 293

Signal-to-quantization-noise ratio, 7, 8

Sign bit, 147–148, 174, 274, 484, 499

Simulator, 13, 20–22, 25–28, 39, 160, 167–168, 175,

285, 350, 436, 604–624

Simulink, 11, 18, 461–463, 570–573

Sine function, 38, 44, 54, 167, 403–404, 554

Sinewave

generation, 123, 401

table, 401–402, 415

Single-repeat instruction (RPT), 54

Sinusoidal

signal, 46, 121, 136, 160, 274, 352, 374, 410, 412

steady-state response, 136

Sirens, 409

Slicer, 376

Smearing, 201, 323–324, 515

Smoothing filter, 8, 594

Software development tools, 12–13, 18, 20–22

Sound pressure level (SPL), 533

Speakerphone, 443, 454–455

Spectral

dynamic range, 363

leakage, 323, 325, 327

resolution, 324–325

smearing, 323–324

subtraction, 510–517, 522–525

spectral (spectrum) envelope, 448, 480, 492, 504,

542,

Spectrogram, 328–331, 405

Spectrum, 9, 122, 142–143, 147–148, 186, 215,

221–223, 227, 233–235

Speech,

enhancement, 509–510

(source) coding, 369, 412, 426, 475, 490, 497,

506, 509, 531, 533, 543, 566

recognition, 2, 509

Square wave, 409–410,

Squared-magnitude response, 85, 138, 186, 252

Stability

condition, 251, 273, 300

constraint, 362–363

triangle, 273

Stack, 24–26, 51, 55–56, 66, 68, 84, 86, 90–92, 100,

340

Stack pointer (SP), 51, 55–56, 68, 90

Stalling, 366

Standard deviation, 145, 590

Stationary, 325, 352, 357, 364, 375, 509, 511, 513,

515, 540, 543

Status registers, 51–52, 55, 57, 84, 340

Steady-state response, 136, 185

Steepest descent, 358, 360, 363

Step size, 358, 360, 362–367, 375, 378–380, 387,

391, 396, 398, 447, 456–457, 460, 463,

465–466

Stochastic gradient algorithm, see LMS

algorithm

Stochastic process, see random process

Stopband

edge frequency, 190–191

ripple (or attenuation), 190, 201, 254, 275

Subband acoustic echo canceller, 455–460

Successive approximation, see analog-to-digital

converter

Sum of products, 126, 194

Superposition, 131

Symmetry, 191–193, 308–310, 316, 402

Synthesis filter, 426–429, 457–460, 476–482,

485–486, 488–490, 502–504, 552

System

gain, 136

identification, 368–369, 387–391

stack pointer (SSP), 56

T
Tail delay, 445–446

Talk-off, 422

Taylor series expansion, 167

Temporal average, 447

Temporary register (T0-T3), 30, 51, 56, 70–72, 229,

333

Time delay, 131, 186–186, 351, 443, 460

Time division multiplex (TDM), 443–444

Time-quantization error, 402

TMS320C55x, 13–15, 21–26, 49–114

Tone generation, 175, 415

Tone detection, 411

Total energy test, 430

Total harmonic distortion, 401

Training signal, 392

JWBK080-IND JWBK080-Kuo March 6, 2006 22:19 Char Count= 0

646 INDEX

Transfer function, 132–141, 188–189, 197, 250–251,

257–262, 271–274, 279, 282, 372, 375, 425,

448, 456, 482, 517

Transformer, 188–189

Transient response, 136, 185

Transition

band, 190–191, 253

discontinuity, 198

Transversal filter, see FIR filter

Trellis, 564–567, 573

Trigonometric function, 401, 627

Truncation, 7, 151, 154, 198

Twiddle factor, 308–309, 313, 317–318, 332

Twist test, 429

Two-sided z-transform, 130

Two-wire facility, 444

U
Uncorrelated, 152, 351, 389, 446, 450, 453, 511, 516

Uniform density function, 144–145

Unit

circle, 130, 135–136, 137–138, 141, 153

delay, 124–125, 131

Unit-impulse sequence, 121, 126

Units of power, 630

Unit-step sequence, 121

User-built parallel instruction, 74

User datagram protocol (UDP), 493–495, 498

V
Variance, 145–147, 152, 159–160, 318

Viterbi decoding, 15, 564, 566, 568, 573

Voice activity detector (VAD), 490, 492, 509–515,

519–523, 525–527

Voice over IP (VoIP), 421, 443–444, 492–493, 497

von Neumann architecture, 12

W
Weight vector, 355, 357–358, 360–366

Weighted terminal coupling loss, 460, 461

White balance, 580, 587–589, 607–610

White noise, 146–148, 156–157, 217–218, 275, 297,

351, 353, 358, 363, 366–373, 378, 388–389,

394, 413, 447, 449, 512,

Wide-sense stationary (WSS), 352–353

Window function, 200–205, 323–325, 501, 503, 507,

536

Wordlength, 4, 7, 10, 44, 107, 109, 147, 151–155,

160–161, 164, 172, 210, 213, 216, 218, 258,

261, 271, 274, 283–284, 318, 364, 380,

401–402, 583, 601, 604

Y
YUV color spaces, 584–585

YCbCr color spaces, 584

YIQ color spaces, 585

Z
Zero-crossing, 514–515, 594

Zero-mean, 144–147, 156–157, 351–353, 358, 388,

406–407, 412

Zero-order modified Bessel function, 203

Zero-overhead looping, 15

Zero-padding, 313

Z-plane, 130, 135, 249–256, 277

Z-transform, 130–136, 139, 141, 251, 311, 424,

517

